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We analyze the operation of a free-electron laser in an open periodic structure. When operated as
an amplifier, it is shown that exponential gain can develop in such a device. An analytic expression
for this gain is presented, and it is shown that this gain decays exponentially with the beam height
above the grating; the gain dependence on the beam thickness is also analyzed. As the energy ex-

traction rate is much higher in an exponential gain regime, we also investigate the operation of an

oscillator based on the same concept. In this case, the Smith-Purcell radiation "provides the start-
up" through a feedback system. The latter consists of several mirrors, which are placed in such a
way that (1) only a wave with the desired frequency develops and, at the same time, (2) small devia-

tions in the wave parameters due to the wave-beam interaction do not cause deAection of the wave

from the feedback loop. The minimal current needed to sustain oscillations is given in an analytical
form. Numerical calculations show that this current is more than three orders of magnitude lower
than that necessary for an oscillator which operates in an algebraic gain regime.

I. INTRODUCTION

In 1953 Smith and Purcell' showed experimentally that
electromagnetic (EM) radiation can be produced by an
electron beam moving in an open periodic structure; this
periodic structure was a metallic corrugated surface with
spatial periodicity L and corrugation height a. The pro-
cess was understood in terms of a simple model based on
the oscillations of the image charges induced on the me-
tallic surface, by the electrons. Later Toraldo di Francia
proposed the following way to explain the phenomena:
the electromagnetic field produced by the moving elec-
trons is described in the laboratory frame of reference as
a superposition of evanescent waves. These waves are
scattered by the grating. Since the periodic structure
couples waves with different wave vectors, some of the
scattered waves are propagating ones. In other words,
part of the energy which initially was only reactive and
was associated with the evanescent waves is now
"transformed" into radiation power, by the grating.

Based on the Smith-Purcell (SP) effect, it was suggested
to construct a laser that amplifies electromagnetic waves
in frequency and power domains that are not achievable
with the present technologies. This device is a member of
a large group —the so-called free-electron laser
(FEL's) —which benefit from the interaction of energetic
electron beams with EM waves in periodic structure.
Yariv and Shih have calculated the total power
transferred by an electron beam to a TM electromagnetic
wave when moving in a closed slow wave structure, i.e.,
in a waveguide with corrugated walls. They assumed
that the EM field amplitude is practically unaffected by
the motion of the charged particles. Each particle in-
duces an EM field and the net transferred radiation
power is due to a constructive-interference effect of all

these contributions. For a thin and dilute beam, the au-
thors have shown that the power transferred in a finite-
length device has similar characteristics to the case in
which an electron beam interacts with a TEM wave in a
periodic magnetic field. Later Gover and Livni have
generalized the analysis to include variations of the EM
amplitude due to the energy exchange with the beam; it
was shown that this process can cause an exponential
growth in the field amplitude. They also compared this
regime with the one described in Ref. 3, i.e., nonexponen-
tial gain, and they suggested that the latter occurs when
the slip between the particles' average velocity ( V,„)and
the synchronous wave phase velocity ( V h) is larger than
the electrons' thermal velocity ( V,i, ), i.e.,

~ V~h
—V,„~ )& V,h, the exponential gain regime occurs

when the deviation from synchronization is small, i.e.,
~ V„h V,„~ ( V,h. In their analysis the space-charge
effects were neglected, or in other words, the divergence
of the electric field in the beam domain was neglected.
The last two works ' treat the SP device as a closed slow
wave structure, and calculate the energy exchange as in
the traveling-wave amplifier (TWA).

The first attempt to calculate the total power exchange
between an EM wave and an electron beam moving above
an open corrugated surface was reported by Wachtel.
According to his approach an electromagnetic wave
which impinges on a corrugated surface is scattered into
a variety of waves; one of these is almost synchronous
with an electron beam which moves parallel to the grat-
ing. The amplitude of this synchronous wave is uniform,
and so it is considered to be kept, even when the beam is
injected. As in the case of Ref. 3, the electrons oscillate
due to the presence of the field, and therefore they induce
an additional EM field. The net power converted to radi-
ation is due to a constructive interference effect. The
functional form of Wachtel's expression for the power ex-
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change is quite similar to that reported in Refs. 3 and 4;
however, there are two major differences between these
two results. (a) The wave vector within a waveguide is
totally determined by the wall's dimensions and the fre-
quency (but not by the incident wave vector) whereas in
an open grating, the scattered wave vector is determined
by the incident wave vector and the system periodicity.
(b) The second difference is due to the fact that the entire
interaction domain is illuminated —in contrast to TWA
where only the device entrance is illuminated. In the
present study some of the "constraints" in Wachtel's
analysis are released, namely, the electron beam is not as-
sumed to be very thin, it is also assumed to be at a finite
height above the grating and finally, the coupling be-
tween the interaction harmonic and the radiating ones is
not introduced as a parameter of the problem.

Although it is expected that in the exponential gain re-
gime more energy can be extracted from the beam, all
previous studies of open periodic structures investigated
only the nonexponential gain regime. Leavitt et al. , for
example, have carried out experiments and calculations
for the orotron in the millimeter wave region. In their
analysis, the authors have considered a more complex
cavity which consists of a corrugated surface and above
it, a large concave mirror. As in the other cases, the in-
duced current is calculated assuming that the amplitude
of the EM wave is maintained constant along the grating
and thus the power transferred to radiation is a result of
a constructive interference effect. In this case the calcu-
lations are similar to Refs. 3 and 5, and only the field dis-
tribution makes them more complicated. Nonexponen-
tial gain was recently investigated by Bratman et al. in
close periodic structures, however, since the beam was in-
jected very close to the grating, the system effectively acts
as an open device.

In the present paper we investigate a Smith-Purcell
amplifier (SPA) and a Smith-Purcell oscillator (SPO) in
their exponential gain regime. Let us now briefly de-
scribe the SPA operation. A SPA is composed of a cor-
rugated surface and a beam of electrons whose average
velocity parallel to this surface is Vo. When operated as
an amplifier, this device is illuminated by an electromag-
netic plane wave which is scattered by the grating into a
wide spatial spectrum of propagating and evanescent
waves. The phase velocity of the evanescent waves is
smaller than c, the phase velocity of a plane wave in vac-
uum; therefore the beam can exchange energy with one
(or more) of these waves. Assuming that the beam is
cold, there is only a single evanescent wave which
effectively exchanges energy with it—this will be called
the synchronous wave (SW). As a consequence of this
process the amplitude of the SW is changed; this change
is transmitted by the grating to all other waves. In par-
ticular, we are interested in the change which occurs in
the propagating waves, since these can be measured far
away from the grating. The linear relation between the
"input" waves and the "output" ones is called the
response function of the amplifier. This function is deter-
mined in terms of the EM properties of the grating, the
hearn characteristics, and the frequency. When poles ap-
pear in the analytical continuation of the response func-

tion, one of them may be responsible for the exponential
increase of the amplitude of the field along the interaction
domain. These poles occur due to the grating support of
a synchronous wave.

On the basis of the analysis of the amplifier mode of
operation, we continue and study a Smith-Purcell oscilla-
tor. This device consists of a grating and a beam identi-
cal to those of the SPA, as well as a feedback system (mir-
rors) which returns back to the grating part of the scat-
tered waves. In a SPO only the electron beam is injected
into the system, and the radiation is created by the beam.
It is this radiation that provides the startup to our oscilla-
tor. A part of this EM flux is returned back by the feed-
back, to the grating domain, where the beam now plays
an additional role (to that of a source) as an active medi-
um. As we have just discussed in the context of SPA, we
can imagine a situation in which this incident wave is
amplified by the active component (grating plus beam) to
such an extent that it "overcomes" the inherent losses in
the system, e.g. , scattering process and the materials'
finite conductivity —then oscillations can be sustained.
Using the response function of the amplifier, the condi-
tion for such oscillations to be maintained is determined.
The minimal (threshold) current necessary for these oscil-
lations to develop is then calculated approximately as-
suming that the grating supports the SW. This current is
compared with that of Wachtel's scheme and it is found
to be much lower.

The electron dynamics is calculated within the fluid
description. As the intensity of the EM field involved in
the process is relatively low, the equations of motion can
be linearized. Also the transients in space and in time are
neglected. In many experiments a dc magnetic field is ap-
plied in order to avoid the beam divergence. If this field
is large enough, we can consider the motion as one di-
mensional.

In the magnetic bremsstrahlung FEL the particles
move in a periodic magnetostatic field and in a radiation
field. In Smith-Purcell FEL there is no static field, but in-
stead the EM field is subject to periodical boundary con-
ditions. It is proposed here to formulate the boundary
problem in terms of a reflection matrix —which couples
the amplitudes of the outgoing and incoming waves (both
propagating and evanescent). This formulation is con-
venient in a periodic structure, since the component of
the wave vector parallel to the grating can be "decom-
posed" into k„= k+(2mlL )n where n is .an integer and k
is the wave-vector projection in the first Brillouin zone
(~k~ (~/L ), and k is a conserved quantity in the scatter-
ing process. In other words, the periodic structure, or in
our formulation —the reflection matrix —couples be-
tween waves of all different n's. It should be emphasized
that formulation of the scattering process in terms of the
reflection matrix does not solve the boundary condition
problem; it only provides a convenient scheme to investi-
gate the physical processes in the presence of the grating.
This approach is correct only for very long devices, say,
at least 100 periods. We do not consider in the present
study margin effects. The reflection matrix in the context
of periodic structures is not a new concept; its properties
were investigated by Uretsky in 1965. Peng et al. and
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Waterman' have also determined the reflected waves
from a periodic dielectric layer utilizing the reflection
matrix. In this present work we do not attempt to inves-
tigate the boundary problem (except two cases where we
demonstrate our results with numerical examples), and
therefore only a short discussion of some of the methods
involved is brought in the next paragraph.

Scattering of EM waves from gratings has been
thoroughly investigated (see Petit" ). It started about 80
years ago when Rayleigh published his pioneering work
on wave scattering from a sinusoidal grating. In his work
he described the reflected wave above the grating top as a
superposition of Floquet waves which either decay ex-
ponentially, in the case of the evanescent waves, or prop-
agate from the grating outward. Between the grooves the
field has to be described as a superposition of up and
down going (propagating) waves or decaying and growing
(evanescent) waves. At the limit of low corrugation
depth, a, re1ative to the EM wavelength k, he asserts that
the down going and the growing waves in between the
grooves are negligible. What remains are outgoing (and
decaying) waves, which are assumed to be identical with
the ones scattered above the grooves' top —this is the
Rayleigh hypothesis. Such a superposition of Floquet
waves together with the incident wave satisfy the bound-
ary conditions on the grating surface. The reflected
waves are expressed as powers of this small parameter
a/A, . The Rayleigh hypothesis was a subject of contro-
versy' for many years. Although this hypothesis was ex-
tensively used in the literature (see Ref. 11, Chap. 1), its
applicability to the Smith-Purcell effect is questionable
since a/A, is not necessarily small. Other calculations of
the scattering process based on the Wiener-Hopf method
were successfully performed. ' ' This method is not lim-
ited to the low-frequency domain; however, it is applic-
able only to a few geometries. An equivalent analytical
method was employed by DeSanto' ' for calculating the
waves reflected by a grating of a simple geometry. In
general, in order to evaluate the reflection matrix of a
grating with an arbitrary geometry, it is necessary to
resort either to integral or differential methods (Ref. 11,
Chaps. 1, 3, and 4). These in turn necessitate a consider-
able amount of numerical work. For very few geometries
(such as rectangular or triangular grooves) the field in the
grooves can be described by using normal-mode expan-
sion and the evaluation of the reflection matrix is rela-
tively simple (see again Ref. 11, Chap. 1).

The outline of this paper is as follows. In Sec. II we
start with the description of the active component. After
a short general introduction, we discuss in detail the for-
mulation of the boundary problem of the periodic struc-
ture in terms of the reflection matrix. We explicitly
demonstrate its calculation for a relatively simple
geometry. The use of the reflection matrix is then
demonstrated for the Smith-Purcell effect. This wi11 pro-
vide us a better physical insight to the operation of SP
FEL as an oscillator. We conclude this section with a
discussion of the electron dynamics.

Section III is dedicated to the study of the response of
the Smith-Purcell amplifier to an external EM wave. The
solution of the EM field problem is presented in Sec.

IIIA and the response function is determined. Since it
turns out that the poles of this function depend only on a
single diagonal term of the reflection matrix, we can ana-
lyze their behavior using a simple model of a dielectric
slab placed above a high-conductivity material. This
analysis is performed in Sec. III B assuming that the grat-
ing supports electromagnetically the propagation of a
synchronous wave. In this section we show that an ex-
ponential gain may occur in a SPA. The dependence of
the gain on the beam parameters is also discussed here.

The analysis of the Smith-Purcell oscillator is opened
with a general discussion (Sec. IV A). The design princi-
ples of the feedback system are thoroughly investigated in
Sec. IV B. After we establish the feedback properties, we
determine the condition for self-sustained oscillations in
Sec. IVC. The threshold current which is the minimal
injected current necessary for these oscillations to exist is
calculated in Sec. IV D much in the spirit of gain evalua-
tion in Sec. III 8. In Sec. V we finally summarize the re-
sults of this study.

II. THE ACTIVE COMPONENT

A. General description

Hy('"')(x, z, ~)=Hoexp —j—sinex+j —cosez
c c

the time dependence is e J"'. An electron beam is injected
into the system. The electrons' average velocity is
Vo= Vol and the beam density is no. The total EM field
in the beam excites a current density J(x,z, t) which we
assume has only a single component J . This would hap-
pen in a guiding dc magnetic field. The total EM field is
composed of the primary and secondary field, which is a
solution of the nonhomogeneous wave equation

2

V + 'H"'( zx, co) = — J, (x,zoo) .
C Bz

(2.1)

Our purpose in this section is to determine and analyze
this secondary field, subject to (a) the boundary condi-
tions on the field and (b) the current density as deter-
mined by the equations of motion of the electrons. These
two are discussed in Secs. II B and II C.

%e consider a metallic grating, with its surface in the
x-y plane. This surface has a periodicity L in the x direc-
tion and the y axis is parallel to the grooves which are
uniform in this direction. The particular geometry of
each unit cell is not important for the present purposes.
The top of the grating is taken to be the z =0 plane. The
grating is assumed to be very long compared to its spatial
periodicity, say at least 100 periods, so that spatial tran-
sients, which decay after about 3 —5 periods, have a negli-
gible effect. A monochromatic electromagnetic plane
wave —oscillating with an angular frequency co—is in-
cident upon the diffraction grating in the x-z plane with
an angle 9 with respect to the z axis (see Fig. 1). This
wave is described by the y component of the magnetic
field
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FIG. 1. The basic configuration of the Smith-Purcell amplifier (SPA). A beam of electrons is moving above a metallic grating.
This system is illuminated by an incident wave whose field is oscillating with an angular frequency co, t9 is the angle between the wave
vector and z axis. The reflection process at the grating top is described in terms of the reflection matrix R„.The electrons average
velocity is Vo and their average density is no', the beam thickness is b and its width is h~. Between the beam and the grating there is
a gap of a height h. L is the grating periodicity.

B. Reflection matrix Q) . 2K—sinO= ko+ X .
C L

(2.5)

1. General formulation

In this subsection we leave out the beam and concen-
trate on the boundary condition problem; we demon-
strate that it is possible to represent the boundary condi-
tions, imposed by the grating, in terms of a reflection ma-
trix. This formulation is based on the Floquet decompo-
sition of the wave vector along the x direction. We write
the wave vector in the x direction, k„, as

k, =k„=k+(2~/L )n, (2.2)

where n, the harmonic label, is an integer, 2~/L is the
grating wave vector, and k is defined in the first Brillouin
mne ( ~k

~

& m /L ). The advantage of this notation is that
in a scattering process k is conserved, and the periodic
structure couples between all the harmonics. An incident
wave, which oscillates with a frequency co, is given by

H'"'(x, z, co)=HO f dk g F„(co,k)e " e "
—m/L

F„(co,k)=5„~5(k —ko) . (2.4)

Here 5„& and 5(k —ko) are the Kronecker and Dirac 5
functions, respectively, while the parameters X and ko
are determined by Eq. (2.2) substituting k„=(co/c)sinO,
i.e.)

(2.3)

where p„=[k„—(co/c) ]' . Obviously for the incident
plane wave, which was previously introduced, the spatial
spectrum, i.e., the wave amplitude, reads

=Ho I dk g D (co, k)e e—~/L
(2.6)

The most general relation between the amplitudes
D (co, k) and F„(co,k) is

D (co k)= g R „(co k)F„(co k), (2.7)

where R „ is the reflection matrix, and its elements are
determined by the coupling of each incident harmonic,
F„, with the entire manifold of scattered ones, D . Let
us now demonstrate this method for a surface whose
geometry enables relatively simple expressions.

2. The re+ection matrix of a rectangular grating

We consider a metallic grating made of a very-high-
conductivity material, so that the tangential electric field
vanishes on its surface. In each cell there is a groove of a
length L —d and a height a, as described in Fig. 2. The
EM field in the Mth cell (ML+d &x &ML+L and
—a &z &0) is given by

H'M'=Ho g A,™cos[q,(x —xM)]cos[Q, (z +a)], (2.8)
s=0

The general expression for the scattered field is similar to
Eq. (2.3), except that radiation with p„ imaginary propa-
gates away from the grating, and for real p„ the field de-

cays exponentially, that is,

H'"'(x, z, co)
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FIG. 2. The geometry used to demonstrate the calculation of
the reAection matrix: I is the grating periodicity, a is the
groove height, and I —d is its length.

J dk(F +D )e

A,™cos[q,(x —xM ) ]cos( Q, a ) .
s=0

(2.9)

The functions cos[q, (x —xM)] are orthogonal to each
other in the domain where Eq. (2.9) is defined, and the
amplitude A,™can therefore be expressed as

g (M) I

g, cos(g, a )

X g I dk(F +D )e 1" X(k;s)
m —oo

where
]/2 with go = 1, g, &o= —,', X(k;s ) given by

(2. 10)

ITS
q,=, Q, =

qs xM=ML+d . sinO ~0 sino+X(k;s)=e —e +e
2 0 0+

Above the grating, the field is described by the expres-
sions of Eqs. (2.3) and (2.6). The amplitudes D (k) and

' (where co is omitted for convenience) should be
determined by imposing the boundary conditions at z =0.
Continuity of the tangential component of the magnetic
field at z =0 and ML+d «x «(M+1)L implies

and 8+ =
—,'[k (L d)+~s]—.

The tangential component of the electric field is readily
derived from Maxwell equations, i.e., JGATE'OE= —BH /Bz; continuity of the tangential component of
the electric field at z =Q implies

0 for ML ~x ~MI. +d

m —oo y g(M) cos[q, (x —xM )]sin(g, a ) for ML+d «x «(M+ 1)L.
JCO/C

(2.11)

Equation (2.10) is now substituted in Eq. (2.11), the re-
sulting expression is multiplied by e~ ", and intergrated
over the entire domain ( —oo &x «oo ). The result can be
written as

F ( co, k ) D( co, k )—
Z „(co,k )[F„(a),k )+D„(co,k )], (2.12)

where

Z „(co,k)=— Q, tan( g, a )

P. ,
XX(k„;s)X"(k;s )

is the impedance matrix. Adopting a vector notation for
F„(co,k) and D (co, k), Eq. (2.7) reads

evaluation of R is possible only numerically —after a
suitable inversion of the matrix, I+Z, and multiplication
by I—Z.

For more complex geometries, the calculations become
more complicated, and usually the numerical eA'ort is
significant. This is practically the reason we choose to
represent the scattering process by means of a reflection
matrix, as it separates the numerical part of the calcula-
tion of the boundary condition problem, and the essence
of the physical picture. Exact evaluation of R is not al-
ways necessary, since experiments can be performed to
measure some of these matrix elements. The entire group
of reflection matrix elements which couple between in-
cident and scattered propagating harmonics, can be es-
tablished by a series of simple experiments. In such ex-
periments a plane propagating wave, e.g. , as described by
Eq. (2.5), impinges on the grating, and the measured
reflected waves determine the corresponding reflection
matrix elements, i.e.,

so that the reflection matrix is given in terms of the im-
pedance matrix by

R ~(co, ko)=D (co, ko) . (2.14)

R—:(I+Z) '(I —Z) . (2.13)

Although Z is expressed in terms of analytical functions,

Another group of the reflection matrix terms can be mea-
sured using the Smith-Purcell e6'ect. In this case it is pos-
sible to And these terms which couple incident evanescent
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waves and outgoing propagating ones. To this end we re-
formulate the Smith-Purcell effect in Sec. II B 3, in terms
of the reflection matrix.

3. Smith-Pureell radiation
Z=O

L
( (

Let us consider a charged line q, which moves at a
height h above and parallel to the grating with a constant
velocity V= V01, as described in Fig. 3. The field of this
charged line is seen in the laboratory frame of reference
as evanescent waves, some of which are moving towards
the corrugated surface. This field can be expressed as a
superposition of plane waves of different frequencies, thus
the incident wave in the domain z & h can be expressed as

0
t

FIG. 3. A charged line which moves uniformly above a cor-
rugated surface is used for the description of Smith-Purcell
e6'ect.

H'"'(x, z, t)=2 Re f deme~"' g f dk F (k, co)e e™z
0 —n. /L

(2.15)

If H'"' is calculated for a charged line in empty space, the amplitudes F (k, co) are given by
T

0) COF (co, k)=F(ro, k„=k )= 5(co Pck„)h —exp jxoy k„—P— exp —yh k, —P-
C

(2.16)
J

where H, =py(1/BIO)(q/2~so)(2/h ), p= Vo/c, y = 1/(1 —
/3 )', and xo is the position of the charged line in its rest

frame of reference. Similarly, we can write the scattered wave as a superposition of plane waves, namely,
T

H'"'(x, z, t)=2Re f dcoej ' g f dk D (k, m)e
0 —m/L

(2.17)

Remember that m' labels the outgoing harmonics while m labels the incoming ones.
According to the definition of the reflection matrix, the scattered wave is given by

H'"'(x, z, t ) =2 Re f den e~"' g f dk—vr/L
R ~ (co, k )F (co, k ) e (2.18)

CO 2'—) k+ m'
C L

(2.19)

The summation over m is also limited due to the Dirac 5
I

It should be emphasized that here we took advantage of
the fact that the reflection matrix couples only harmonics
with the same k, the wave vector in the first Brillouin
zone. The last equation is the formal expression for the
scattered wave; in what follows we shall analyze the
relevant terms of this field.

Far away from the grating, only propagating harmon-
ics are detectable; thus we replace the infinite summation
over m' by a summation g' over the radiating harmon-
ics only. This condition can be mathematically formulat-
ed in terms of the harmonics indexes m', which obey the
following inequality:

function in F (co, k) of Eq. (2.16), which in our notation
reads

r

5 co —pc k+ m
2'
L

1 col5 ———k
pc cp (2.20)

2&——=k+ m .cp I. (2.21)

The integration over k can now be carried out, using Eq.
(2.20) and bearing in mind that m is connected to co

through Eq. (2.21). The resulting scattered wave is given
by

The interpretation of this expression is simple: For a
given velocity p, the frequency co determines k and m
through

H)h oo co COH "(x,z, t)= 2Re dc@exp —— exp jxo
2yPc 0 c yp cyp

2
X g' R ~ (k, co)e exp —jz 2

—k
m' C

1/2

0k =co/V —2n/L m

(2.22)
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Far away from the grating, the propagating com-
ponents of this field are measured by a detector whose an-
gle with the z axis is OD. The x component of a propaga-
ting wave is therefore k, =(n~/c)sin6D, or in our nota-
tion

CO . 271—sinO& =k+ m' .
c L

(2.23)

We now turn to the question of which frequencies are
detected within a given angle by this detector. If we ex-
press ni, using Eqs. (2.21) and (2.23), as a function of m
and m', namely,

I

mo

2K m m

L 1/P —sin6D
(2.24)

m)m'. (2.25)

Instead of Eq. (2.24), let us express k as a function of m
and m'. This can be done by substituting Eq. (2.24) in
Eq. (2.21) or Eq. (2.23), yielding

the problem is not yet solved, since from Eq. (2.21) it is
obvious that m is a function of ~. However, bearing in
mind that cu is a positive quantity we conclude from the
last expression that

I

fYl 0

FIG. 4. The participating harmonics. The shaded area deter-
rnines the range of harmonics ([m, m']) which participate in the
scattering process. The slope of both lines is a=tan '(PsinO),
m o

= —'( 1 —P sineo ), and mo = —'( 1 —P sinBD )/{P sin8n ).
m „is the maximum value of m which has a significant contri-
bution to the scattering process.

kL
2'

m/3 sin6D —m '

1 —P sin6D
(2.26)

mP sin6D —m'

2 1 —P sin6D 2
(2.27)

The shaded area in Fig. 4 describes the region where m
and m' might be found. Theoretically, for given I3 and
6D there is an infinite number of pairs I m, m'I within
this region, but recalling Eq. (2.22) we realize that the ex-
ponent exp[ —(co/c)(h/yP)] "cuts off"' the contribution
of the higher frequencies; therefore if (co/c)(h /y/3) & 20,
then the radiation amplitude can be considered for all
practical purposes negligible. Now, substituting the last
expression in Eq. (2.21) and neglecting kL /2~ relative to
m „,we can define an upper limit value of the incident
harmonic index which still has a non-negligible contribu-
tion to the outgoing radiating harmonic:

Bearing in mind that k is defined only in the first Bril-
louin zone, Eq. (2.26) provides the selection criterion for
m and m', hence

The role of this supremum is also geometrically presented
in Fig. 4. The group of m and m' which solve Eqs. (2.25),
(2.27), and (2.28) denoted by [m, m'], is the answer to the
question asked above. In Tables I and II we bring a nu-
merical example of the possible values of II, = (co/
c )(L /2ir ), Q, z = ( ad/)(1/P)(h / y), m, and m ' for
different angles 6D, velocities P; the height parameter is
assumed to be 2~h /L =vr.

Next we ask what is the field at the detector? The
answer is rather obvious since the intergration over co in

Eq. (2.22) can be replaced by summation over the possible
m's as follows:

H, 2Re f dcog'( )
2y c 0 h, 2~ 1

20 L
m . =1+int —ymax 2~ h

(2.28) and substituting the explicit expression for H ], the
scattering wave reads

~(sc) qc /L h . , ~mm'
2 Re g exp —co,„+jxIi R ~ (k ., ni ~ )

~mm' ~mm'
X exp j~ .i —jx sinOD —jz cosOD

c c
(2.29)

where

m —m' 2n mPsin6D —m'

L I /P —sin6D
' '" L 1 fjsin6D— (2.30)
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TABLE I. The participating harmonics in the Smith-Purcell effect; the first contribution, i.e.,
n =m' —m = —1. At each angle 6 of detection we calculate the frequency which corresponds to three
different electron velocities. The exponential decay due to beam height above the grating is also deter-
mined. As the radiation gets closer to the beam direction, the frequency increases and the exponential
decay gets larger. Notice that the labels of the participating harmonics increase too. x [y]=x X 1(Y.

—90'

—60

—30'

0'

30'

60'

90'

1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

3

5

1

3

10

Q=e2

—0.200
—0.414
—0.474
—0.178
—0.380
—0.438
—0.111
—0.261
—0.310

0.000
0.000
0.000
0.143

—0.453
—0.182

0.276
—0.420
—0.466

0.333
0.414
0.000

N LQ]=-
C 217

0.200

0.414
0.474
0.206

0.439
0.506

0.222

0.522

0.621

0.250

0.707

0.900
0.286

1.094
1.636
0.319
1.824

4.080
0.333
2.414
9.000

coQ2=-crp
2.433
1.301

0.721

2.500
1.378

0.770
2.704

1.641

0.944

3.042

2.221

1.369
3.476
3.436
2.490
3.882

5.731
6.208

4.056
7.584

13.694

—20
2

0.770[ —2]
0.741[—1]
0.236[0]
0.674[ —2]
0.635[ —1]
0.214[0]
0.448[ —2]
0.375[—1]
0.151[0]
0.228[ —2]
0.118[—1]
0.647[ —1]
0.956[—3]
0.104[ —2]
0.687[ —2]
0.425[ —3]
0.105[—4]
0.405[ —5]
0.300[—3]
0.258[ —6]
0.127[—11]

The exponential factor in Eq. (2.29) implies that practi-
cally, only the first term n =m' —m = —1 has a nonzero
contribution to the radiation process and therefore only
one term of R is significant.

With the EM field determined for an infinite grating, it
is possible to evaluate the average power emitted by a
charged beam which moves above a finite grating of
length D. We wish to emphasize that in what follows we
neglect fringe eA'ects, therefore D is considered much
larger than all other lengths that have been introduced
before; however, it is still much smaller than the distance
(r) between the grating and the detector. The normalized
power density emitted in the interval between GD and
eD+d6 by a very thin beam is given by

X g (m —m )IR I exp 2
yp

Xexp
~mm'

c yp

X

sinh
c yp

(2.32)

is the device width (y direction). For a beam of thickness
6 the expression for s reads

cos eD

(1/P —sineD)

D
2nrh L

31 ~mm'

c yp

cos'eD

(1//3 —
sine D)

X g (m —m')IR ~ Iexp —2
c yp

(2.31)

where I is the total current injected, Np=q /2&E'p and A~

A similar result was obtained by Gover et al. ' using van
den Berg's method' ' this was also verified in Ref. 18
in particular for large A. Using one of these two expres-
sions it is possible to determine IR ~

I by a simple
Smith-Purcell experiment.

We wish to reemphasize that the reflection matrix is, at
this stage, only a convenient way to represent the bound-
ary conditions at the grating. A numerical calculation is
unavoidable for a given grating as could be concluded



884 LEVI SCHACHTER AND AMIRAM RON

TABLE II. The second contribution, i.e., n =m' —m = —2, of the participating harmonics [m, m'].
At each angle 0 of detection we calculate the frequency corresponding to three different electron veloci-
ties; this frequency is higher than the first contribution (see Table I). The exponential decay due to
beam height above the grating is also determined and it is found to be much stronger than for n = —1.
Notice that at the same velocity and angle (as close as possible to L9=90') two different harmonics parti-
cipate. For example, at 9=90 for P= —' in the case that n = —1 the [1,0] harmonics participate
whereas when n = —2 the harmonics labels are [3,1]. x [y] =x X 1(Y.

m' N L
Q =—

]
C 2K

coA2=-
c rP

—2' 2

900

—60

—30

0'

30'

60'

90

1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/&2
0.9
1/4
1/+2

0
—1

—1

0
0
0
0
1

2

1

3

7

1

—0.400
0.176

0.053
—0.356

0.240

0.124
—0.222

0.477

0.379
0.000
0.000
0.000
0.286

0.094
—0.364
—0.447

0.160

0.067
—0.333
—0.172

0.400
0.828

0.947

0.411
0.877

1.012
0.444

1.045

1.241

0.500

1.414
1.800

0.571

2.188

3.273

0.638

3.648

8.160
0.667

9.828

4.867

2.603

1.441

5.001
2.755

1.539
5.408

3.282

1 ~ 889

6.084
4.443

2.739
6.953
6.873

4.980
7.765

11.462

12.416
8.112

15.169

0.592[ —4]
0.548[ —2]
0.560[ —1]
0.453[ —4]
0.405[ —2]
0.461[—1]
0.201[—4]
0.141[—2]
0.229[ —1]
0.519[—5]
0.138[—3]
0.418[—2]
0.913[—6]
0.107[—5]
0.473[ —4]
0.180[—6]
0.111[—9]
0.164[—10]
0.900[—7]
0.667[ —13]

from van den Berg's works. ' ' This convenient formu-
lation enables us to show that although the spectrum of
the source, as expressed in Eq. (2.15), is continuous, the
spectrum of the EM radiation as measured by the detec-
tor is discrete. This result is in accordance with the
Smith-Purcell experiment. The kinematic aspect of this
filtering process was determined by Eqs. (2.19), (2.21),
and (2.23) together with the definition of k.

3dmy U (x,z, t)= eE (x,z, t) . —
dt

(2.33)

C. Electron dynamics

For a solution of Eq. (2.1) we have just introduced a
convenient way to describe the boundary conditions. In
this section the source term of this equation is deter-
mined by employing the fluid approximation to calculate
the electron dynamics. Within this approximation we ta-
citly assume that the beam temperature is zero; the effect
of the temperature on FEL's performance has been al-
ready investigated by Gover and Yariv.

The velocity field V consists of two terms, the average
velocity field Vol, and a small disturbance U„(x,z, t),
due to the presence of a weak electric field, i.e.,

~
U

~

&& Vo. This disturbance is determined by the linear-
ized equation of motion

(2.34)

Solving the last two equations for U and n, in terms of
the electric field, we can determine the current density
that this field induces through

J (x,z, t)= e[noU (x,z, t)+—n&(x, z, t)Vo] . (2.35)

As was mentioned in the Introduction we neglect tran-
sients in time and in space. The Floquet-Bloch notation

6 (x,z, t)

=Re e'"' g f dk G„,(k, zen)e—7t /L
(2.36)

is adopted to describe the electric field E (x,z, t), the
current J„(x,z, t), the velocity U„(x,z, t), and the density
n

&
(x,z, t) in terms of the corresponding amplitudes

E , (k,z, cu), J„,(k, z, co), U„,(k,z, cu), and n, ,(k,z, co).
If we employ Eq. (2.36) we can eliminate n and U so that

The density field n, similarly, has its average value no and
a small disturbance n, (x,z, t) where ~n, ~

&&no. This
quantity is in turn related to the velocity field through the
linearized continuity equation

a
n, (x,z—, t)+ [ Von, (x,z, t )+ U„(x,z, t )no] =0 .

a



SMITH-PURCELL FREE-ELECTRON LASER 885

the current amplitude reads

2J,(k, z, ru) = j—coE0 E,(k, z, co),
y (co —Vok, )

(2.37)

=k+ M .
Vo L

(2.38)

In the rest of this work we neglect even the currents
which correspond to "neighbor" harmonics, such as
M + 1 and M —1. The harmonic M whose corresponding
current has the greatest amplitude (thus the largest
influence) is called the synchronous harmonic (SH) or
synchronous wave (SW). We are now in a position to
solve Eq. (2.1) systematically.

where co =(e no loom y )' is the plasma frequency.
This frequency is by many orders of magnitude smaller
than the electric field characteristic frequency and the in-
duced current is non-negligible only near resonance, i.e.,
when co- VokM where M is defined by

is described by Eq. (2.3) and the scattered field described
by an expression similar to Eq. (2.6). Within the beam,
h ~ z ~ h +6, the y component of the magnetic field is a
self-consistent solution of the differential equation, Eq.
(2.1), together with the current density of Eq. (2.37), i.e.,

d2 2—k + H (k z, co)
dz C

2
~p d=j coro F., (k, z, co),

y (co —Vok ) dz
(3.1)

—jcopoH (k, z, co)

d-—jk E, (k, z, co) — E„(k,z, co) (3.2)

and

where H (k, z, co) is the amplitude of the magnetic field

[see Eq. (2.36)]. H and E„are also related by

j cue+, (k,z, co) = jk H —(k,z, co); (3.3)

III. THE AMPLIFIER

A. The solution of the electromagnetic problem

substituting Eq. (3.3) in Eq. (3.2) we get

dE, (k, z, co) co /c —k
H (k, z, co) .

In order to solve the electromagnetic problem as de-
scribed by the configuration of Fig. 1, the upper half
plane, z)0, is divided into three domains. Above the
beam z h +5, we have an incident radiation field which

I

The general solution of Eqs. (3.1) and (3.4) is

(3.4)

H (x,z, t)=Re ej"' g f dk e (A e +B e )—m/L
(3.5)

where

CO

y (co —Vok )

and 3,B will be determined by the boundary conditions. We wish to emphasize that the divergence of E is not as-
sumed here to be negligible (as in Ref. 4).

Between the beam and the grating, there is a gap of height h and the wave equation in this region (0 z ~ h) is homo-
geneous. Exploiting the definition of the surface reAection matrix R, we can write the field in this third region as fol-
lows:

n. /L
H (x,z, t)=.Re ej"' g f dk e—vr /L

S e +e ™2 g R „S„ (3.6)

The four amplitudes D, A, B, and S of the mth
harmonic are determined by imposing the continuity of
the tangential components of the EM field at the inter-
face of the beam with the vacuum (i.e. , at z = h and
z = h + b, ). Extracting the amplitude of the scattered
wave (D ) we find that

D + M 1/U —R RM„F, , (3.7)

where the beam and the air gap infiuence are expressed
through

—2pM h (PM+ate )sin(aMb, )
U e M

2aMgMcos(aME)+(j3~ aM )sin(aMb, )—
(3.8)

Equation (3.7) is our result for the response function.
Notice that the first term of Eq. (3.7) is the bare scatter-
ing of the incoming wave by the grating. The second
term, which is the beam contribution to the scattered
waves, is our main concern here, and it is easily interpret-
ed as follows: RM„ transforms part of the incident wave
F„ into the synchronous evanescent wave M; the latter is
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=RmM U~ g (R~M U~) RM„
p=0

or explicitly, the right-hand side reads as

R M UMRM„+R M UMRMM UMR

+RmM UMRMM UMRMM UMRM, +

(3.9)

This expression describes an infinite reflection process be-
tween the beam (UM) and the grating (RMM). the first
term in this series is interpreted as follows: part of the in-
cident wave amplitude F, is "transformed" by the grat-
ing RM„ into an evanescent synchronous wave M. The
amplitude of this wave decreases exponentially
[exp( —

/3Mb )] when it reaches the beam; there, the am-
plitude is changed and the wave is reflected towards the
grating. Along its way in the gap, the amplitude decays
by another factor of exp( —PMh). This fate of the wave is
described by UM. When it reaches the grating, a part,
R M, of the SW is scattered: this is the p =0 contribu-
tion (see Fig. 5). Reading the second term from right to
left, we realize that the first three terms describe the same
process as above, except that in the last reflection process
the synchronous wave is reflected back into itself, i.e.,
R M is replaced by RMM. This can be considered as a
new SW which undergoes an identical process as previ-
ously: the influence of the gap and the beam is described
by UM and again, a part of this wave, R M, is reflected

then amplified (or attenuated) by the beam as indicated
by the factor 1/(1/U~ —RMM) and then transformed
back, by R M, into the enhanced scattered wave.

An additional physical insight into the second term in
Eq. (3.7) can be achieved if we expand the denominator
for

~ UMRM~ ~

( 1 as a geometrical series, i.e. ,

1
RmM

by the grating; this is the p =1 contribution. The other
terms of the series can be interpreted similarly. This
infinite process is described diagrammatically in Fig. 5.

B. The poles of the response function

We are now in a position to analyze the poles of the
response function of the SP amplifier. The analytical
continuation of the denominator of Eq. (3.7) into the
complex k plane enables us to find the poles of the
response function, i.e., the solutions of

1

UM
(3.10)

Here UM characterizes the beam and the air gap
infiuence, whereas RMM corresponds to the refiection
coefficient of the resonating evanescent harmonic from
the grating. Obviously RMM(k, co) would vary from sur-
face to surface. However, close to resonance, when
kM -k, =—co/Vo, we expect RMM to behave essentially the
same for all surfaces that can support the harmonic M.
Since Eq. (3.10) depends on a single diagonal term of the
reflection matrix we employ a simple model in order to
find an explicit expression for RMM near resonance. We
model the surface as made of a dielectric (e) slab of thick-
ness d on top of an ideal conductor (see Fig. 6); the pa-
rameters e and d are chosen to support the evanescent
harmonic M. The reflection matrix of this system is diag-
onal, and the term which corresponds to RMM is then
found to be

/3M
—

(/3D /e)tanh(pDd )

pM + (pD /e) tanh(/3D d )
(3.1 1)

where PD =[kM —e(co/c) ]' . The condition that this
system of e and d will support a slow wave of a frequency
~ and wave vector kM =k =co/Vo is satisfied if these pa-
rameters obey the following relation:

electron

grating
X J

RMn RMM RMM R

FIG. 5. The infinite reflection process between the grating and the beam. The beam is transparent to the incident (propagating)
wave which is reflected by the grating (R „F„).The beam does not affect these waves, except the synchronous wave (M) which is
partially scattered back towards the grating ( UM ). At the grating, this wave is again reflected R ~ UMR~„F„, and as previously the
beam does not affect these waves except the synchronous one (m =M). Notice the important role played by the diagonal reflection
matrix term which corresponds to the synchronous wave.
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z )t z &)

QJ
k x,syn ~0

QJ 2w—=k+ —M
Vo L

(d
kx, Syh V

jd

FÃÃ/ÃÃÃlÃZZZlliiiiiilii

L 1

FIG. 6. A model for calculating RMM near resonance.

p'M'+ (/3D I e) t anh( 3/D'd ) =0, (3.12)

where the superscript (0) indicates that no beam is
present. We now compare the left-hand side of Eq. (3.12)
with the denominator of the reAection coefficient, Eq.
(3.11). We realize that the condition for the slow wave
system to support the synchronous wave is equivalent to
the requirement that the reflection coefficient is singular
or that it has a resonance. A graphic solution of Eq.
(3.12) is illustrated in Fig. 7. In the presence of the beam
we expect a small deviation, q, from resonance, co/Vo,
and therefore we substitute

where Q depends on the parameters of the surface, and is
of order unity. The Q which corresponds to our particu-
lar model is given by

I+ 1 +cod 1 e+y(eP —1)

y (e/I —1) c e/3y (e/3 —1)

and is plotted versus the dielectric coefficient in Fig. 8.
We observe that, indeed, it is a very slowly varying func-
tion of e, the model's "degree of freedom. "

Next we return to Eq. (3.10), substitute Eq. (3.14) for
RMM, and Eq. (3.13) for the wave number q, and find

kM =k, +q, ~ q ~

&& co / Vo, (3.13)

into Eq. (3.11), and find that it can be cast into the form

2
ct)p k~ e "sinh(r5)

Vo y rcosh(r5)+ —,'( I+r )sinh(r5)
(3.15)

&MM (3.14)

10—

0.9—

FICx. 7. A graphic solution of Eq. (3.12). We defined here
g=/3'D'd and $0=v'e I(co/c)d so that E—q. (3.12) reads
cot(g) =(g/e)/(go —g )'~ . The solution corresponds to the
case that go is smaller than ~.

0.8 I

IO l5 20 25 30

FIG. g. The dependence of the geometric factor 0 on the
dielectric coefficient.



LEVI SCHACHTER AND AMIRAM RON

where g =k, h /y measures the height of the beam,
5=k, b, /y gauges its thickness, and r=[1—(co~/
Vz /y ) /q ] ' . This is our equation for q, the change of
the propagation constant due to the beam-wave interac-
tion. The positive imaginary part of the solution for q
gives the gain per unit length, and the real part indicates
the change of the phase velocity of the synchronous
wave. Equation (3.15) can be cast into a dimensionless
equation for q =q/k„ i.e.,

q
e "sinh(r5)

Q
y r c os h( r5) +—,

'
( I +r )sinh( r5 )

(3.16)

where Sl = co~ /(coy ) is usually very small. This equation
can now be solved numerically for diff'erent parameters of
the beam.

In the strong-coupling regime
~ q ~

the deviation from
synchronization is much larger than the plasma wave
vector ~ /c, but still much smaller than the radiation
wavelength or grating periodicity. In this case ~ may be
replaced by 1 and Eq. (3.16) yields

0
4)

e~
0
E
O

1.0

I

0.5 —I'

I
I

~]
I
I

I

I
I
I

q = — e '-"e sinh(5)Q . (3.17)
y'

[For the opposite case, i.e. , ~q~ &&co /c, Eq. (3.16) reads

q 3=2q Qe "/y and its solutions are q, ,q2=0 and

q3=Qe "/y; these solutions do not correspond to an

energy exchange process and no gain occurs. ]
Since we are interested here in the SPA operation in

the exponential gain regime, we confine our analysis here-
after to Eq. (3.17). Notice that this equation holds even
for a slender beam, when the current ( o:co 6) is finite.
The right-hand side of Eq. (3.17) is thus a negative real
number, and this cubic equation for q is similar to
Pierce's traveling-wave solution. %'e now return to the
original variables, define

1/3'2 3

(3.18)
~p co 1 c

4
e "e sinh(5)Q

c c y4 Vo

and write Eq. (3.17) as q
= —

q '. This equation has
three solutions: one is real, q&

= —q, and the other two
are complex, i.e., q2=qe and q3=qe . The last
solution, q3, corresponds to a growing wave, which prop-
agates with a phase velocity somewhat smaller than the
beam velocity. Similar solutions were found in the con-
text of the free-electron laser by Kro11 and recently
were also studied by us.

We can now estimate the exponential gain of the
Smith-Purcell amplifier, i.e., the imaginary part of q3.
From Eq. (3.18) we see that the gain can be expressed in
terms of the current of the beam (I ~ co b, ) or in terms of
its density no. In Fig. 9 we show the normalized gain as a
function of the beam thickness. Curve (1) depicts the
gain when the current is held constant. The normalized
gain is then written as g/gi = [e sinh(5)/5]'~ where

2 I/3

O.O
0

I I I I I I I I I I I I I I

8-Thickness of beam (normalized)

8= b,
Vow

FIG. 9. The dependence of the gain on the thickness parame-
ter of the beam for a constant current and a constant density.

is the normalization factor for constant current. This
gain has a maximum for a slender beam (5~0) and gets
weaker for thicker beams. We can understand this result
considering that the beam-wave coupling is weaker for
the distant electrons. Curve (2) is the corresponding gain,
g/g„=[e sinh(5)]', when the beam density is held
constant and

v'3
gn:— no

2

' 1/3
e vj'oco e

mc/e yP

IV. THE OSCILLATOR

A. General

To get a feeling for the order of magnitude of the gain we
take Vo/c=0. 9, A, =10 m, h =0.5X10 m. If we as-
sume that the current is 1 A (and the width of the beam
in the y direction is 0.1 m) we find gi =5.22 m '. For a
density of no =2X 10' m we have g„=60 m

The dependence of this exponential gain on the beam
height h above the grating has a simpler form and it de-
creases exponentially as exp[ ——,'(co/Voy)h ]. This result

is not applicable for distant beams, since the strong-
coupling condition ~q ~

&co /c does not hold any more,
but then Eq. (3.16) can be solved numerically.

v'3
gI =

2

c

mc /e ~y

2T/

6135
In Sec. III we have found that injecting a beam of elec-

trons above a corrugated surface, which is externally il-
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luminated, may cause extraction of kinetic energy from
the beam. This extraction process increases exponentially
with the length of the interaction domain. In the present
section we suggest the construction of an oscillator whose
startup is provided by the Smith-Purcell radiation and its
steady-state oscillations are sustained by this
amplification process. A similar oscillator was proposed
by Wachtel —see Fig. 10(a)—but his analysis was based
on the assumption that the extraction rate increases alge-
braically with the interaction length —or to be more
specific, the resulting gain is proportional to the third
power of this length. We expect the extraction rate in
our case to be much larger, the device to be more
efficient, and the necessary current (threshold) to sustain
the oscillation to be lower.

B. Design principles

The Smith-Purcell oscillator is composed of three
parts: (i) an active component (grating plus beam), (ii)
electromagnetic waves, and (iii) a feedback system (see
Fig. 10). The first component characteristics are identical
with those introduced in Secs. II and III, namely, a grat-
ing of a periodicity L, whose unit cell is of a given

geometry, and a beam of electrons at a height h above the
surface, with average velocity Vp, beam density np, and
thickness b. According to the Smith-Purcell effect (Sec.
II B 3), a beam of electrons which moves above a grating
emits radiation. In the SPO, part of this radiation is
"captured" by the feedback system and is reflected back
towards the grating. This incident wave, in turn, is scat-
tered by the grating and it is slightly amplified by the
beam, which now "operates" as an active medium. This
process keeps repeating itself and the total electromag-
netic wave is a superposition of all these contributions.
From this brief description we expect that the frequency
of the EM wave is mainly determined by the SP radia-
tion, since it provides the "startup" to the entire process.
In Sec. II B 3 we discussed the characteristics of SP radia-
tion and we observed there that in a given direction, say,
an angle 8 with the z axis (see Fig. 11), a detector would
have measured certain frequencies, which up to an in-
teger P are determined in terms of the grating periodicity
(L), electron velocity ( Vo), and the detector angle (8),
namely,

(4.1)

{a) electron

M)

electron

periodic structure

periodic structure

beom

In the oscillator mode of operation the detector is "re-
placed" by a feedback system made of three mirrors. In
the present section we wish to determine the relative po-
sition of these mirrors in order to support the oscilla-
tions. Since we wish our oscillator to operate near the SP
frequency coo (for given P and L), the mirror M2 has to be
located so that it would "collect" the wave which leaves
the grating with an angle 0—see Fig. 11. Obviously,
many other waves may hit this mirror, however, we in-
tend to arrange the other two mirrors in a manner such
that only a single feedback wave (SFW) completes the
feedback loop. Actually there is a large number of possi-
ble setups which fulfill this condition, however, their
number is significantly reduced when stability is required.

Let us assume for the moment that these mirrors are
located so that only the wave with a frequency cop propa-
gates in the feedback system. This SP frequency of the
spontaneous emission was calculated assuming that the
electron's velocity is constant and uniform. However, at
the presence of the induced EM field the electronic
motion is perturbed (rippled), and in turn a small devia-
tion from the "initial" frequency occurs. This deviation
can cause an angular deflection of the FW, and as a result
the latter would "escape" from the oscillator. To avoid
this, we require the system to be stable under small devia-
tions from the SP frequency. Adopting the Floquet nota-
tion, the x component of the feedback wave vector,
which leaves the grating with an angle g,„,( =8), is given
by

(c) electron beom
COp 2'
C

sin@out kout + tl0 tL
(4.2)

periodic structure
and the incident feedback wave vector, which impinges
on the grating with an angle g;„, is

FIG. 10. (a) is the Smith-Purcell oscillator as proposed by
Wachtel. (b) and (c) are two possible configurations for a high-
frequency oscillator.

~p . 2'sing;„= k,„+ n,„. (4.3)
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Z=

electron beam
)((, Z

I

periodic structure

Vo, no

radiation loss
I I

Y

FIG. 11. Smith-Purcell oscillator. The mirror M& collects waves of different frequencies (as determined by Smith-Purcell relation)

but only those leaving the grating with an angle 0 are returned to the active region by the feedback system. The role of the different

terms (R &„,RMM, and R„~) of ihe oscillator dispersion relation is illustrated.

Since the grating couples only between Floquet harmon-
ics with the same wave vector in the first Brillouin zone,
we conclude that k;„=k „,=—kp, and subtracting Eq.
(4.3) from Eq. (4.2) we find

sing„„,=sing;„+ (n,„,—n,„) .
2'

(4.4)
(coo/c)L

The effect of the electronic ripples is expressed by the
small changes 6' and 6k in the frequency and the wave
vector, respectively, i.e. , ceo is replaced by co=~o+6co
and k„by k =ko+6k. We wish to emphasize that this
deviation is so small that it does not aff'ect the harmonics
indexes. The "new" waves propagate within two direc-
tions determined by

k +6k+

The stability condition implies that these "new" angles
are identica1 with the initial ones within the approxima-
tion of small ~5k~ and ~5k

~
(i.e., ~5'~ &&coo and

)5k( « ~ko~ ). As a consequence of this condition we find

that the last term of Eqs. (4.5) and (4.6) has to vanish, i.e. ,

6k
ko+(2~/L)n, „,

6'
COp

(4.7)

and

6k
ko+(2m/L)n;„

6'
COp

(4.8)

which in turn imply that n,„,=n;„=n, and finally that

(4.9)

sing „=
ko+6k+

L

6k-sing, „ 1+
ko+ (2~/L)n;„

6k—sinlt, „, 1+
ko+(2~/L)n, „, COp

COp

(4.5)

(4.6)

In other words, the mirror M, , see Fig. 11, should be
placed in such a way that the reflected FW imginges on
the grating with the same angle as it leaves it.

The simplest realization of the stability condition is a
two-mirror system, say M& and M2 positioned so that the
FW is reflected by M2 directly towards M, [see Fig.
10(b)]. Let us, in this simple case, follow after a single
ray. Starting from a point on the grating and completing
an entire loop, it can be readily seen that we do not re-
turn to the starting point; this point can be reached only
after completing an additional loop. Obviously at each
point there are two waves with the same cu and k but with
diff'erent phases, and thus a destructive interference be-
tween these waves might occur. In order to avoid this
situation, we have introduced an additional mirror M3
[see Fig. 10(c)]. Now that the relative position of the mir-
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rors is known, their position wiH be expressed in terms of
the optical length d, , the FW has to travel to complete
an entire loop. This is described, together with the condi-
tion for oscillations to be sustained, in Sec. IV C. Never-
theless, two "crude" bounds of this length scale can now
be estimated: the mirrors have to be relatively close to
each other, enough that di+raction effects can be neglect-
ed; this condition provides an upper bound to d, , The
lower bound can be estimated by requiring that Mi and
Mz have to be far away from the beam and the grating,
so that their influence on the beam-wave interaction is
negligible.

C. The condition for self-sustained oscillations

Consider a device which fulfills all the conditions men-
tioned in Sec. IVB. Our purpose in this section is to
determine the necessary conditions for oscillations to be
sustained in our device. Since the grating and the feed-
back system are given, our "degree of freedom" is the
beam, and therefore this condition will be formulated in
terms of the minimal necessary current that sustains EM
oscillation of frequency near coo.

Since the feedback mirrors are of finite sizes, the EM
field which propagates in the feedback loop is confined to
a limited beamlike domain —EM beam. Neglecting
diffraction effects, we assume that the EM field in this
domain can be described by a plane wave. The incident
wave, oscillating at a frequency co, and propagating from
the mirror M& towards the grating, is written as

H""I(x,z, t) =F„(co,k)exp( j~t jk„x +g„—z ) . (4.10)

D„= R„„+RM
—RM„F„

1

1/UM —
RMM

(4.1 1)

The feedback system, of optical length d, „returns this
wave back towards the grating with its phase shifted by
an amount exp[ —j(co/c)d, , ]—see Fig. 11. Mirror
losses and energy extraction from the oscillator may de-
crease the field amplitude. These losses are denoted by r.
It is convenient now to define the total reflection
coefficient of the feedback system as exp( —I )=r exp[ —j(co/c)d, , ] where I is a complex quantity.
The amplitude of the FW, when it returns to the active
region, is D„exp( —I ). Since we have started with the
wave of Eq. (4.10), the SWF assumption dictates that
D„exp( —I ) =F„,and thus with Eq. (4.11) we have

R„„+R„M 1

1/UM RMM
R „e ":—1. (4.12)

Equation (4.12) is our result for the dispersion relation
in a Smith-Purcell oscillator. For the given system's pa-

We have previously shown [Eq. (3.7)] that when a plane
wave hits the system of a grating and a beam (which
moves above the grating), the amplitude D„,of the wave

H~" '(x, z, t) =D„(co,k)exp( jest jk„x —p„z)—
which is reflected towards the mirror M2, is given by

rameters, i.e., the electron beam, the grating, and the
"circuit, " one should solve Eq. (4.12) for the operating
frequency co of the oscillator. The wave vector in the first
Brillouin zone k is expressed in this equation in terms of
the constraint imposed by the feedback system, namely,
only a wave leaving the grating within an angle O com-
pletes the loop. This constraint is mathematically formu-
lated as follows:

CO . 2'
k =—sinO — n .

c I. (4.13)

%'e wish to point out that though the frequency, as ap-
pears in Eqs. (4.10), (4.11), and (4.13) is real, the disper-
sion equation is understood as an analytical continuation
of Eq. (4.12) into the co complex plane. The complex fre-
quency co=co, +jato; that solves this equation gives the
operating frequency co, of the oscillator, and if co; is nega-
tive, kinetic energy of the beam is turned into net radia-
tion energy, which can be extracted from the system.
However, we should notice that this procedure would
yield reasonable results only if m, is very much smaller
than co„. We should further observe that since the driv-
ing mechanism for starting the self-sustained oscillations
is the Smith-Purcell spontaneous radiation, we expect the
operating frequency co to be close to coo of Eq. (4.1). This
change of frequency is understood as due to the perturba-
tion of the electronic motion by the EM field.

An additional insight into Eq. (4.12) can be obtained by
reorganizing its terms in a different way, namely,

1 —
RMM =RMM

UM

where

(4.14)

M R~„R„~e ——/(1 R„„e ) . —

2rr MgsinO —n vr——&ko=
L L 1 —PsinO L

and by taking n =M —1. The P = 1 choice is justified by
the fact that Smith-Purcell radiation decays exponentially
away from the grating with an exponent whose argument
is proportional to the frequency (and to the height of the
beam) —as shown in Sec. II 8 3.

In order to solve Eq. (4.12) for a particular SP oscilla-
tor we have to calculate the relevant elements of the

The left-hand side of this equation is recognized from the
SP amplifier [Eq. (3.10)], and is related to the positive
gain, i.e., to extraction of kinetic energy from the beam.
The right-hand side, RMM, describes the feedback, and it
contains two different loss mechanisms which will be dis-
cussed later.

Before we proceed we shall determine the harmonics
indexes M and n in Eq. (4.12). Actually what we know is
that the SP frequency is determined in Eq. (4.1), up to an
integer P. Eliminating ko from ~0/ Vo =ko+ 2~M /1.
and (coo/c)sinO=ko+27rn /L we find that P =M —n. If
we confine our analysis to the lowest possible frequency,
i.e., P =1, then ko and M are determined by the require-
ment that ko itself should be in the first Brillouin zone,
i.e.,
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reflection matrix for a given grating. Actually, we must
determine only the four elements RMM, R„M, RM„, and
R„„near the SP frequency coo. However, we wish to ern-

phasize that if the condition for the existence of oscilla-
tions is not fulfilled, then the alternative solution is
F„=D„=O, which obviously implies that no self-
sustained EM field exists. The transition between these
two regimes is controlled by the current intensity. This
quantity decides whether the sign of the imaginary part
of the frequency which solves Eq. (4.12) is positive or
negative. It is the negative imaginary part which corre-
sponds to a growing solution.

D. The threshold current

The current which determines the transition between
these two regimes is called the threshold current (I,i, ). If
we could solve exactly Eq. (4.12), then this current could
be determined from the condition

co; —0 . (4.15)

Exact solution of Eq. (4.12) can be rather difficult, and we
intend here to provide only an approximate calculation of
this current. For this purpose we adopt a different pro-
cedure, which is quite common when studying oscillators;
we assume that the imaginary part of the frequency con-
sists of two terms

CO;
—6); +CO; (4.16)

The first term (co, ) results from the different loss mecha-
nisms and it always causes a decrease of the field ampli-
tude. The second term (co,+) is due to the extraction of
kinetic energy from the beam, and it may cause an in-
crease in the field amplitude. In our approximate pro-
cedure we calculate each of these quantities ignoring the
competing mechanism; in other words, we calculate co,

+

assuming that there are no losses (i.e., co, =0) and p~, is
established by leaving out the extraction mechanism (i.e.,

co,
+ =0). A partial support to this procedure is provided

by Eq. (4.14), where we identified the left-hand side
(1/U —R~~ ) as associated with the energy extraction,
and the right-hand side, RMM, with the loss mechanisms.

Evaluation of co,
+ is accomplished much in the spirit of

Sec. III B, namely, we solve

1
RMM

M
(4.17)

for co,+. If the grating supports the synchronous wave M
then RMM can be approximated near the SP frequency
coo, by

2' p I f3@
RMM II Q (4.18)

where II= p~ —
cop and Q depends on the geometry, is real,

and of order of 1. In the strong-coupling regime
(co «~A~ ) we write UM as

—2' 2

UM = — e sinh(5 ), (4.19)
y II (1 —Psin9)

where i)=(cop/Vpy)h and 5=(cop/Vpy)b. Using Eqs.
(4.18) and (4.19) we turn Eq. (4.17) into a cubic equation
for Q, i.e., II =Op where Qp=rpp(I/Ip)'
I =eno VOLeslky is the current injected in our system,

rric2 (y /3)'(1 —Psin8) [(~p/c)b, ]
er)p Q[e "e (sinh5)/5]

(4.20)

The power loss due to finite conductivity of, say, mir-
ror M, , which has an angle rr/2 upwith respec—t to the
radiation beam is

iHp i cgpep
P [ „=go A 4

2 C7

1/2
1

sinO

where o. is the conductivity. Similar expressions for the
finite conductivity losses of the other mirrors and the
grating are expected to be of the same order of magni-
tude. Let us now compare these two loss mechanisms.
Both the mirrors and the grating are made of a high-
conductivity material, say, o. —10 mho/m, thus for mil-
limeter waves —at which we expect our device to
operate —the term in square brackets of P &„, is of the
order of 10 (taking sing- I). On the other hand, for
wavelengths A, smaller than L the term in square brackets
in Eq. (4.20) is of the order unity, and thus we conclude
that in our regime of operation the principal loss mecha-
nism is due to radiation scattering. Since the total energy
stored in the entire oscillator is given by
W', =pp(~Hp~ /2)Ad, ~„ the decay rate in the small loss

and rIp= (pp/ep) ' is the vacuum characteristic im-
pedance. This cubic equation is the analog to that ob-
tained in the preceding section for the wave vector of the
SW in the SPA. We are interested here in conversion of
beam energy into radiation energy, and thus consider
only the growing wave solution with positive growth rate
p~,

+= —&3/20p. We wish to emphasize that this gain
coefficient is common to all the waves including our FW,
since the boundary conditions at the grating must be
satisfied at any instant.

Disregarding the beam, we now turn to evaluate the
losses, in a way similar to the calculation of the quality
factor of a cavity in microwave devices. There are here
three different loss mechanisms: (a) radiation losses by
scattering at the periodic surface, (b) losses due to the
finite conductivity of the metallic surfaces (like mirrors
and grating), and (c) radiation losses due to extraction of
energy through one of the mirrors. As we shall consider
only the threshold conditions for the oscillator operation,
it will be assumed that no energy is extracted out of the
oscillator. First we determine the power lost by the scat-
tered radiation at the grating. We assume that an in-
cident radiation beam of cross section 3 impinges on the
grating; the amplitude of the magnetic field is Ho, and
the incident Power is P'"'I=

l (i~pHp~ /2)A. The useful
power which is reAected towards the feedback trajectory
(M2) is approximately given by P'"'=P'"'~R„„~, and
thus the radiation losses (subscript r) are given by
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regime, is estimated as

2/r)„, =P„)„,/ W, = ( c /d, p, )( 1 —
~
R „„~ ) .

The necessary condition for oscillations to sustain is that
this decay rate will be smaller or equal to the growth rate
calculated above, i.e.,

(4.21)
0

)co, = '
(1 —[R„„/') .

opt

I 2D 0
2DI d0 opt

y (1 —P sinO)

p2 Q cosO

where

X ~RM„~ —— sine (g)
2 d

C00

Vo

~o . 2n(M —n)sinO— D .
c L

Only a part, ~R„~~, of this power is transferred to the
FW. Following a similar procedure as previously and
considering the maximum gain (g= —1.3) obtained for
2B -0. 1 rn, we find that the threshold current is given by

P cosO
Ith Io

~R„MR~„~ 0.27@(1—P sinO) [(coo/c)2D]2
(4.23)

This, in turn, gives us the threshold current in terms of
the other parameters of the system, namely,

I,h
=0. 192IO (4.22)

~0/c d,„,
This is the main result for the threshold current of our SP
oscillator.

To estimate numerically the threshold current we con-
sider now an instructive example, a periodic structure
composed of a smooth surface where half of the unit cell
(0(x (L/2) is made of a high conductive material
(o ~ oo ), and the other half (L/2 (x (L) is made of a
high magnetic permeability material (p„—+oo). Taking
O=75' and A, =10 m we find that n =4, and the corre-
sponding term of the reflection matrix R ~ is—0.54+0.35j. For the following characteristic pararne-
ters: b, =10 m, ~Q~=1, h =0.5X10 m, 6 =0. 1 m,
d, , =0.2 m, and p=0. 9 we find that this current is
I,h =3.8X 10 A.

This result for the threshold current should be com-
pared with that obtained by using Wachtel's suggestion
for a similar SP oscillator. First we estimate the power
transferred by the electrons to the radiation in the pres-
ence of an almost synchronous wave. Notice that the
operating regime is different from the one considered by
us, that is, the electrons act as an ensemble of synchron-
ized "antennas" and the slow wave is assumed to remain
unchanged, while in our case the slow wave does change
along the interaction domain, and is solved in a self
consistent manner. This domain in Wachtel's oscillator is
approximately 2D —3/b, cosO, and thus the power ex-
changed is given by

In Wachtel's case, the system does not operate as close to
resonance as in ours, and therefore we expect the matrix
elements to behave rather regularly. We assume ~RM„~
and ~R„~~ to be of order unity and find for a very thin
beam (5~0), which almost touches the grating
( g ~0)—these are Wachtel's assumptions —that the
threshold current is I,h

—38 A. This current is much
larger than that found in our scheme, since the energy ex-
traction rate from the electrons is much smaller. The
difference is even more significant if we take into account
the beam thickness and its height above the grating. In
that case, for the previous parameters, the threshold
current is I,h -0.56 kA.

V. DISCUSSION

In the present study we investigated the energy ex-
change between electrons and electromagnetic waves in
the presence of a periodic structure. This process had
been examined extensively in the past mainly in closed
periodic structures, namely, slow waveguides. Here we
concentrate on the interaction of an electron beam with
electromagnetic waves in an open periodic structure, i.e.,
in a Smith-Purcell system. This will open up the way to
tunable radiation sources of shorter wavelengths, from
millimeter waves to soft x rays. The main disadvantage
of a periodic waveguide is the multitude of modes, which
are excited if the cross section of the system is not small.
In order to retain a small number of modes the cross-
section dimensions should be of the order of the operat-
ing wavelength and waveguides with dimensions less than
1 mm are hard to come by.

Let us now summarize the main conclusions of the
present study of the Smith-Purcell free-electron laser, in
the exponential gain regime.

(a) When operated as an amplifier, it is shown that ex-
ponential gain can be developed in this device, namely,
the amplitude of the electromagnetic field increases ex-
ponentially along the interaction region.

(b) The influence of the beam height h on the gain is
shown to be considerable since it decreases exponentially
with the height, i.e., the gain ~ exp( —2/3(cu/) Vo )h].

(c) The eifect of the thickness of the beam on the gain
is also considered here. We find that when operating at
constant current, the gain decreases algebraically with the
beam thickness 6, i.e., the gain ~ 6 ' . When operat-
ing at constant density the gain increases with the thick-
ness, up to an asymptotic value which is reached when
cod/y Vo -2.

(d) It is suggested to utilize the energy extracted from
the beam to construct an oscillator. The threshold
current is determined and it is found to be much smaller
than that necessary for a device operating in the algebraic
gain regime.

In the course of our analysis, it was assumed that an
ideal beam is injected into the system. This means that
the longitudinal momentum distribution is extemely
peaked (Dirac 6 function) and the transversal electron
motion vanishes. In practice the momentum distribution
is of a finite width; we denote the longitidinal velocity
spread by VL, and the transversal one by V~. Let us now
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estimate the bounds on these two parameters for our
analysis to remain reasonable. (a) The transversal spread
VT has no contibution to the interaction, and it should be
limited by the condition that the electrons do not hit the
grating because of their transversal motion. To calculate
this limit, we consider an electron moving with a velocity
Vo parallel to a grating of length D at a height h above it;
the time it takes the particle to cross the device is approx-
imately D/Vo. If its initial transverse motion (towards
the grating) is VT then the electron would not hit the sur-
face if

It is more convenient to express the beam quality in

terms of the energy spread hy which is related to VL

through Ay/y =( VI /Vo)(yP); substituting the explicit

expression for Im(kM) and normalizing the current I so

that I=Ie(po/eo)' /mc we obtain
1/3

gy v'3 — 1 ~„ssinh(5)
)33 I e "e

y 2 (cu/Vo)b. y

(5.3)

V D
(5.1)

VL Im(kM )
(5.2)

(b) To determine the upper bound for the longitudinal
spread, we adopt Kroll's approach, originally applied to
a bremsstrahlung FEL. As in the magnetic wiggler case,
the current is determined by integration over the product
of a peaked distribution function and a resonance term of
the I /(cu —VkM ), where co is the radiation frequency, V is
the electron velocity, and kM is the synchronous wave
number. Notice that kM may have a small imaginary
part. Our analysis will remain accurate when the longitu-
dinal spread Vl is much smaller than the width of the
resonance term, (co/~ kM ~

)Im(kM ), or

For our previous numerical example A, = 10 m,
b, =10 m, P=0.9, h =0.5X10 m, b, =0. 1 m, and
I =0.5 A we find that Ay/y &1.2X10, which is a
reasonable spread. Also for a device of length D =0.3 m,
the transversal spread is of the same order of magnitude,
i.e., VT/Vo & 1.67X10 . These estimates suggest that
for millimeter wavelengths the conditions on the beam
quality are not too stringent.

A tunable source of radiation is of importance also for
wavelengths shorter than millimeter wave. The major
problem then is the fact that the beam height above the
grating has to be of the same order of magnitude as the
radiation wavelength, otherwise the exponential decay
"kills off" the interaction. It is not easy to inject an elec-
tron beam of a significant current as close as one micron
to the grating. Another obstacle is the electromagnetic
and geometric properties of the grating at these higher

TABLE III. The limiting value of the beam spread Ay/y for different wavelengths. We consider
here a grating of 10 pm periodicity, a beam of 0.5 pm thickness, 0.5 pm width injected at a height 0.5
pm above the grating. The radiation which propagates parallel to the beam, 0=~/2, consists of many
frequencies determined by n. Only the first two, n = —1 and —2, are considered. The first two
columns determine the y necessary to obtain the corresponding wavelength A, in the same row. In the
last two columns we calculate the maximum value of the energy spread allowed in order that the ex-

ponential gain will occur. From this table we conclude that although the energy necessary to obtain the
same wavelength is lower when working with n = —2, the beam quality has to be much higher compar-
ing both with the case n = —1. In general, we shall prefer to work with higher energy (which is easier
to obtain) and relatively low beam quality rather than the opposite case. x [y]=x X 10".

n= —1 n — 2 n — 2

Submillimeter

A, =100 pm
Far infrared

A. =10 pm
Infrared

A. = 1 pm
Visible

X=0.5 pm
Ultraviolet

A. =0. 1 pm
XUV
X=0.05 pm
X-ray
A, =0.01 pm

1.004

1.15

2.40

3.28

7.12

10.04

22.38

1.001

1.06

1.81

2.40

5.07

7.12

15.84

0.729[ —2]

0.271[—1]

0.125[—1]

0.654[ —1]

0.611[—3]

0.128[—3]

0.325[ —6]

0.228[ —2]

0.115[—1]

0.651[—2]

0.307[—2]

0.155[—3]

0.198[—4]

0.595[—8]
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FICs. 12. The allowed energy spread vs the feedback angle 0.
The radiation wavelength is also depicted. y =5.
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FICs. 13. The allowed energy spread vs the electron energy y.
The feedback angle is 0=75 . The radiation wavelength is also
depicted.

frequencies. Below 0.5 pm, for example, the conductivity
of metals (except aluminum) is very poor and a significant
part of the radiation will be absorbed by the grating or
transferred through it. Moreover, there appear microir-
regularities in the fabrication process, whose characteris-
tic length is of the same order of magnitude as the radia-
tion wavelength, and it is hard to control their influence
on the EM scattering processes. In spite of these prob-
lems let us determine, on the basis of our analysis, what
are the necessary conditions on the beam parameters for
operating the SP FEL in the wavelength domain below
millimeter waves. In Table III we show the normalized
longitudinal spread per current unit, (by/y)(1/I'~ )(I
in A), for a broad EM spectrum starting from submilli-
meter waves down to the soft x ray. These calculations
were formed assuming that the grating periodicity is
L =10 pm, the beam thickness, width, and height are
6=0.5 pm, 6 =0.5 pm, and h =0.5 pm, respectively.
In this table we consider only the first two waves, i.e.
n = —1, —2 which propagate parallel to the beam, i.e.,
0=~/2. Comparing the first two columns we realize that
it is preferable to use the "second wave" since the beam
energy is lower. The opposite conclusion is reached when
comparing the last two columns since the beam quality
has to be much higher as dictated by the decrease in the
allowed longitudinal spread. In general, it is much easier
to obtain a beam with high y rather than smaller spread
Ay/y, therefore it will be preferable to utilize the "first
wave. "

In all these examples we have considered only waves
which propagate parallel to the grating (g=m/2). One
of the advantages of an open periodic structure is that we
can utilize radiation which does not necessarily propa-
gate parallel to the beam; to demonstrate this advantage
let us consider the operation of this device as an oscilla-
tor. Two cases will be investigated: in the first the elec-
tron energy is kept constant and the angle of the feedback
mirrors is changed; in the second the feedback remains
unchanged and the electron energy is varied.

(i) An electron beam with y=5 is injected above the
grating (the beam and grating geometric properties are
identical with the previous example). The mirrors are
placed so that only radiation which leaves the grating
with an angle g (relative to the z axis) will be finally
reflected back. Changing 0 and keeping y constant,
diff'erent frequencies (for n = —1) can be obtained. In
Fig. 12 the radiation wavelength is plotted versus the an-
gle 0 as well as the maximum longitudinal spread of ener-

gy per unit current. It is readily seen that as 0 increases
the Doppler shift is more accentuated, i.e., k decreases,
and also the beam quality increases.

(ii) In the second case the angle g is kept constant and
the y of the electrons varies. Notice that for given 0 and
n there is a minimal wave1ength X;„due to the fact that
the particle's velocity is always smaller than c, i.e.,

A, =L(1/P —sing) )L (1 —sing)—:A.

All the wavelengths larger than A, ;„can be obtained by



LEVI SCHACHTER AND AMIRAM RON

injecting a beam with a suitable energy. This is demon-
strated in Fig. 13 where k and the maximum allowed
spread are plotted versus y. Notice that while the wave-
length decreases monotonically when y increases, the rel-
ative spread, Ay/y, does not change monotonically as in
the previous case. Around y-4. 78 a very high-quality
beam is necessary to obtain exponential gain. For y
larger than this value the necessary beam quality de-
creases monotonically. In all these cases, the transversal
spread for a 1-cm-long device is VT/Vo (0.5 X 10
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