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We point out in this paper the possibility of demonstrating the Einstein-Podolsky-Rosen paradox
via quadrature phase measurements performed on the two output beams of a nondegenerate para-
metric amplifier. A technique that might be used to demonstrate the paradox has already been part-

ly developed experimentally.

I. INTRODUCTION

There has been much recent interest in the quantum
features displayed by the output fields of a nondegenerate
parametric amplifier (or nondegenerate parametric oscil-
lator where the parametric medium is placed in a cavity).
In such a device, a pump photon is destroyed and a signal
and idler photon pair is created. The correlation of pho-
ton number between signal and idler modes is greater
than that predicted by standard classical theory, and
there is a violation of a classical Cauchy-Schwarz in-
equality involving intensity correlations. There has been
experimental demonstration of these and related features
by Burnham and Weinberg,' Friberg et al.,’ and Jake-
man and Walker.> Theoretical quantum analyses have
been given by Graham and Haken* and McNeil and Gar-
diner.” Reynaud et al.® have recently predicted a reduc-
tion of fluctuations to occur in the spectrum of the
signal-idler intensity difference because of the intensity
correlation. Such a reduction has now been observed ex-
perimentally by Heidmann et al.”

Graham?® has pointed out that such photon number
correlations in the nondegenerate parametric oscillator
might remind one of Einstein-Podolsky-Rosen® correla-
tions. Reid and Walls'® later predicted a violation of
Bell’s inequality'! where there is a strong violation of the
classical Cauchy-Schwarz inequality involving intensity
correlation. There has been a recent two-photon interfer-
ence experiment by Ou and Mandel'? demonstrating a
violation of Bell’s inequality in the output field of a non-
degenerate parametric amplifier. Such proposals, as with
the Bell inequality experiments of Aspect et al.,'* involve
joint photon-counting measurements.

In this paper we are concerned with the demonstration
of the Einstein-Podolsky-Rosen (EPR) paradox itself, as
distinct from tests of Bell’s inequalities. The EPR para-
dox became famous as an argument for the hypothesis
that the quantum-mechanical description of a physical
system is “incomplete,” and later stimulated Bell to
derive his famous inequalities. The paradox concerns the
existence of high correlations between observables of two
spatially separated subsystems. The paradox occurs
where both of two noncommuting observables of one sub-
system are highly correlated with observables of the
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second subsystem. The original version due to EPR was
formulated in terms of two spatially separated particles
which have highly correlated positions, and momenta. A
modified discrete version of the paradox was later
presented by Bohm.'* He considered a pair of spatially
separated spin-1 particles which show high correlation
between their various spin components.

The purpose of this paper is to draw attention to the
experimental possibility of demonstration of the original
EPR paradox in the nondegenerate parametric amplifier
(or related systems). Thus we become concerned not only
with the signal and idler intensity correlation, but with
the signal and idler phase correlation as well. Phase
correlations in the nondegenerate parametric oscillator
have been discussed by Reynaud et al.® We point out
that the paradox may be formulated in terms of the field
quadrature phase amplitudes.’”> Such amplitudes are
measurable by homodyne detection techniques now well
established experimentally. We show that for an ideal
parametric amplifier both the conjugate quadrature phase
amplitudes of signal and idler are highly correlated and
in principle provide an example of the EPR paradox.
Such a correlation will manifest itself as a reduction in
the fluctuations of the signal and idler quadrature phase
amplitude difference. We deduce the level of noise reduc-
tion required to imply that the correlations are EPR and
that the paradox is demonstrated. We also show that
EPR correlations exist between the output beams of a
beam splitter with squeezed vacuum and coherent vacu-
um inputs.

There has been much success recently in producing
and detecting squeezed light,'®”?° where the fluctuations
in one of the quadrature phase amplitudes are reduced
below the coherent-state level. With substantial noise
reduction'’ in the quadrature phase amplitude of a single
beam now possible, we point out in this paper that the
demonstration of the EPR paradox via quadrature phase
amplitude measurements on two correlated and spatially
separated output beams would seem to be a viable possi-
bility. A technique which could be used to test for such a
correlation has been demonstrated by Levenson et al.?!
and Schumaker et al.?? A discussion of some of the pre-
liminary results of this paper with reference to a nonde-
generate parametric oscillator will be presented else-
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where.> A demonstration of the paradox via quadrature
phase amplitudes is closely in line with the original ver-
sion of the paradox put forward by EPR. As far as we
know, this original version has not been experimentally
realized, though there have been recent theoretical sug-
gestions.?*

II. THE EPR PARADOX
AND QUADRATURE PHASE AMPLITUDES

First, let us summarize the reasoning behind the EPR
paradox.”!! Einstein, Podolsky, and Rosen make three
assumptions. Firstly, they assume quantum mechanics
predicts correctly at least the results of the experiment
discussed below by them. Secondly, “if without in any
way disturbing the system, we can predict with certainty
the value of a physical quantity, then there exists an ele-
ment of physical reality corresponding to this quantity.”
Thirdly, they assume there is “no action at a distance.”
Einstein, Podolsky, and Rosen then considered two spa-
tially separated particles which show a maximum correla-
tion between their positions and their momenta. Such
systems are predicted to occur in quantum mechanics. A
measurement of the position of particle 2 implies with
certainty the result obtained if the position of particle 1 is
measured immediately. Assuming there is no action at a
distance, the prediction for the position of particle 1 is
made without disturbing the particle. The EPR concept
of reality leads them to identify with particle 1 a definite
predetermined value for its position. Since the momenta
of the two particles are also correlated, one may use a
similar argument to ascribe to particle 1 a definite
predetermined value for its momentum. These argu-
ments lead EPR to identify with particle 1 a state of
definite momentum and position. In a quantum-
mechanical formalism no state can simultaneously have a
definite value of both momentum and position. EPR thus
reached the conclusion that quantum mechanics gives
only an incomplete description of the state of the particle.

In this paper we consider an analogous situation where
one measures, not position and momentum of particles,
but the quadrature phase components of two correlated
and spatially separated light fields. We consider, in the
first instance, two single-mode fields E , and E at posi-
tions r, and rg, and of frequency w, and w,, respective-
ly. We note that w, may equal w, but the fields must be
spatially separated. We may write the fields in terms of
the boson operators, and the associated quadrature phase
amplitude operators, as follows:

)

—iw -i-lwt

E =Mae ° "+a'e
2%[)?lcos(a)at)+f\>2sin(a)at)] ,
(2.1)

Ep=Mbe ' +5Te ™"

= %[f’lcos(a)bt )+ ¥,sin(w,1)] .
The A (taken to be equal for each mode) is a constant in-

corporating spatial factors. We deal with optical fre-
quencies where (0w, —w,)/w, <<1 to a good approxima-

&

tion. The quadrature phase amplitudes are defined
o= (ae “i04a%ei0)
=(be it +pTeid)

>

(2.2)

and we use the notation

£,=%y X,=%_, ¥,=9, 9,=%,
The conjugate variables X1 and .f are noncommuting,
with [X,, X,]=2i. We write

AXIAX2>1 . 2.3)

Now if the fields are prepared in such a way that the am-
plitude X, is maximally correlated with Y2 (say), and X2
is maximally correlated with ?1, the EPR reasoning will
apply. We next show that, as one example, the output
fields of an ideal nondegenerate parametric amplifier ex-
hibit such correlations.

III. PRODUCTION OF THE CORRELATED STATE:
THE NONDEGENERATE PARAMETRIC AMPLIFIER

The nondegenerate parametric amplifier is often

modeled by the simple interaction Hamiltonian

H,=—#x(a'b"+ab) . (3.1)

Here « is a nonlinear coupling coefficient proportional to
the nonlinear susceptibility of the medium and to the am-
plitude of the pump field (of frequency w,+w,). The
pump is assumed to be undepleted and of sufficient inten-
sity that it may be modeled classically. We take « real for
convenience. The modes must be nondegenerate, that is,
either different frequencies or different polarizations. We
point out that (3.1) is an ideal Hamiltonian. In a realistic
situation there will be other effects such as loss which will
tend to degrade the correlations predicted from (3.1).
Hamiltonians of this type, however, have been successful
in predicting experimentally observed quantum effects,
such as “squeezing”!”!® and correlations enabling “quan-
tum nondemolition measurements.”’"2?

From the model (3.1), the quadrature phase amplitudes
X, after an interaction time T=L /v with the medium
are readily found to be

/?I(L)=/\/}1(O)coshr+ ?Z(O)Sinhr R
X,(L)=X,(0)coshr+ ¥,(0)sinhr ,
¥,(L)=7,(0)coshr +X,(0)sinhr , G2
¥,(L)=7¥,(0)coshr +X,(0)sinhr ,

where r =«T. The solutions are a simple model for the
situation we envisage of two fields propagating in one
direction with speed v through a nonlinear crystal of
length L. Xm)(O ) and ¥,(,)(0) are the input amplitudes,
and Xl(z)(L) and Y,m( ) are the output amplitudes. We
denote @ as the signal field, and b as the idler field. Be-
cause the fields are nondegenerate, we may _Spatially
separate the output signal and idler amplitudes X (L) and
Y, (L).
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The quantum-mechanical Cauchy-Schwarz inequality
for the quadrature phase amplitudes is as follows:

HR(LIT LN PSR JDIPI YD) . (3.3)

We define the associated quantum-mechanical correlation
coefficient
Coom—s (Xo(L)Y4(L)) .
KO AVADIO AVADINE
We now proceed to calculate the correlation between

the quadrature phase amplitude outputs given by (3.2).
One has the following relation:

X,(L)=X,(L)cos6+X,(L)sin6 ,
P4(L)=79,(L)cosp+ ¥,(L)sing .

For uncorrelated vacuum inputs with (a)y=(b)
=(@?)=(p*)="---=0 and ([X,(0)]*)=([X,(0)])
=([¥,(0)]*) =([¥,(0)]*) =1, one finds

(3.4)

(3.5)

S

(X,(L)Y,(L))=2coshr sinhr=(X,(L)¥,(L)) ,
(X(D)Y (L)=0=(X,(L)?,(L))=(X,(L)X,(L)) ,
([X,(L)]?) =cosh?r +sinh?r
=([X, (D) =[P, ={[P,(L)]*) .
(3.6)
Hence we calculate
(Xo(L)Y,(L))=2coshr sinhr sin(6+¢) ,

(3.7)
([X,(L)P)Y=(I ?¢(L)]2) =cosh?r +sinh’r .

The correlation coefficient for X4(L) and ?¢(L) is thus

Cys=tanh(2r)sin(6+¢) . (3.8)

The result for Cy, is particularly interesting. We note
that for r large, the correlation coefficient becomes

Cos=sin(6+¢) . (3.9)

There is a perfect correlation (|Cgy|=1) for 6+¢=17/2.
That is, there is perfect correlation between the quadra-
ture phase amplitudes X, and ¥,, and also fz and ¥,.
Thus we have the situation of the Einstein-Podolsky-
Rosen Gedankenexperiment, as discussed in Sec. II.

We see how the correlation between output quadra-
tures is very sensitive to the amplification parameter r.
In realistic situations r is never infinite, and also there
will be other factors, such as loss, downgrading the corre-
lation. We thus ask the question can the Gedankenexper-
iment be properly realized for situations involving less
than the maximum correlation?

IV. DEMONSTRATION OF THE EPR PARADOX

The paradox is about the ability to infer an observable
of one system from the result of measurement performed
on a second system spatially separated from the first. For
observables not maximally correlated, there will be an er-
ror in making such an inference. It is still possible, how-

ever, to obtain a paradox providing the error is small
enough, compared to the uncertainty predicted by the
Heisenberg uncertainly principle. In this section we cal-
culate the “inference error” and determine how small it
has to be in order to have an EPR paradox.

The solutions (3.2) and (3.9) indicate a correlation be-
tween the output signal amplitude X,(L) and idler ampli-
tude ?Z(L). Let us propose that a measurement of the
idler amplitude ?d,(L) will infer the result for the signal
amplitude X,(L).**"?7 Thus one monitors “at a dis-
tance” X,(L) by a scaled readout X%(L) of ?at(L)’ where

XL)=¢gY,(L) . (4.1)

The result of X %(L) is the inferred estimate of the signal
amplitude X 1(L). We have introduced a possible scaling
parameter g, which we will adjust to allow for greatest
accuracy in the determination of X ,(L). The deviation of
the scaled readout X9(L) from the true signal amplitude
X (L) is determined simply by the difference
fl(L)—/??(L). Hence the average error A, X, (L) in our
estimate of X (L) is given by

V,(g,d)=A%K (L)=([X,(L)—X}(L)]*)

=([X,(L)—gT,(L)]}) . 4.2

Our definition of the best estimate X$(L) is such that the
scaling factor g and the angle ¢ give a minimum
A2.X,(L). Setting dV,(g,¢)/3dg =0, we deduce that

_ (X(L)Y,(L))
8 ([¥4(L)1)

In this case the error is minimized with = /2 and the
corresponding minimum error is

4.3)

(X,(L)P,(L))?
([?,(L)]*)
For the situation of coherent vacuum inputs considered

here, the solutions are given by (3.6) and thus the ideal-
ized result is

[V1(8,8)min= [ X, (L)) — (4.4)

1

cosh(2r) @5

[Vl(g’¢)]min:Ai2nt{/?1(L)]min:
with

g =tanh(2r) . (4.6)

Clearly the error Amffl(L) in our estimate of I?I(L) be-
comes negligible with sufficiently large amplification r.
We may compare the results (4.1) and (4.5) with previ-
ous calculations by Milburn ez al.?’” These authors con-
sider, as we do here, the inference of a signal amplitude
X,(L) by a measurement of the idler amplitude ?Z(L).
One would like to calculate the “conditional probability
distribution” of the signal variable X 1(L), given a partic-
ular readout of the idler amplitude ¥,(L). Milburn et al.
calculate by projection operator techniques a density
operator for the state of the signal, given a particular re-
sult y,(L) of a measurement of ?Z(L) (thus calculating
the effect of the idler state reduction). From this reduced
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density operator they calculate the mean and variance of
the conditional signal amplitude X, (L), the signal given
an idler readout y,(L). We would hope that our best esti-
mate of X,(L), given a result y,(L), corresponds to the
mean of the conditional distribution, and that the
minimum inference error A%X (L), corresponds to the
variance of the conditional distribution. This is indeed
the case. The mean and variance of [X,(L)]; as calcu-
lated by Milburn et al. is [with vacuum inputs (f}(O))
=(9,(0))=0]

([X,(L)]g ) =tanh(2r)y,(L) , 4.7)

AR (D))= (4.8)

1
cosh(2r) °
The results for AZ[)?I(L)]R in this case are uniform
throughout all possible outcomes y,(L), and hence coin-
cide with our averaged result (4.5). We choose to phrase
the paradox in terms of the averaged error AZ.X, (L)
rather than the conditional error A2[X,(L)], itself be-
cause it is measurable experimentally by techniques dis-
cussed in Sec. V.

The result (3.9) also indicates a strong correlation be-
tween ¥,(L) and X,(L), and we could alternatively
choose to measure the idler amplitude ?I(L) and infer
from this result the signal amplitude X ,(L). Using argu-
ments similar to those above, we introduce an estimate
X3(L)=g ¥,(L) for X,(L), and define an error A, X,(L)
in the estimate. Choosing g to minimize this error, we
calculate this error to be

[V2(2,8)]min=A%A X5 (L) ] in
=([2,(L)— XL uin
(X (L)Y, (L))?

= 2y
(L (Y,(L))?

1
cosh(2r) ’ @9
where g=(X,(L)Y,(L)) /{[¥?,(L)]*) =tanh(2r).

We are now able to repeat the EPR argument. A mea-
surement of Y,(L) of the idler beam simultaneously
specifies a value for the amplitude /?,(L) of the signal
beam, with an error Amf)? ((L). Similarly, a measurement
of f’](L) of the idler beam would simultaneously sPecify
a value for fz(L) of the signal, with an error A; X,(L).
Thus, since the beams are spatially well separated and as-
suming there is no action at a distance, the EPR concept
of reality would lead one to assign to the signal beam
predetermined values for X,(L) [with uncertainty
Ay eX (L)) and for X,(L) [with uncertainty A, X,(L)].
According to quantum mechanics, the signal quadrature
phase amplitudes X,(L) and X,(L) are noncommuting
operators and cannot both be simultaneously specified
with certainty greater than that allowed by the uncertain-
ty principle. Thus (for all quantum-mechanical descrip-

tions of this state)
AX (L)AX(L)>1 . (4.10)

Thus the assignment to the signal beam of a state with

I&

values of X, (L) and X,(L) defined to accuracy

AR (DA, (L) <1 @.11)

is in apparent contradiction with quantum-mechanical
formalism. In this example we have

AyeX (L)A; X, (L)=1/cosh(2r)

and hence the paradox.
Experimental demonstration of the paradox thus
occurs where

Vg8V, (Z,8)=228 (L)A2X,(L)<1.  (4.12)

The noise level corresponding to the minimum uncertain-
ty product is that of the input signal vacuum fluctuations
[AZYI(O)=A21?2(O)=1]. The parameters g,2,¢ and ¢
are arbitrary but in practice are chosen to minimize the
variances. The subscripts 1 and 2 are not arbitrary but
refer to two conjugate quadrature phase amplitudes of
the signal.

The procedure then is to take many measurements and
to calculate the averages V| and V,. Because one cannot
measure X . and X , at the same time, the measurements
of V| and ¥V, are not made simultaneously. This is the
same situation as in the original paradox. However, be-
cause we calculate an average error for the situation
where the correlation is not maximum, this point may
need further discussion (see Appendix A).

V. RELATION TO SQUEEZING
AND A POSSIBLE EXPERIMENTAL PROCEDURE

We now discuss the experimental measurement of
V:(g,#) and hence demonstration of the inequality (4.12).
There is a close relationship to the noise quantity V;(g,¢)
and to a noise quantity (‘“four-mode squeezing”) dis-
cussed by Schumaker?® which has already been measured
in dual homodyne detection experiments by Levenson
and co-workers.?!"??

First, let us consider the general noise quantity

Volg,8)=((Xytg¥,)?) . (5.1)

Vo(g,#) is the fluctuation in the signal and idler quadra-
ture phase amplitude difference. We will denote V(g,¢)
and V_,,(g,¢) as V,(g,¢) and V,(g,¢), respectively, in
accordance with the notation (2.2) used for the quadra-
ture operators. Where there is a correlation between b'¢ 0
and ?¢, the fluctuation Vy(g,¢) may be considerably re-
duced for an appropriate choice of ¢, the *, and the g.

The experiments to date have been interested primarily
in the “squeezing” of the field. This occurs where the
variance Vy(g,¢) is less than that observed if the signal
and idler are independent coherent fields. We rewrite V,
as follows:

Volg,d)=1+g2+(:X5:)+g2(:¥3:)+2g(X,¥,) ,
(5.2)

where : : denotes normal ordering. If the signal and idler
fields are both (coherent) vacuum fields, then Vy(g,¢) is
simply 1+g?2, that noise arising from the quantum com-
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mutation relations. It is usual to normalize the quantity
Vo(g,¢) to this “vacuum noise level.” Thus we define

Volg,¢)
= 53
1+g
and squeezing occurs where
Vi <1. (5.4)

The quantity Vy(g,) is directly related to V,(g,¢) and
V,(g,), as defined in Eqgs. (4.2) and (4.9). We note that
the requirement

Volg,d)<1 (5.5)

is more stringent than that for squeezing. We also point
out that the choice of g will be different depending on
whether one is minimizing V(g,¢) or V. We point out
that this result implies one can demonstrate the paradox
only with fields that are quantum, in the sense that they
have a singular or negative Glauber-Sudarshan P(a) dis-
tribution. This is clear,?® since a classical field is describ-
able in terms of a well-behaved P(a) which predicts a
positive normally ordered variance :¥:. Hence V> 1,
for any choice of angle 8 and the result (5.5) is never
achieved.

An experimental procedure to measure the noise quan-
tity Vy(g,4) and to compare it with the (coherent) vacu-
um noise level has already been demonstrated by Leven-
son et al.?! and Schumaker et al.?* The correlation be-
tween signal and idler quadrature amplitudes was gen-
erated in their experiment by four-wave-mixing processes
occurring in an optical fiber, cooled to below 2 K. In this
paper we have discussed generation of the correlation via
a simple model of nondegenerate parametric
amplification. Although the details of solutions differ
somewhat, the EPR correlations are produced by a num-
ber of quadratic Hamiltonians and a general principle of
detection would apply.

Figure 1 depicts a possible experimental arrangement.
The output signal and idler beams are first well separated
spatially in some manner, for example, by a prism or po-
larizer. The idler and signal quadrature amplitude phases
Y,(L) and X4(L) are each individually homodyne detect-
ed. ?d,(L) is measured by combining the idler field with a
local oscillator E{, field at the idler frequency and phase
shifted ¢ with respect to the idler. The idler beats with
the local oscillator EJ, at the idler photodetector and
gives rise to a photocurrent which depends on the quad-
rature operators according to ?y ~|E¥s| f’¢(L). Xo(L) is
similarly detected by combining the signal field with a lo-
cal oscillator E{, with a relative phase shift 8. The pho-
tocurrent from the signal photodetector is
7. ~|E¥5|%4(L). In the parametric amplifier, the local
oscillators would be derivatives of the pump field E, con-
verted in frequency and phase shifted in some manner.
Since this is hard to do in practice, it may be better to use
signal and idler fields of the same frequency but with
different polarizations. The pump could be split via beam
splitters to provide two local oscillator fields. It is usual'®
to employ a balanced homodyne detection scheme to re-

X
o

€ ig(t) ~ 9y

FIG. 1. Schematic diagram of the apparatus used to measure
Vo(g,¢4,w). In the first experiment (as depicted), a and b are the
spatially separated but correlated outputs of the parametric
amplifier (PARAMP). The homodyne detection enables mea-
surement of the quadrature phase amplitudes X4(L,t) and
Y4(L,t). The power spectrum (l|i(w)|*) of the difference
current is measured at the spectrum analyzer. The parameters
8,/8. and ¢ are chosen to minimize the fluctuations in the
power spectrum (|i(@)|?). To determine V,(g,é,), one must
normalize the noise level (|i(w)|?) by {|i,(®)]?)cop, the vacuum
(minimum uncertainty state) noise level of the signal. This is
determined in a second experiment. To demonstrate the EPR
paradox one must measure both ¥V, and V, and check V,V, <1,
where the subscripts 1 and 2 refer to two conjugate quadrature
phase amplitudes of the signal.

move unwanted noise contributions to the photocurrents
iy, iy due to the local oscillator. In four-wave mixing,
two pumps (local oscillators) are already available. A
measurement of this type was made by Schumaker
et al.,’> who used copropagating four-wave mixing with
two pumps widely separated in frequency.

In a realistic traveling-wave situation, we have a fre-
quency band of coupled parametric amplifiers. Best noise
reduction measurements are achieved by measuring the
spectrum of fluctuations in the photocurrents, so that fre-
quency bands with minimal noise can be isolated. Our
idler (signal) output, in fact, is a frequency band of
sidemodes b(w,+®) and b(w,—w) [and @(w,+o),
@(w, —w)] centered about the local oscillator frequency
o, (or w,). The interaction Hamiltonian is [compare
with (3.1)]

H=—#{2(0)b(—0)+2 (b (-], (5.6)
where o is the shift in frequency of the sidebands from
the signal and idler local oscillator frequencies, w, and

w,. The detectable output Fourier-transformed quadra-
ture operators are*® (we assume o <<w,,w,)

Ro(L,o)=a(w)e P+at(—we,
(5.7)
V4(L,0)=b(w)e +b (—w)e™ .

Their solutions are given in terms of their vacuum inputs
X,(0,0), ¥,(0,0) by the previous result (3.2), but replac-
ing X;(L) with X;(L,®) and ¥,(L) with ¥,(L,0) (and also
writing the Hermitan conjugate equations). The frequen-
cy space quadrature operators /?,-(L,co) themselves are
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not Hermitian. However, the real and imaginary parts
are and correspond to the observable quantities, as dis-
cussed by Schumaker.?! One defines the following opera-

tors
) P, (L,0)+[Py(L,0)]
Re ?¢(L,w)= 75 , .
m* ¥ (L) i}d}(L,co)—[?,,,(L,a))]Jr )
m ,0)= = .
o e Vi

We note that Re* ?q,(‘L,a)) [Im* ?d,(L,co)] are V2 times
the real [imaginary] part of ?},(L,a)). The operators
Re*X4(L,w) and Im*X (L, o) are defined similarly.

It has been shown that®® the detector currents have

Fourier components proportional to the Fourier-
transformed quadrature operators:
2 T2 iot

~ t)dt
Tp() f_me ip(0)

T2 10
~|ELYO|2f_me' ‘P,(L,t)dt
~|E¥1PY4(L,w)
EXP . e
=——=—[Re*¥,(L,0)+iIm*¥,(L,0)] (5.9)

V2

and
a — T/2
Re*¥,(L,0)~V2 [ " cos(wt)Y,(L,t)dr ,
Im* P(L,0)~V2 [ sin(wt)Y,(L,1)dt .
=T/2

Here T is the detection time assumed to be large com-
pared to the field coherence time. One may also write®!

?B(t)~|E{O|ffwe*"w’?(t(L,w)dw
=x/5_|ELYO|fO”[Re*?¢(L,m>cos<wt)

+Im* ¥,(L,0)sin(or)}dw . (5.10)

The operator for the modulation signal at the output of a
homodyne detector [the frequency @ component of ig(t),
say] has the form?!

Re* ¥, (L,w)cos(wt)+Im* ¥4 (L, w)sin(wt) .

Thus Schumaker points out one might measure the signal
Re* ’Y\'¢(L,w) [or Im* ?¢(L,w)] by mixing this output of
the homodyne detector with a cos(wt) [or sin(wt)] wave
and examining the resulting zero-frequency output.

We assume the free-field commutation relation for the
(input) boson operator @(w): [6(w),6*(co)]=1 and all
operators at different frequencies commute. We can thus
determine the commutation relations for Re*.?g(L,co),
Im"/?e(L,w),. .. . We have

[Re*X,(L,w),Re*X,(L,w)]=2i ,

(5.11)
[Im*X,(L,0),Im*X,(L,0)]=2i .

The solutions for the outputs in terms of the inputs are
readily deduced from the solutions for
fg(L,a)), ?,,,(L,a)) which follow from the Hamiltonian
(5.6) as discussed in Sec. III. We have

Re*X,(L,w)=coshr Re*X,(0,0)+sinhr Re*¥,(0,0) ,

Re*¥,(L,0)=coshr Re* ¥,(0,0)+sinhr Re*X,(0,0) ,
(5.12)

Re*X,(L,w)=coshr Re*X,(0,w)+sinhr Re* ¥,(0,0) ,
Re* P, (L,w)=coshr Re*¥,(0,0)+sinhr Re*X,(0,0) ,

and an identical set of equations for the Im*X;(L,®) and
Im*¥,(L,w) (simply replace Re* with Im*). The solu-
tions and commutation relations are identical to those
discussed earlier [Eq. (3.2)] except that we now have two
sets of correlated observables, corresponding to the real
and imaginary parts of the )?G(L,a)) and ?¢(L,w). This
was pointed out by Schumaker et al.?? and Levenson and
Shelby.”? The final solutions for the correlations with
vacuum inputs are identical to (3.8), (4.5), and (4.9). Thus
the observable homodyne detection signal and idler out-
puts Re* }A’¢(L,a)) and RC*I?Q(L,CO) [or Im* f’a,(L,w) and
Im*X,(L,w)] are predicted to be correlated in an EPR
fashion.

Such a correlation will manifest itself as a reduction of
fluctuations in the signal and idler difference current, as
observed in the “quantum nondemolition” and “four-
mode squeezing” experiments of Levenson and co-
workers.?’??2 One can measure directly f’d,(L,a)) and
/?G(L,w) and subtract to determine the error. This is
equivalent to measuring fluctuations in the Fourier com-
ponent of the difference current. The output currents
from the two detectors are individually amplified by fac-
tors g, and g,. The combined difference current i_(¢)
has Fourier component

A~ T/2 . A
i)~ [ T

~8 | E¥o 1R p(L,0)—g,|ELo | ¥4(L,0)
=g, |E{o Mg, 0) , (5.13)
where
Ayg,0)=X,(L,0)—g¥,(L,0)
and
_ IEI}:O,gy
B lEfo|gx '

One may choose to measure the real or imaginary part,
Re*Ay(g,w) or Im*Ay(g,w). We are interested in the
noise in this signal. In fact, since we deal with a station-
ary field we will show that it is sufficient to look at the
power spectrum, defined as

oy 1 ‘
(it = tim 577 | [

T/2

4 2
dt e (1) (5.14)

=T/2

In the limit of T large the time averages become equal to
the ensemble averages we use in our theoretical calcula-
tions. We write the combined current i_(¢) in terms of
its Fourier components as



&

T (0~V2g, [Ef| [ ©

{[Re*Ay(g,w)]cos(wt )+ [Im*Aylg,w)]sin(wt)}dw .

DEMONSTRATION OF THE EINSTEIN-PODOLSKY-ROSEN . .. 919

(5.15)

Since the components of different frequencies do not correlate, we can write

(T(1)?) ~2g2|E¥

+cos(wt )sin(wt )[{ Re*Ay(g,0)Im*Ayg,0)) +{Im*Ayg,w)Re*Ayg,0)) ]} .

The time-independent part of the power

spectrum

|2f0“dw{coszth)([Re*Ae(g,w)P)+sin2wz<[1m*A9(g,m)]2>

(5.16a)

is proportional to the average {([Re*A,g,»)]?)

+([Im*A4g,®)]*)} /2. However, for fields of the type we consider, the real and imaginary parts are uncorrelated and
have identical correlation properties. In this general case the power spectrum is stationary and we have

(i(0)?) ~2g 2| E¥, sz ([Re*Ay(g,0)])dw .

(5.16b)

This result is equivalent to assuming terms such as ([Ay(g,®)]*) or {[X,(@)]*) are zero.’! This result leads to the
standard expression for the power spectrum in terms of quadrature operators:*

(@) =28 |Efo 1 [ " ([Aglg,0)A

Thus the time stationary power spectrum of the com-
bined current is
([T()]?) 2(|Ag(g,0)*)

|2 ([Re*Aeg o)),

Ngx[E

=g2|Ef, (5.17)

where we use the notation??
(x)=(xx"+x"x)/2) .

This noise power spectrum is measurable with a spectrum
analyzer as depicted in Fig. 1, and measured in experi-
ments.'®”22 A reduction in the noise level is thus indica-
tive of a correlation between i} (L,») and the appropri-
ately deamplified Yd,(L ) (or the real and imaginary
parts of these operators).

The noise power levels must be calibrated relative to
the ““vacuum” (or shot) noise level of the signal. The vac-
uum noise level is obtained by shining (in a second experi-
ment) coherent light on the detectors.””?? The intensities
must be the same as the local oscillator intensities
(|Efo1* and |[E},1?) in the original experiment. If a bal-
anced homodyne detection scheme is used, the vacuum
noise level may be measured by simply removing the
correlated fields @ and b from the final beam splitters. 16,18
The input field at each beam splitter is then the
(coherent) vacuum, and the power spectrum noise level is
the vacuum noise level of the combined signal and idler
current. The vacuum (or shot) noise level has been reli-
ably determined in “squeezing” experiments.'®” 22 The
vacuum noise level of the combined current is

T ()?) oo~ g2 EXS P+ g2 |EX 12 . (5.18)

The noise level corresponding to the vacuum of the signal
alone is measurable by shining a coherent field on the sig-
nal detector and measuring the power spectrum of the

signal photocurrent alone.??> Thus
(i (@)1?) eon~82E¥S 17 . (5.19)

We have assumed 100% detection efficiencies. In a real-
istic experimental situation, this is not the case and the

Ay(g,0) +A,g,0)Ayg,0)]/2)do .

(5.16¢)

f
effect of nonideal detection efficiency would have to be
taken into account. We stress that in a quantum-
mechanical formulation, this vacuum (or coherent) noise
level of the signal is the noise associated with the signal
field commutation relations. It represents the minimum
uncertainty product for fluctuations in orthogonal quad-
ratures [it represents the 1 on the right-hand side of the
inequality (4.12)]. The homodyne detection scheme,
which involves beating the quantum field with an intense
local oscillator field, magnifies this noise to a macroscopic
readout scale. Thus noise levels below this fundamental
level can be observed quantitatively.!®”22 Tt is such a
reduction of noise, in the combined current (5.13), which
allows us to infer the existence of EPR correlations.
Normalizing to the vacuum noise of the signal, the
combined current power level spectrum (5.17) is*?

Vo(g,9,0)=([Re*Ro(L,w)—g Re* ¥ ,(L,0)]?) ,

a direct measure of the quantity Vy(g,¢) defined in (4.2)
and (5.1). The relative electronic amplification
(deamplification) factor g and also the phase ¢ can be ad-
justed experimentally to give a minimum noise level.

The experiments performed by Schumaker et al.??
have succeeded in a 20% reduction of Vy(g,d,w) below
the combined vacuum noise level V,(g,d,0)<1+g?,
which they call “four-mode squeezing.” Results present-
ed by Levenson and Shelby,?? in discussion of quantum-
nondemolition measurements, are renormalized and indi-
cate a 5% reduction of V(g,d,w) below the vacuum
noise level of the signal; i.e., they establish
Vi(g,4,0)=0.95. However, this gives information about
the ability to infer only one signal quadrature. We sum-
marize in an appendix the particular correlations corre-
sponding to the experiments of Schumaker et al. and
Levenson et al. and indicate how the inference of the
second signal quadrature is more difficult. To achieve an
EPR demonstration, two measurements of Vy(g,d,w) are
necessary. Both V,(g,¢,0) and V,(g,$,») must be mea-
sured and we require that V,(g,¢,0)V,(g,¢,0) < 1.

We have discussed the demonstration of the EPR
correlations in terms of spectral noise levels. This is done

(5.20)



920 M. D. REID 40

because the substantial noise reductions (‘“‘squeezing’)
have been achieved experimentally in spectral measure-
ments. There are several points, however, to be made re-
garding this.

The original paradox as discussed in Secs. II and IV is
phrased in terms of instantaneous measurements and en-
semble averages. One performs (instantaneous) measure-
ments of quadrature phase amplitudes over many identi-
cally prepared systems, thus calculating the ensemble
averages (XG(L)Y¢(L)>, A’X,, etc. The measurement
of the spectral quantities, however, involves time aver-
ages. The output (|i(w)|?) on the power spectrum
analyzer already gives the average. It is well known that
for stationary, ergodic fields, the time averages equal the
ensemble averages [given by solutions (3.2)], provided the
detection time T is larger than the coherence time, and
the observable spectral correlations are predicted to be of
the type discussed in Sec. II.

One of the assumptions in the paradox is that the mea-
surement of the idler ?1 does not have any effect on the
value of X, in the spatially separated signal field. It is
only with the “no action at a distance” assumption that
EPR can make the claim that the signal must have preex-
isted in a state with simultaneously precisely defined X,
and X ,. This assumption is discussed extensively in
treatments of Bell’s inequality.!! The assumption is made
more solid by experiments of the type performed by As-
pect, Dalibard, and Roger,!* which involve a delayed
choice (Fig. 2) of whether the quadrature phase f/'l and
Y, is measured (one waits until the “photons are in
flight””). Then if the measurement of ¥, (?2) had any
effect on the value /?2 (i’l) of the signal state, the effect
must violate causality. A finite detection time 7T means
that the phase-shifting local oscillator apparatus must be
set for at least that length of time. The exact value of T
then becomes important in determining the necessary
spatial separation of signal and idler, if one wishes to en-
sure any action at a distance means violation of causality.

VI. BEAM SPLITTERS WITH SQUEEZED INPUTS

We consider the correlated output state produced by
an interaction describable by the following Hamiltonian:

FIG. 2. A possible delayed-choice EPR experiment, after the
experiment of Aspect, Dalibard, and Roger (Ref. 13). Time-
varying analyzers (local oscillators measuring X, or X,, Y, or
Y,) are provided by switching devices.

H,=#ka b+nk*abt . (6.1)

The solutions for the quadrature phases are (6= |x|L
where « is taken real)

X,(L)=2X,(0)cosf+ ¥,(0)sin6 ,
fZ(L)'—'fZ(O)cosG— ?I(O)Sine ,
?,(L)=7,(0)cosf+X,(0)sin6 ,
?,(L)=7,(0)cosd—X,(0)sinb .

(6.2)

Alternatively, one could consider the following transfor-
mation of the type given by a simple beam splitter («
imaginary):

a(L)=a(0)cos6+5(0)sinb ,

~ ~ (6.3)
b(L)=b(0)cosfd—a(0)sinf .

These have solutions for quadrature phase amplitudes
X,12)(L)=2X,(5,(0)cosO+ ¥, ,,(0)sin6 ,

(6.4
P12)(L)=¥(,(0)cos8— X (,,(0)sinb . )
The transformations provide a simple model for any de-
vice which couples the two modes while conserving total
photon number—beam splitters, frequency converters,
Faraday rotators.
Calculations show, for the transformations (6.2),

([R L)) =([X,(0)]*)cos20+([F,(0)]*)sin?6 ,

([P,(L)) =([T,(0)]*)cos?0+ ([X,(0)]*)sin?6 ,

(X(L)P,(L))=—(X,(0)?)cosB sinb (©.5)
+(¥,(0)*)cosO sinb .

[The solutions for the transformation (6.4) are obtained
from (6.5) by replacing ¥,(0) and ¥,(L) with ?,(0) and
?,(L), respectively. Thus the results will be similar and
will not be given separately.]

Thus for usual coherent vacuum  inputs
({[X,(0)1*)=([¥,(0)]?) =1), there is no correlation be-
tween X,(L) and ¥,(L). However, a correlation is possi-
ble with squeezed vacuum inputs. We consider a situa-
tion where the input for mode @ is a coherent vacuum,
but the input for bis a squeezed vacuum such that
([7,000P)=€(e<1) and (¥,(02)=€"'=7q(g>1).
Thus

([X(L)]?) =cos*0+e€sin?6 ,

([Y,(L)]?) =sin?0+€cos?6 , (6.6)
(X,(L)P,(L)) = —cosBOsinf(1—e¢) .

The inference error quantity as defined by (4.4) is
V=t 6.7)

e sin?0+ecos?0
which for € small can clearly satisfy the requirement
V<1
Similarly, we consider the quantity (4.9). We find that



[

V,=— 1
2 ycos?0+sin6

The error product is (we suppose we have a squeezed
minimum uncertainty state where n=1/¢)

ALK(L)ALR,(L)=V,V,

(6.8)

S L .69
1+S“‘T(n—2+1/n)

Since 7> 1, we see the possibility of a demonstration of
the EPR paradox

A2 R (L)ALR, (L)< 1,

provided 640, 7/2,. ...

A similar result has been pointed out by Paul,’> who
considered a photon number state impinging on a beam
splitter, and showed the correlations in photon number
and in phase between the two output beams to be like
those of the EPR paradox. The formulation in terms of
the two conjugate quadrature amplitudes X 1» X, is ad-
vantageous, since reduced fluctuations in these quantities
have now been measured, and squeezed minimum uncer-
tainty states have been produced experimentally.

In fact, in a recent experiment Xiao and co-workers3?
used light produced by combining a squeezed vacuum
field with a strong coherent field across a beam splitter.
Their experiment was concerned with the use of a
squeezed vacuum to improve precision in measurement of
phase modulation in an interferometer. However, one
could imagine an amended arrangement depicted in Fig.
3, designed to measure the quadrature correlation quanti-
ties V| or V,. The input b is the squeezed vacuum ob-
tained from the output of an optical parametric oscillator
(OPO). The input @ comprises a strong coherent field (lo-
cal oscillator) at zero frequency and a coherent vacuum

Y — Yl

0PO —>L<——>——4 .
blw) BS —E,

i

€l | XalLw)

?\J} e

iA 9,

FIG. 3. Schematic diagram of a possible apparatus used to
measure quadrature phase amplitude correlations between the
outputs of a beam splitter (BS). The input field b(w) is a
squeezed vacuum, while a(w) is a coherent vacuum.

DEMONSTRATION OF THE EINSTEIN-PODOLSKY-ROSEN . .. 921

at sideband frequencies. One might use phase-shifting
cavities as designed by Shelby et al.,'” to phase shift the
strong field with respect to the vacuum sidebands and
thus measure the particular spectral quadrature phase
amplitudes X,(L,0) and Y4(L,w) defined by Egs.
(5.7)-(5.11). The correlations for these operators are
those of (6.2) and (6.5) but replacing X;(L) with X (L, ),
X;(0) with X;(0,®), Y;(L) with Y;(L,») and Y;(0) with
Y;(0,w).

VII. CONCLUSION

We have pointed out that the correlation in quadrature
phase of the two output beams of the nondegenerate
parametric amplifier is such as to provide an example of
the original EPR paradox. This correlation manifests it-
self as a reduction in fluctuations of the signal and idler
quadrature phase amplitude difference. If the fluctua-
tions are below a certain level (corresponding to the vacu-
um fluctuations of one of the beams) then the EPR para-
dox becomes demonstrable. The quadrature phase ampli-
tudes are measurable by homodyne detection techniques.
We have discussed a possible experimental procedure
which provides evidence of EPR correlations between
spectral quadrature phase operators. Such an experiment
is closely related to four-mode squeezing experiments al-
ready performed.

The EPR paradox is a paradox about quantum
mechanics. If quantum mechanics is correct, then there
exist correlations between spatially separated subsystems
which (provided there is no action at a distance) imply
that quantum mechanics needs to be completed, at least
according to the EPR concept of reality. The paradox
questions our understanding of quantum mechanics as an
ultimate theory. Thus experiments which confirm (in
agreement with quantum mechanics) the existence of the
paradoxical correlations would seem in themselves
significant. Previous demonstrations of the paradox have
been in connection with tests of Bell’s inequality. They
are thus concerned with the discrete version of the para-
dox presented by Bohm, and the experiments measure the
correlation of spin between spatially separated photons
(or protons). The optical amplitude version as suggested
here is interesting in that it is more closely in line with
the original version of the paradox which, as far as we
know, has not been experimentally demonstrated.

Of course it is not so straightforward in practice to
measure sufficient correlation that the paradox by evi-
denced. (In fact, a field which is completely describable
by standard classical electromagnetic theory cannot pre-
dict such correlations.) The spin-correlation experi-
ments, for example, are troubled by detector inefficiencies
which tend to reduce the measured correlation. The
homodyne measurement is very efficient and the quantum
noise levels are readable macroscopically. The prepara-
tion though of the state with sufficient quadrature phase
correlation is not trivial. Loss, for example, downgrades
the correlation. However, with the recent laboratory suc-
cess in the detection of fluctuations below the quantum
minimum uncertainty state noise level, the measurement
of EPR correlations as discussed in this paper would ap-
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pear to be possible in the near future. In view of the
significant noise reduction possible with parametric oscil-
lators operating below threshold, the nondegenerate
parametric oscillator would seem to be a particularly
good candidate for such an EPR experiment. Calcula-
tions predicting EPR correlations in the external fields of
the nondegenerate parametric oscillator below threshold
are presented in another paper.?
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APPENDIX A

For the original paradox, we have 100% correlation
between suitable signal and idler observables. Hence
once a “particle” has been emitted, we can determine
with 100% certainty either the (“position”) Xl or the
(“momentum”’) X7 depending on our choice, by making
measurements on the idler. Experience tells us that our
estimate of X, will always be precise, or if we choose to
measure Xj, our estimate of X2 will always be precise.
This is true for each and every p0551b1e state—i.e., re-
gardless of the value of X, or Xz, which would be ob-
tained on measurement. Thus for any given particle em-
itted, the EPR concept of reality allows EPR to infer
definite values of Xl and Xz existing, simultaneously, for
that state.

For the situation where the correlation is not max-
imum we can only talk of estimating X\'l, or )?2, with a
certain precision. There may be a small probability that
the deviation in our estimate is actually quite large. We
can make many measurements of the error and build up a
picture of its distribution, and determine the average er-
ror which we call A le Similarly, we can then deter-
mine the average error Amez in the inference of X2
Now the EPR reasoning allows EPR to deduce that the
signal is described by a state for which the average error
in X; is Am,X1 and the average error in X2 is Amffz
This might raise the following objection. Let us denote
all possible emitted states by y; and the probability of
their being emitted by P,. The simultaneous errors are
Ame,l and Amez, We can measure either Amel, or
Amez, but not both. Now the average inference error in
X, will be given by

le 2 P, Alnf < Alanll ) = Vl

and similarly for the average inference error in X,, and
these are the quantities we can measure. But what is
relevant from the point of view of the uncertainty princi-
ple and hence of the paradox is the value of the simul-
taneous products (A;,.X;)(A;,X,;). It might be possible
to have

(Ainf)?n )(Ainf;Y\Zi )>1

for all emitted states, even though the averages
AX, A,—nfz?z are small. In this case, there is no para-
dox. This is not possible, however, since the Cauchy-
Schwarz inequality states

(OB (A5 ) )7 S (ALK (AL R; )
Here we note

((BjneX )(Ainf)?Zi)) =3 PiAinf/?uAinf/?zf .
1

Thus if ¥,V, <1, we must have (A, X ,;)(A; X,;) for at
least some of the emitted states ;. Thus, w1th these
comments, the EPR reasoning can be extended to give a
paradoxical situation even in the case where the correla-
tion is not perfect. It suffices to measure averaged errors
of inference for two conjugate observables of the signal.

APPENDIX B

We now discuss the EPR predictions for the experi-
ments of Levenson et al.?! and Schumaker et al.??> The
theory is explained by Levenson and Shelby.?? The solu-
tions for the output frequency space quadrature opera-
tors are

X,(L,0)=%,(0,0)+2r,%,(0,0)+4yr.r, ?,(0,0),
X(L,0)=%,00,0),

?Z(L,w)z
f’l(L,a))———

7,(0,0)+2r,7,(0,0)+4yr,r,%,0,0) ,
Y,00,0),

where r, and r,, respectively, are proportional to the XY
nonlinear susceptibility for signal and idler modes and
the length of the fiber, and y is a coefficient relating to
the decorrelation of polarization of the fields as they
propagate through the fiber. While these quadrature
operators permit the inference of the amplitude modula-
tions (X; and Y,) of each wave from a measurement
made on the other, no cross correlation develops for the
input phase modulation quadrature operators.

Here we are interested in calculating the errors in
inferring the signal amplitude modulation z? (L,»), and
in inferring the signal phase modulation XZ(L ). The
signal amplitude X,(L,0) is determined by measurement
of the idler ¥,(L, cu) Thus we calculate

Vi, =({Re*[X|(L,0)—g¥,(L,0)]}?)
=(|X,(L,w)
which is minimum for
(RUL,0) P, (L,0)))?
(YUL,0)P,(L,0))

—g?Z(L,w)[Z)

g=

The minimum value is
HXT(L,0)?,(L,0) >|2
(PHL,0)7,(L,0))

Vi, =(XU(L,0)X(L,0))—



40 DEMONSTRATION OF THE EINSTEIN-PODOLSKY-ROSEN . .. 923

The solutions indicate that (with vacuum inputs)

16y%r r
VX]:1_ ) P
1+4ry+16'y r.r

In fact, as explained in Ref. 22, because of two-mode
squeezing a better value of VXl may be achieved by
choosing ¢ slightly different to 7 /2. Similarly we calcu-
late

sz(g):</?2(L,CU)_8Y1(L,CO)|2> ,

which has a minimum value
(XNL,0) P, (L,0)|?

Vi, = EiL,0) (PHL,0)9,(L,0))

J(L,0))—

=1+4r2

The error in estimating amplitude modulation is predict-
ed to go below the vacuum (standard quantum) limit.
This is not the case with the estimation of signal phase
modulation. The product Vx, VXz’ however, is predicted

to go below the vacuum noise level ( VX1 ’Xz <1) and thus
the system may exhibit EPR correlation. Experimentally
Levenson et al.?? obtained a value of VXI =0.95. The
phase modulation of the signal, however, was not mea-
sured. The noise Vx, is predicted to be greater than that

of Vy . [The quantity

g)={|Y,(L,w)—gX ,(L,»)|*)

was measured by Levenson et al. (one normalizes results
to the vacuum noise level of the idler) and found to be
significantly greater than 1, as expected.]
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