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Quantum theory of solitons in optical fibers. II. Exact solution
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In the preceding paper [paper I of a two-part study; Lai and Haus, Phys. Rev. A 40, 844 (1989)]
we have used the time-dependent Hartree approximation to solve the quantum nonlinear
Schrodinger equation. In the present paper, the eigenstates of the Hamiltonian are constructed ex-
actly by Bethe's ansatz method and are superimposed to construct exact soliton states. Both funda-
mental and higher-order soliton states are constructed and their mean fields are calculated. The
quantum effects of soliton propagation and soliton collisions are studied in the framework of this
construction. It is shown that a soliton experiences dispersion as well as phase spreading. The mag-
nitude of this dispersion is estimated and is shown to be very small when the average photon num-

ber of the soliton is much larger than unity. The phase and position shifts due to a collision and the
uncertainty of these shifts are also calculated.

I. INTRODUCTION

In the preceding paper (paper I), ' it was shown that the
quantum nonlinear Schrodinger equation (QNSE) is
equivalent to the evolution equation of one-dimensional
bosons with 6-function interactions. By applying the
time-dependent Hartree approximation to this equation,
we constructed approximate eigenstates of t'he Hamil-
tonian. These eigenstates are the exact eigenstates of the
photon-number operator but not the exact eigenstates of
the momentum and the Hamiltonian operator. From the
uncertainty relations, they can be interpreted as soliton
states with a mean position and a random phase. The un-
certainty relations also suggest that one has to superim-
pose these states to construct a soliton state with a mean
phase. It was shown that due to the uncertainty of the
photon number, a soliton experiences phase spreading
when it propagates. However, the Hartree approxima-
tion suppresses the effect of the momentum uncertainty.
A distribution of momentum must be associated with a
soliton with a mean position. Just as the uncertainty of
photon number causes the phase-spreading effect, this
momentum uncertainty causes a dispersion effect of its
own. We study this effect in the present paper by using
the exact eigenstates of the Hamiltonian.

It is surprising that the QNSE can be solved exactly. It
was first solved by Bethe's ansatz method and then by
the quantum inverse scattering method. ' In the
present paper we follow Bethe's ansatz method to con-
struct the eigenstates of the Hamiltonian. We then su-
perimpose these eigenstates to construct soliton states.
Both fundamental and higher-order soliton states are
constructed and their mean fields are calculated to justify
the construction. All the classical results can be
recovered in the limit of large photon number. It is
found that due to the uncertainty of momentum, a soliton
experiences dispersion when it propagates and the magni-
tude of this effect is significant only after many soliton

periods. The phase and position shifts due to a collision
and the uncertainty of these shifts are also calculated.

II. EXACT SOLUTION FOR EIGENSTATES
WITH KERR INTERACTIONS

(2.1)

with

H, =A x x dx

+C X X X X QX (2.2)

Here P(x) and P (x) are the field operators in the
Schrodinger picture and satisfy the following commuta-
tion relations:

[P(x'),P(x)]=5(x —x'),

[P(x'), P(x)]=[/ (x'), P (x)]=0 .

(2.3a)

(2.3b)

Expanding i') in Fock space and substituting it into
(2.1), one has

iP) =g a„ f f„(x„.. . , x„,t)&n!

X P (x, )
. P (x„)dx, dx„ i0), (2.4)

(2.5)

f if„(x,, . . . , x„,t)i dx, . dx„= 1, (2.6)

In paper I, we have shown that the problem can be
stated in the Schrodinger picture as follows:
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. d
i f„(x„.. . , x„,t)

dt
n Q2

+2c=a' 1~i &j&n
5(x —x, )

—iE„t n

f„(x„.. . , x„,t)=e " g A(2exp i g kg( )x
IQI j=l

(2.13)

Xf„(x„.. . , x„,t) . (2.7)
for xl (x2 ( . . ~x„with the energy expressed by

f„(x„.. . , x„,t) =f„(x„.. . , x„)e

The equation for f„(x1, . . . , x„) is

(2.8)

n Q2
+Zc

1 BX~ 1&i &j&n
5(x, —x; ) f„(x„.. . , x„)

=F.„f„(x„.. . , x„) . (2.9)

It turns out that Eq. (2.9) can be solved exactly.
Since f„ is a symmetric and continuous function, it

is enough to specify its value in the region
x, (x2 ( . . (x„. In the regions x.Wx;, all the 5 func-
tions in (2.9) vanish and the solutions of (2.9) are of the
exponential form

r

Here f„(x,, . . . , x„,t) is a symmetric function of x and
(2.5) and (2.6) are the normalization conditions for a„and
f„, respectively. Equation (2.7) is just the Schrodinger
equation for a one-dimensional system of bosons with 5-
function interactions. The t dependence in (2.7) can be
factored out by assuming a solution of the form

Z„=gk, .
j=l

(2.14)

In general, kj must be real because the wave functions
cannot be infinite. However, for negative c, a rising ex-
ponential for xi (x can be matched to a falling exponen-
tial for x; )x . Thus negative values of c make "bound"
states possible, states that cluster around the planes
x; =x in multidimensional space. No such solutions ex-
ist for positive c. To be explicit, in the case of c &0,
bound state solutions exist if k satisfies the following
condition:

k =p+i —(n —2j+1), j =1,2, . . . , n .~ c
2

(2.15)

n

=A'„exp ip g xj+ — g ~x~
—x;~

j=l 1&i &j&n
(2.16)

The reason why we need condition (2.15) can be seen by
substituting it into (2.12). We find that all the A& vanish
except A ~, 2 „~. Therefore

f„(x„.. . , x„)

exp i gk, x, (2.10) ~n A[1,2, . . . , n) (2.17)

To satisfy the symmetry condition, all the permutation
terms should be included. Therefore, the general form of
the solutions is

f„(x„,, x„)=g Agexp i g kg(, )x,
IQI j= 1

(2. 11)

where the summation over I Q I is the summation over all
possible permutations of [1,2, . . . , n ] and Q (j) is the jth
component of Q. The 5 functions in Eq. (2.9) impose
boundary conditions at the boundaries x =x, . At these
boundaries, there is a discontinuity in the slope of the
function f„. We show in Appendix A that these bound-
ary conditions impose the relation among the A&'s:

~n, p)= I f„(x„.. . , x„)P (x, )
. . P (x„)n!

Xdx, Cx„~o)

—:R (n,p)~0), (2.18)
kg( +1) kg( .)+l'C

Ag .
kg( +1)—kg( )

—ic
(2.12)

with the eigenvalue

If any other A& is nonzero, the wave function is not
bound. This fact thus leads to the quantization condition
(2.15). f„of(2.16) is symmetric in the x s and applies to
all regions.

If any pair of x values is widely separated, the wave
function (2.16) is very small. This is why these solutions
are called bound-state wave functions. With (2.16), one
can construct the bound states that are the eigenstates of
the Hamiltonian (2.2).

Here Q' is the permutation derived from Q by inter-
changing the jth and (j+ 1)th components. E(n,p)=np — n(n —1) .

12
(2.19)

Q Q'&fQI

Q(l)=Q'(I) for lWj, j+I,
Q(j)=Q'(j+1),

Q(j+1)=Q'(j) .

Reintroducing the t dependence, one has

The energy is the sum of the net kinetic energy of the
bosons with momentum p each and (negative) potential
energy due to the binding force of the Kerr nonlinearity
(~c~ /12)(n —1). The dependence on n follows from the
functional dependence of the nonlinearity which is qua-
dratic in P (x)P(x). Reintroducing the t dependence, we
have

(2.20)
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In Appendix B, we show that these states can be normal-
ized,

(2.28) suggest the construction of a sech-shape pulse by
superposition of different momentum states.

(n', p'In, p) =5„„5(p—p'),
and the normalization constant A'„ in (2.16) is

(2.21)
III. CONSTRUCTION OF FUNDAMENTAL

SOLITON STATES AND QUANTUM DISPERSION

Ic
&2m-

(2.22)

EIn, p, t) =nln, p, t),
PIn, p, t)=Anpln, p, t) .

(2.23)

(2.24)

The matrix elements of the field operator for these eigen-
states are' '"

+ I) c (4n —))/2n )(n 1)(ei[(n+1)p —np'!x&n'n+''
2'

(p p)+I I

(" J+
4

(2.25)

n ( n + 1 ) —) /2 i [(n + 1)p —np']xe e
2

It is easy to prove that In, p, t ) is also the eigenstate of
the photon-number operator g and the momentum
operator P:

(n, p, tliti(x)In, p, t &=a,

(n, p,

tlat

(x)P(x)ln, p, t ) is independent of x . (3.2)

(3.1)

It is clear that In, p, t ) is not a localized soliton state be-
cause it does not satisfy the second condition. However,
on the basis of the uncertainty relations as discussed in

paper I of this study, we can interpret it as a soliton state
with a random phase and a random mean position.
Indeed, In, p, t ) is an eigenstate of 8' and P, and the un-
certainty relations require that its phase and mean posi-
tion should be random; thus the mean field is zero and
the mean intensity is constant. To construct localized
soliton states with a mean phase and a mean position, one
has to superimpose the eigenstates of the Hamiltonian

I1[)=pa„f g„(p)ln, p, t)dp . (3.3)

The criteria for the construction of localized soliton
states are the following: (1) a soliton state should be a
solution of the governing Eq. (2.1), and (2) the mean value
of the field operator should look like a soliton. If we tried
to construct a soliton state out of an eigenstate of the
Hamiltonian, we would obtain from (2.25)—(2.28)

X sech (p —p')
Icl

(n', p'IP (x)())(x)ln,p )

n —
)( 1)( p —p'

"" 2~

(2.26) Here we require

n

f Ig. (p) I'dp = I .

(3.4)

(3.5)

n —1xg
, =) [(p p')'+i 'Icl'lj-

in(p —p')x""'
2lcl

sinh (p —p')
I cl

(2.27)

(2.28)
&O —

Iao~ /2a„= —e
&n!

1 Ip
—pol'

g„(p)= exp

(3.6)

e
—i npx

The natural choices for a„and g„(p) are a Poisson dis-
tribution and a Gaussian distribution, respectively,

The details of the calculation can be found in Appendix
C. Computer calculations show that (2.26) and (2.28) are
good approximations even when n is not large.

Note that the Fourier transform of a sech is also a
sech, and the Fourier transform of a sech is proportional
to k/sinhk. Thus the approximate expressions (2.26) and

=—g(p)e (3.7)

To justify our construction we calculate the mean value
of the field operator. The result is given below and the
details are presented in Appendix D:

(g, lp(x)I1[), )=g, exp( —Ia()l ) f exp
laol'"

n! (Qp)V ~
(p —po)'

(&p )'

ao&n (/2 . Icl n(n+1)X Icl'/ exp i t ip t +ip(x —x —
)

Xsech( —,'Icl(n + —,
' )(x —xo 2pt) dp . —(3.8)
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In the derivation of (3.8), we made the approximations
(2.26) and (2.28) and

fcf ((t))p ((n, fcf, (3.15)

(3.9a)

fcf ((1, (3.9b)

(3.10a)

(3.10b)

(3.1 1)

Therefore, the characteristic "time" of dispersion is

2

fcfno(bp )
(3.12)

Condition (3.10a) ensures that the mean field has a sech
shape and condition (3.10b) ignores the higher-order
dispersion e8'ect (see Appendix D).

Equation (3.8) makes a very important statement. The
expectation value of the field is the average of a set of
classical soliton solutions with different group and phase
velocities. The phase velocities depend on the photon
number, the group velocities depend on the momentum.
This is a surprising result, because the field propagates in
a nonlinear medium, and hence a simple superposition of
solutions as the expectation value of the field was not an-
ticipated. The result has valuable predictive value. Since
the superposition is of many different pulse shapes with
different phases, a spreading of the phase and amplitude
is to be expected. In paper I of this study we have stud-
ied the phase spreading effect and have shown that the
magnitude of phase spreading is significant with a charac-
teristic length less than a soliton period. The magnitude
of dispersion can be estimated as follows: From (3.8), one
can expect that the width of a soliton is doubled when

then the soliton is localized and the dispersion effect is
significant only after many soliton periods. Since c is usu-
ally very small and no fc f

is large, condition (3.15) is usu-
ally satisfied. To clarify this result, let us compare a soli-
ton with a pulse in a linear, dispersive medium. A pulse
in a linear, dispersive medium can be considered to be a
superposition of plane waves exp( ik —t +ikx), ' whereas
from (3.8), a soliton can be considered to be a superposi-
tion of sech pulses with a width much smaller than the
inverse of the momentum bandwidth. The dispersion
effect is proportional to the bandwidth Ap of the momen-
tum. In a linear medium, a bandwidth of the order of
I/b, x is necessary to construct a pulse with a width b,x
because the distribution of momentum is the Fourier
transform of the pulse waveform. However, to construct
a soliton with a width Ax, the bandwidth can be much
less than I/b, x as indicated by (3.15) (note that no fcf is of
the order of the inverse of the soliton width). Therefore,
the dispersion effect of a soliton can be much less than
that of a pulse in a linear, dispersive medium.

IV. CONSTRUCTION OF HIGHER-ORDER
SOLITON STATES AND SOLITON COLLISION

%e have already used the Hartree approximation to
construct approximate higher-order soliton states and
studied soliton collision effects. However, more insight
about the quantum nature of solitons can be gained by us-
ing the exact solutions of (2.7). In this section we con-
struct two-soliton states. Other higher order-soliton
states can be constructed in the same way.

We start from the general solution (2.16) with
n =n, +n2. If one chooses

Comparing (3.12) with the soliton period

one has

(3.13)

then

k =p, +—(n, 2j +1) j—=1, . . . , n, ,

k„=p+—(n2 —2j+1) j=l, . . . , n2,1C

j+j

(4.1)

(4.2)

no Icl

4m. ( b.p )
(3.14) fn p n p (x)»' xn +n

1 1 2 2 1 2

Note that in order to localize the soliton, the required
bandwidth is condition (3.10a). However, from (3.14) one
can see that if

= $ AgFg(x„. . . , x„, . . . , x„+„).
IQI

Here F& is a symmetric function of x -.

(4.3)

nl ni+n&
C+g(x), . . . , x„+„)=exp ip) g x .. .+ip2 g x .. . exp

j=1 j=n + I 2
l 1 ~i (:j~n

l

(x (, ,
—x ), ,

)

C
p 2 g (xg —)() xg —( ))

+1 & (J 1+ 2

(4.4)
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Or X1 —X2 — —Xn +n
1 2

In (2.7) the summation over [Q J is the summation over
all possible permutations of [1,2, . . . , ni+n2). Howev-
er, because of the special values of k. in (4.1)—(4.2), A& is
zero if the order of [1,2, . . . , n 1 ] or [n, +1, . . . , n, +n2]
is permuted (see Sec. III). Therefore, in (4.3) the sum-
mation over IQ I is the summation over all possible per-
mutations of [1,2, . . . , n, +n2] with the order of
[1, . . . , ni] and [n, +1, . . . , n, +n2] unchanged. In
(4.4), Q ', the inverse of Q, appears because we have
converted the permutation over k into the permutation
over x.

The coefficients A& in (4.3) also have to satisfy (2.12).
I

and

out A [n1+1, . . . , n1+n2, 1, . . . , n1]

(Refs. 5 and 12). The details are given in Appendix E:

with

i 0{n1,P1,n2, P2 )

A.„t=e in (4.5)

It can be seen from (2.12) that they differ from one anoth-
er only by a certain phase. As an example and also for
later use, we calculate the relation between

A =A
in [1 2 n1 n1+1 ~ ' nl+n2]

lcl(n2 —n 1 +2j)/2
0(n„p„n2,p2)= — 4 g tan

P2 P1

lcl(n2 n,—)/2
+2 tan

5'2 P1

(n2+n, )/2
+2 tan (4.6)

With (4.3), one can construct the bound state,

n1+n2

ln„p, , n2, p2) = g A& f F&(x, , . . . , x„+„)g P (x )dx l0)
IQI

=(n, +n2)!g Ag f'
IQI

' "-"
n

1 +n2

Fg(x, , . . . , x„+„)g P (x )dx l0) .
n1+n2 j=1

(4.7)

Reintroducing the t dependence, one has

!

—i E{n1'p 1 ' 2'p2n„pi, n2, p2, t & =e lni, pi, n2 p2&, (4.&)

(12.'io) '

a, (n, )—:
Qn, !

—
Ialp~ /2

(4.11a)

with a2(n2)—:
n2

(~2o)

n2!
(4.11b)

E (n „P„n2,P2)

=n, p, +n2p2 — n, (n, —1)— n2(n2 —1) .

(4.9)

The localized two-soliton states can be constructed by su-
perimposing the bound states,

1 1 (Pi Pio)
)1/2( )1/4 2 (g )2

g„(p, ) = exp

—:g, (p, )e

1 1 (p2 —p2o)'

(g )1/2( )1/4 2 (g )2
g„(p2)—: exp:—g, (p, )e

ln1P 1 z1Pe

(4. 1 1c)

—tn2P2Z2P
e

(4.11d)

with

n l, n2

a1 nl a2 n2

X gn P1 gn P2

x lni, pi, n„p2, & &dp, dp, , (4.10)

Without loss of generality, we assume p, o & p2O.
The above construction is justified by studying the

two-soliton state before collision and after collision. In
the two limits, the two-soliton state is composed of two
well-separated fundamental solitons. To be explicit, we
show in Appendix F that before collision, the two-soliton
state is approximately equal to

r—iE{n1,pl )t ~ t —iE{n2,p2)fXai(ni ) f g„(pi )e ' ' R (ni, pi )dpi ga2(n2) g„(p2)e
' ' P (n2, p2)dp l0), (4 12)

nl n2

where the two large parentheses are identified as the creation operators for fundamental solitons [see (3.3)] and R (n, p)
has been defined in (2.18).

After collision,
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a, {n, )at(nt) f f e' "' '"' 'g„(pt)g„(pt)exp[ —{E(n„p,)t —{E(nt pt)t]

Xk (n„pz)R (nz, pz)dp]dpzlo), (4.13)

with 8(n „p„nz,pz ) defined in (4.6) and E (n,p) defined in (2.19). Note that the only difference between (4.13) and (4.12)
is the phase factor 8(n „p„nz,pz ). To see the effect of this factor, we write (4.13) as

. a8 . a8a](n] )az(nz)exp i8(n io pio "zo pzo)+i (n, n—,o)+i (nz n—zo)
Bni Bn2

. B8
X g„(p] )exp i (pi —p]0) —iE(n i,pi )t R (n i,pi )dpi

Bp (

. 08
gnz(pz)exP 1

g
(pz pzo) 1E(n2 p2)t ~ (nz pz)dpz Io)

Bpp
(4.14)

Here we have used the expansion

8(n] pl 2 p2) ( 10 plo' 20'p20

a8 a8+ (n, n, i]—)+ (nz —nzo)
Bn& Bnz

ae ae+
Z

(Pi —Pio)+
Z

(Pz —Pzo)
Bp2 Bp2

(4.15)

BO a'8
hn, + hp,

Bn& Bn &Op&

BO BO+ hn2+ bP2,

and the position uncertainty is

88 00
b,x] = bn] + , Ap]

Bn ]OP] (3p ]

(4.20)

All the derivatives of 0 are evaluated at
("io "zo pio pzo).

It is now clear that the two-soliton state after collision
is still composed of two well-separated fundamental soli-
tons except for a phase shift and a "position" shift. The
mean phase shift for the first soliton is

0
~81 (n 10 p]0 n20 p20)

Bn&

8(n]0+ 1 p]0 n20 p20) 8(n lo pio n20 p20)

and the position shift is'

1
5x) =

n&o

~8(n 10 p]0 n20 p20)

Bp i

For the second soliton the phase shift is

BO
~82 ( 10 p]0 20 p20)

Bnz

8(n 10 pio n20+ p20) 8(n]0 plo n20 p20) (4'lg)

and the position shift is

15x2-
n&0

~8(n 10 p]0 n20 p20)

Bpp
(4.19)

In Appendix G we show that when neo and neo are large
and ~ci is small, the magnitude of 58] and 5x] in (4.16)
and (4.17) approach the classical results.

The increase of the uncertainties due to a collision can
be estimated by expanding 8(n„p, , nz, pz) to second or-
der. The phase uncertainty for the first soliton is

BO BO+ b,nz+ AP2 .
(3p]Bnz P]')Pz

(4.21)
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V. CONCI. USIONS

With the exact eigenstates of the Hamiltonian describ-
ing the nonlinear Schrodinger equation, we constructed
solitonlike solutions. These have finite expectation values
of amplitude and phase. Because of the uncertainty prin-
ciple connecting the phase to the photon number and the
position to the momentum, superpositions in terms of
in, p, t) eigenstates were required. The mean field of a
soliton was shown to be a superposition of the classical
soliton solutions with difFerent group velocities and phase
velocities. Contrary to the classical soliton theory, a soli-
ton experiences phase spreading and dispersion when it
propagates. The phase-spreading effect is quite
significant because its characteristic length is less than a
soliton period. On the other hand, the dispersion efFect is
quite small with a characteristic length about no soliton
periods. Here no is the expectation value of the photon
number in the soliton.

The same formalism was extended to study solitons in
collision, by setting up the quantum states of a higher-
order soliton. The phase shift and position shift of the
colliding solitons were determined, along with their quan-
tum fluctuations.

ACKNOWLEDGMENTS



Y. LAI AND H. A. HAUS

APPENDIX A: RECURSION FORMULA
FOR PERMUTATION COEFFICIENTS

In this appendix, we prove (2.12). The region
x1 ~X2 ~ x„has n —1 boundaries. Let us consider
the first boundary X1=X2. On one side of this boundary
is region 1: x1 &x2 « . x„. On the other side is re-
gion 2: x2 &x1 « . . x„. The form of the solution in
region 1 is given by (2.11) and in region 2 the solution is

X =X1 X2 (Ala)

y =x1+x2, (A lb)

one can rewrite the solution as

the same except that A& is changed to 3&. Here Q' is
the permutation derived from Q by interchanging Q(1)
and Q(2). By defining new variables,

. kQ(1) kQ(2) . kg(1)+kg(2)f (x,y, x3, . . . , x„)= g A&exp i x +i y exp i gk&~~x2 2
- . =3

kg(, )
—

kg(2) . kg(1)+kg(2)
,exp i x +i y exp i g k&~&~x~

rQj j =3

Equation (3.9) now becomes

in region 1,

in region 2 .

(A2)

+ 0

Bx

n Q2—2c6(x)+ g z
—2c

j —3 Bx~ 3&i (j~n
6(x, —x;)

—2cg 5 x, —x+y y —x
2

f„(x,y, . . . , x„)=E„f„(x„.. . , x„) . (A3)

Integrating (A3) over x from 0 to 0+ gives us the
boundary condition to be satisfied:

f„(x,y, . . . , x„)a a
Bx O+ Bx

Therefore, Ag and Ag are related by

kg(2)
—kg(, )+~e

(A7)

=cf„(0,y, . . . , x„) .
By considering the jth boundary x, =x, +, (2.12) can be
proved in the same way.

Substituting (A2) into (A4), we obtain

Q(1) Q(2)

rQj
Q

kg(1)+ kg(2)
exp i

2 y

Q(1) Q(2) kg(1)+ kg(2)g A&, i exp i
Q j

2 2

APPENDIX B: NORMALIZATION
OF EIGENSTATES

(n', p'~n, p & =0, (B1)

In this appendix, we prove (2.21). From (2.18), it fol-
lows that, if n'Wn, then

e kg(1)+ kg(2)g A&exp i y
g j

2

because states of different n involve an unequal number of
operators. For equal n's but different p's, one has from
(2.16) and (2.18),

kg(, )+kg(2)+ g A&exp i
rgj

Equation (A5) is satisfied when

(A5) (n, p'~n, p )
t

=A'„ f exp c
1~i (j~n

~x,
—x, ~+i (p —p')

kg ( 1 ) kg (2)
Ag i

kg(1) kg(2)—A i
Q

= —(A ~ +A ).Q' Q (A6)

&& g x dx, dx„. (B2)
j=1

Noting that the integrand is a symmetric function of the
x 's, we reduce the integration region to x, x 2,

Xn .'
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X Xp n n

(x,p lx p) =~x'J dx, I dx„, I ~x&exp —x X (x —
2j + ))x)+ )(p—p')X xJ

oo oo Qo j= 1 J =1

n!n

n —1 1 in (p —p')x„
e dXn

, l[ —c(n 1—)+i (p —p')] f—
n —1 2&n!Q 5 p —p'

n —1

=JV„n! P 5(p —p')
n (= z'lcl

Icl-'"-"5(p —p ) .
(n —1)!

(B3)

By substituting (2.22) into (B3), (2.21) is proved.

APPENDIX C: MATRIX ELEMENTS OF FIELD OPERATORS

In this appendix we prove (2.25) —(2.28). The calculation is basically the same as in Ref. 11. From (2.16) and (2.18),
we have

1 1
(n,p' lp( x) In+1,p)= f„'~ (xI, . . . , x„')f„+)~(x),. . . , x„+))n! (n +1)!

X(Olp(x', ). p(x„')p(x)p'(x, ) . pt(x„+&)IO)dx& . . dx. dxi . «.+i

1 1
(n +1) ff„'. .(x„.. . , x„)f~+, (x, . x„,x)dx, . dx„

n! (n +1)!
n

=V n +1JV„A'„+,f exp i(p —p') g x, +c
1&i (j~n

Ix, —x, l

C
n

X exp ipx+ —g IX —
xz I

2

Since the integrand is a symmetric function of the xj s, we reduce the integration region to
~ x„& oo j so that the absolute values can be removed.

n

&n p'lp(x)ln =l,p&=& n+JIV„JV„+, n!g f dx f™dx, . f dx,
m=0

Xf dx +, f dx +, . f"
n —1

n n

Xexp i(p —p') g x —c g(n —2j+1)x, exp ipx+ —(2m n)x ——g x +—— g x
j=l j=l j=1 j =m+1

=&n + 1A'„JV„+,n!(2/lcl )"exp I i [(n + 1)p np' jx I—
n m n —m

2n 2r +1+i— (p —p') g 1
Icl

2n +2r +1 i (p ——p')2

Icl

(C1)

With the following identity,
n

1 n m m

0 m!(n —m)! g (2j —1+ia)g (2j —1 ia)=2", —
J=1 g=l

we have

(C2)
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Om!(n —m)! „

n —m

2n 2—r +1+i (p —p') II 1 2n —2r +1 —i (p —p')2

(2n —2r+1) + (p —p')~
Icl'

1

o m. (n —m). „+,x 2n —2r + 1+i (p —p'). 2

Icl

r=n —m+1
2n 2r +—1 i— (p —p'). 2

Icl

=2"II1 (2n 2r+—1) + (p —p')
Icl'

(C3)

Using (2.22) and (C3), Eq. (Cl) is reduced to (2.25). Using the identities

sech —,'my = II (2j —1)'

, =&y +(2j —1)
(C4)

II (2j)
(2n)!!

(2„1)ll =
n

Q(2j —1)
j=1

=&n~ n ~ ~ (Wallis formula), (C5)

j=n+1

11+ a =1 n~~ .2

(2j —1)
(C6)

Equation (2.25) is reduced to (2.26).
The mean intensity can be calculated in the same way:

n —
1

(n,p'Ip (x) (t( x) In, p) =IV„JV„nf exp i(p —p') g x +c
1 ~i (j~n —1

n —1

lx, —x, l exp c g lx —x, l dx, . . . dx„
j=1

n —1

„JV„n(n —'1)!g f
m =1 Xl ' X X X +1

' 'X dX] ' dXn

n —1

Xexp i (p —p') g x —c
j=1

g (n —2j)x +c(2m —n +1)x —c g x +c g x

n —1 —m

=JV„JV„n (n —1)!
I CI

1

m =0 m!(n —1 —m )!

n —
1

1
m

1 1

o m!(n —1 —m)! „,[Icl(n —r)+i(p —p')] „, [lcl(n r) i (p —p')]— —

x II1
r=1

(n r)+i (p —p—'). 1 n —1 —m
1

(n —r) i (p —p'—) (C7)

With the identity

n —1
1

n —1
—m m

(I +ia) II (I —ia) =n,
m =0 l=1 I=1

(C8)

we have

n —
1

1
m

1

0 m!(n —1 —m)! „
(n —r)+i (p —p')1

Icl

n —1 —m
1

( n —r) i (p —p'—)
Icl

n

=n II 1

I 2

(n —r) +
Icl'

(C9)
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With (C9), (C7) can be reduced to (2.27). Using

oo 2

sinh~x =m.x g 1+
I

(n', p'ln, p) = 6„„,5(p —p'),
n

whereas we use

00

,+„(I+a Zi )
n —+ oo (C11)

(n', p'ln, p)=6„„5(p—p') .

APPENDIX D: THE MEAN FIELD
OF THE N =1 SOLITON

Eq. (2.27) can be reduced to (2.28).
Another way to calculate these matrix elements is to

use the quantum inverse scattering method. Note that
the normalization condition used in Refs. 10 and 11 is

In this appendix, we prove (3.8). Using the matrix ele-
ments expressions (2.25), (2.26), and the time dependence
(2.20) with (2.19), we have

(g, lg(x)lq, &=pa„*a„+if f g(p')g„+(p)(n p', tlat(x)in+I, p, t)dpdp'

. lcl n(n+1)=g a„*a„+,exp i
n

g p'g p c ' exp —i n+1p —np'zo

Xexp[ —i[(n +1)p —np' )t +i [(n +1)p np']x Is—ech (p —p') dp dp',
Icl

(D1)

where a„and g (p) are given in (3.6) and (3.7). We now define new variables,

p pp

p+p
2

(DZa)

(D2b)

and express (D 1) in terms of them:

(P, lp(x)lg, ) =g a„*a„+,exp i
. lcl n(n+1)

1xff „p
2 2

&n (n +1)
~C

(&p)' (ap)'

)» (x xo )+p2(x xo ) p it p2t —4(n + —')p, p, t—] I sech pi dp idp2

(D3)

y neglecting the term ip, t in the phase and assuming bp » lcl, we can carry out the integration over p, . Dropping
the subscript on p2 we have

(g, l(()( )lp, &=&a„* „,exp t
. lcl n(n+1)

4

Xf1 —exp
(bp)v tt

(p po)

(Ap )'
i n(n+1)

lcl exp[i [p(x —xo) p2t]I—
Xsech[ —,'(n + —,

' )lcl(x —xo —2p)] dp . (D4)

Substituting a„ in (3.6) into (D4), (3.8) is proved. Since we neglect the term ip, t, (D4) and (3.8) are correct only when
(hp ) t « 1. The effect of this term is to make the dispersion effect more serious than that predicted by (3.8) when t is
large.



Y. LAI AND H. A. HAUS

APPENDIX E: CALCULATION
OF THE PHASE FA(CTOR

In this appendix, we prove (4.5) and (4.6). To go from the permutation [1,2, . . . , n &, . . . , n
& +nz] to [n

&

+ 1, . . . , n, +nz, 1, . . . , n, ] we have to permute n, X nz times. The effect of every permutation is a multiplication by
the factor expressed in (2. 12). The total effect is the product of all these factors. Therefore,

with

A,„,=S(n&,pi nz pz (El)

(k„+,—k, )+ic
S(n„p, , n, ,p, )= g g

. . . (k„+,—k, ) —tc

n
1 n2 (pz p, )+i—[nz n, +—2(j —I + I)]

(pz —p, )+i—[nz n, +2—(j —1 —1)]

n&
(Pz —P, )+i (nz —n, +2j—)

(Pz —Pi) ——(nz+ i
—2j)

(pz —p, )+i (nz —n, +2j——2)

(Pz —
P& ) —i (nz+—n

&

—2j+2)
(E2a)

Changing index j in the denominator to n + 1 —j, we have

nl (Pz —P, )+i—(nz n, +—2j) (pz —p, )+i—(nz —n, +2j —2)
S( in, pi, npz)z=

(Pz —P &
) —i—(nz n, +—2j —2) (Pz —P, ) —i—(nz n, +2j)—

n, —i
'

(pz —p, )+—(nz n, +2j)—
(pz —p» ——(nz — i+2' )

2
IC I,C

p —p, + (n —n, )p ——p, + (n +—n, )

IC LC

p —p, — (n n, )p
——p, —— (n + n, )—

=e (E2b)

Equation (4.6) follows directly from (E2b). In the literature, the factor S is usually called the S matrix. ' 'z

APPENDIX F: TWO-SOLITQN STATES
IN TWO LIMITS

In this appendix, we prove (4.12) and (4.13). Let us consider the terms in (4.10).

I jg„,(p))g„,(pz)ln), p), nz, pzt)dp)dpz

=(n, +n ) gz!Ag j
I@I I 2

~x
n +n

1 2

nl

g„(p, )exp iE(n, ,p, )t +—ip, g x ), .
, dp,

i=l
CX exp — g lx, ,

—x
1~i (j~n&

n&+n2

X I g„(pz)exp iE(nz, pz)t+ipz —g x .. . dpz
Q

X exp
nl +1 I (j nl +n2

lx .. .
—x

n) +n2

P (x, )dx l0)
j=]

(F1a)
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=(n]+n2)!g AQexp i —n]p]pt —n2P2pt+ n](n] —1)t+ n2(n2 —1)t2 2 C 2 C

IQI
12 12

fZ1 Z2
'' Z

1 2

n) n&+n2

exp ip, () g x .. . in,—p, ()x,()+ip, () g x ], ,
—in,p,()x,()Q (j) Q (g)j=l j=n +1

1

n&
I 1 IX gl Plo+P 1 exP inlP, x

&,
.
,
—xlo —2Plot dP,

n Q (g)

X exp
1~i (j~n& Q (j) Q (()

n&+n2

f g2(P20+P2)exp fn2P2 g x —] X20 2P20t dP2
2 j=n&+1

X exp
n]+1 i (j n]+n2

Q (j) Q (j)

- n&+n2

g P(x, )dxj~O) . (Flb)

X —) . X]p+2Pipt
1 j=1 Q (J)

n&+n2

x ) . =x2()+2p2()t y

Q (g)
2 j=n)+1

(F2a)

(F2b)

Here we have set pl =plo+p'„p2=p20+p2, and linear-
ized the nonlinear phase term in (Fla). This is equivalent
to ignoring the quantum dispersion e8'ect. The terms in
(F lb) can be significant only when the following condi-
tions are satisfied:

( 0 ~ I (X 1 X2 —Xn +nl 2
(F2e)

Before and after collision, x10+2p,ot and x2O+2p2ot are
far apart. Therefore, from (F2a) —(F2e), we can
conclude that (1) before collision, only the term
corresponding to Q = [ 1,2, . . . , n, + n 2 ] is important.
After collision, only the term corresponding to
[n, +1, . . . , n, +n2, 1, . . . , n]] is important. (2)
the integration over I x .. .: j = 1, . . . , n ] } and

Q (g)

Ix ) .
, j =n, +1, . . . , n, +n2} can be decoupled. With

Q
the two approximations and relation (4.5), Eqs. (4.12) and
(4.13) follow directly from (4.10) and (Fla).

Ix ) . . j=1, . . . , n, }are grouped together,
Q

IxQ )(.). j=n, +1, . . . , n, +n2}

(F2c)
APPENDIX G: PHASE SHIFT AND POSITION

SHIFT DUE TO SOLITON COLLISION

are grouped together, (F2d)

and the constraint is obeyed

In this appendix, we demonstrate how (4.16) and (4.17)
approach the classical results given by the Eqs. (6.8) and
(6.9) in paper I. With (4.6), we have

e(n]+ l,p„n2,p2) —e(n],p], n2, p2) = —,'[e(n]+2,p], n2, p2) —e(n],p, , n2, p2)]

P2 Pl

—,
' ~c~(n]+n, +2)

2 tan
2

—,
' fc[(n]+n2)

+2 tan
P2 Pl

2 /cf(n2 n] —2) —
—,
' /cf(n2 n] )—

+2 tan ' +2 tan
P2 Pl P2 P1

—,')c~(n, +n, )
2 tan

P2 Pl

c n2 nl
+2tan '

P2

and
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—,
' lcl(nz+n, )

(pz —p, ) +[—,
' lcl(nz+n, )]

—,
'

l cl(n, —n, +2j)

, =I (pz —p~) +[-,'lcl(nz —n)+2j)]
—,'lcl(n, —n, )

+2 2+2
(p, —p, )'+ [-,' lcl(n, —n, )]'

4 (n~+ n, )/2 lclx dx
n [~2 —~] )/2 p p + C X

lcl'(nz+n )
)'

n lcl
' ' 4

1n (p —p, ) + lcl'(n, n—, )'—1n (p —p, ) +
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