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Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation
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This paper is the first part of a two-part study on the quantum nonlinear Schrodinger equation
[the second paper follows: Lai and Haus, Phys. Rev. A 39, 854 (1989)]. The quantum nonlinear
Schrodinger equation is solved analytically and is shown to have bound-state solutions. These
bound-state solutions are closely related to the soliton phenomenon. This fact has not been pursued
in the literature. In this paper we use the time-dependent Hartree approximation to construct ap-
proximate bound states and then superimpose these bound states to construct soliton states. This
construction enables us to study the quantum effects of soliton propagation and soliton collisions.

I. INTRODUCTION

Recently a number of theoretical papers on the quan-
tum effects of optical field propagation in nonlinear
media have been published. ' The motivation is to
study the squeezing effects in optical fibers and to evalu-
ate the possibility of using optical solitons in communica-
tion systems and laser gyros. The starting point of most
analyses is the quantum nonlinear Schrodinger equation
(QNSE), which is the quantum version of the classical
nonlinear Schrodinger equation (CNSE). The CNSE is
widely used in the study of pulse propagation in non-
linear optical fibers. This equation has been solved
analytically by the inverse scattering method and has
been shown to have soliton solutions. From the
correspondence principle, it is natural to expect that the
QNSE can also serve as a quantum model for pulse prop-
agation in nonlinear optical fibers and that it can be
solved analytically. However, previous work on this
problem was carried out by linearizing the nonlinear
equation. Linearization makes the problem more tract-
able but unfortunately also limits the validity of the re-
sults. In fact, the QNSE is also well known among
quantum-statistical physicists and quantum-field theorists
and, surprisingingly, has been solved analytically. In sta-
tistical physics, the QNSE is the evolution equation of a
one-dimensional system of bosons with 5-function in-
teractions in the second quantized form. It was first
solved by Bethe's ansatz method ' in the 1960s. Since
the original work of Bethe on the isotropic Heisenberg
spin chain' in the 1930s, this method has been success-
fully applied to a number of models in statistical physics
and quantum-field theory. ' ' Recently the inverse
scattering approach has been applied successfully to the
solution of QNSE. ' ' ' Both methods can be used to
construct the eigenstates of the Hamiltonian. The quan-
tum inverse scattering method constructs the creation
operators of these eigenstates and derives their commuta-
tion relations. Bethe's ansatz method achieves this by
solving the wave-function equation. When the coefficient
of the nonlinear term in the QNSE is negative, there are

bound-state solutions that are the eigenstates of the Ham-
iltonian with bound wave functions. Surprisingly, many
treatments of this problem ended at this stage, leaving
unsolved the important problem as to how these bound
states are related to the soliton phenomenon. Nohl' was
the first one to try to answer this question. Unsatisfied
with Nohl's results, Wadati and Sakagami presented an
improved theory. Wadati and Sakagami introduced a
wave packet which is a time-dependent superposition of
the fundamental bound states and showed that the matrix
element of the field operator for this wave packet ap-
proaches the classical fundamental soliton with zero ve-
locity when the photon number is large. They then gen-
eralized their results to the moving solitons by a Galilean
transformation. Although their results provide a good
basis for the present work, their approach leaves some
questions open.

(I) A soliton state should be a time-independent super-
position of the bound states so that it is a solution of the
governing equation.

(2) It is the expectation value of the field operator that
corresponds to the classical soliton field, not the matrix
element of the field operator.

(3) The construction should be generalized to higher-
order soliton states to provide information about soliton
collisions.

We have constructed soliton states that meet with the
three criteria listed above. This construction enables us
to study the quantum effects of soliton propagation and
soliton collisions.

In this paper (paper I), we present an approximate
solution by the time-dependent Hartree approximation.
This approach was introduced by Yoon and Negele ' to
the study of one-dimensional bosons with 6-function in-
teractions. Again they did not construct the soliton
states. By following this approach, we construct approxi-
mate fundamental and higher-order soliton states. It is
found that a soliton experiences phase-spreading effects
when it propagates. The soliton collision effects are also
studied. In the following paper (paper II), the soliton
states will be constructed by superimposing the exact
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eigenstates of the Hamiltonian. There we will study the
quantum effects of soliton propagation again and show
that a soliton also experiences dispersion effects when it
propagates.

II. QUANTIZATION OF THK
NONLINEAR SCHRODINGER EQUATION

Under the paraxial and slowly varying envelope ap-
proximation, the evolution equation of a one-dimensional
pulse propagating through a nonlinear, dispersive medi-
um is given by

r

By suitably choosing the value of I in (2.2c), one can
normalize the field envelope so that it represents the pho-
ton fiux at the "time" t. This enables us to identify a(t, p)
with the photon annihilation operator at the time t,
a(t, p), and a*(t,p) with the creation operator a (t,p)
On the right-hand side of (2.6), the first term represents
the dispersion effect and the second term represents the
third-order nonlinearity. Note that the second term is in
the form of a convolution. This is because for a broad-
band field one has to integrate over the Fourier-transform
space. The quantization is accomplished by assignment
of the commutation relations

1+ —A(z, t)
Bz vg dt

=i k" —A(z, t) i~A '(z,—t) A(z, t) A(z, t) .
„a'

Bt

[Q(t,p'), a (t,p)]=5(p —p'),
[&(t,P'), &(t,P)]=[& (t,P'), a (t,P)]=0 .

(2.1)
The quantized equation is

(2.7a)

(2.7b)

Here A (z, t) is the envelope of the pulse, vg
= 1 1k' is

the group velocity, k' and k" are the first and second
derivatives of the propagation constant with respect to
frequency, and ~ expresses the magnitude of the Kerr
nonlinearity. By a change of the variables, this equation
can be reduced to the CNSE,

i a(t, p)=p d(t, p)
. a
at

+2c Jd p, d p2& ( t, f3, )

Xa ( t, p2 ) ct( t,p+ p, —
p2 ) . (2.8)

x =vgt —z, (2.2a)
Equation (2.8) can be derived from a well-defined Hamil-
tonian. That is, one can write (2.8) as

1 k"

P(s, x)=I 'A (z, t ),

(2.2b)

(2.2c) with

iA a(t, p)=[a(t, p), H],
dt

(2.9a)

~
/

k'/'I'
k" (2.2d) A=A' f p it (t,p)a(t, p)dp

P(t, x)e'~"dx =a(t,P),
21T

(2.5a)

I a(t, p)e '~"dp= p(t, x), —
27T

(2.5b)

one obtains the equation of motion of the amplitude in
Fourier transform space:

i a(t, p)=p a(t, p)+2c J dpidp2a*(t, p, )
Bt

i P(s,x) = — P(s, x)+2cg'(s, x)P(s, x)P(s, x ),8 8
s (jx

(2.3)
where x is the deviation from the pulse center moving
with the velocity v, s is the normalized propagation dis-
tance, P(s, x) is the normalized field envelope, and I is an
intensity of normalization. To be consistent with the no-
tation in the literature we use t instead of s as one of the
independent variables:

i P(t, x)= — P(t, x)+2cg*(t,x)P(t, x)P(t, x) .
. 8

Bx

(2.4)

The quantization is best perceived in Fourier transform
space. If one defines by the Fourier transform

+c a t, & t, , Dt, 2

X &(t,p+p, p2)dpdp, d—p2 . (2.9b)

By defining new field operators as the inverse Fourier
transforms of the annihilation and creation operators and
applying the inverse Fourier transform to (2.8), one ob-
tains the quantum nonlinear Schrodinger equation

i P(t, x) = — P(t, x)+2cg (t, x)P(t, x)P(t, x) .
Bx

(2.10)

The operators P(t, x) and P (t,x) are annihilation and
creation operators of photons at a "point" x and "time"

[($(t, x), P (t,x)]=5(x —x'),
[P(t,x'), P(t, x )]= [/ (t, ),xP (t,x)]=0 .

With the help of (2.11), (2.10) can be written as

(2. I la)

(2.11b)

From the definition of the Fourier transform (2.5) and
the commutation relations (2.7), it is easy to prove that
the field operators satisfy the following commutation re-
lations:

Xa(t, p2)a(t, p+p, —p2).

(2.6)

imari $(t, )=x[p(t, ),Hx],
dt

with

(2.12a)
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II =A t, x t, x dx dx] - . . dx„=~ ~ (3.6)

+c t, x t,x t, x t, x dx (2.12b)
Substituting (3.4) and (3.2) into (3.1) and using (3.3), we
obtain an equation for f„(x&, . . . , x„,t ):

The QNSE (2. 10) is the operator evolution equation of a
quantum system with the Hamiltonian (2. 12b). Since the
ENSE can be derived from a Hamiltonian, it is a well-
defined operator equation.

III. EXPANSION IN FOCK SPACE
AND THE UNCERTAINTY RELATIONS

. d
i f„(x,, . . . , x„,t)dt

n Q2
+2c g 6(x —x;)

Bx~ ]~i (j~n

Xf„(x,, . . . , x„,t) . (3.7)

A quantum problem can be solved in the Schrodinger
picture or in the Heisenberg picture. At the end of Sec.
II, we formulated our problem in the Heisenberg picture
[(2.10), (2.12)]. In the Schrodinger picture, the problem is
stated in terms of the. time evolution of the state of the
system ~f):

(3.1)

f„(x,, . . . , x„,t)=f„(x,, . . . , x„)e (3.8)

The equation for f„(x„.. . , x„) is

This is just the Schrodinger equation for a one-
dimensional system of bosons with 6-function interac-
tions. The t dependence in (3.7) can be factored out by
assuming a solution of the form

H, =A x x dx+c x x x x dx

(3.2)

n Q2
+2c

Bx~ ]~i &j ~n
5(x —x; ) f„(x„.. . , x„)

=E„f„(x,, . . . , x„) . (3.9)

where P(x) and P (x) are the field operators in the
Schrodinger picture and satisfy the following cornmuta-
tion relations:

[P(x'), P (x)]=6(x —x'),
[P(x'), (E(x)]=[/ t(x'), P (x)]=0 .

(3.3a)

(3.3b)

It is interesting to note that (3.1) is a linear equation
whereas (2.10) is a nonlinear one. It is not obvious at the
outset which equation can be solved more easily. In the
literature, Bethe's ansatz method solved the problem in
the Schrodinger picture ' whereas the quantum inverse
scattering method' ' ' solved the problem in the
Heisenberg picture. In the Schrodinger picture, one may
expand the quantum state in Fock space and substitute it
into (3.1). The result is a wave-function equation that has
many degrees of freedom (like the equations in many-
particle physics). For the QNSE, this wave-function
equation is in a simple form and can be solved analytical-
ly. Therefore we follow this approach in the present
work.

Any quantum state of this system can be expanded in
Fock space as follows:

~g) =g a„I —f„(x,, . . . , x„,t)&n!

(3.10)

In the Appendix we prove that the total momentum P
and the mean position X also have to satisfy an uncertain-
ty relation,

(3.1 1)

where the mean position operator x is defined by

x= x x x dx (3.12)

with the photon-number operator N defined by

1V= JP (x)P(x)dx . (3.13)

The total momentum operator P is

The solution of (3.7) constructs the eigenstates of the
Hamiltonian. The question may be asked as to the rela-
tion between these eigenstates and the soliton
phenomenon. It is well known in quantum electro-
dynamics that the photon number N and the phase 0 of
an optical field have to satisfy an (approximate) uncer-
tainty relation,

XP t(x, ) - P (x„)dx, . dx, ~0) . (3.4)
P= —i— x „x — x x dx . (3.14)

The state ~g) is a superposition of states produced from
the vacuum state by creating photons at the points
x, ,x2, . . . , x„with the weighting functions f„. Since
photons are bosons, f„should be a symmetric function of
x . We require a„and f„ to satisfy the following normal-
ization conditions:

(3.5)

It is easy to verify that H, N, and P commute and there-
fore have common eigenstates. The uncertainty relations
imply that the eigenstates of the Hamiltonian, which are
also the eigenstates of N and P, have a random phase and
a random mean position. These uncertainty relations
also suggest that one must superimpose the eigenstates of
the Hamiltonian in order to construct states with a mean
phase and a mean position.

The bosons diffuse as expressed in (3.7) by the diffusion
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operator for the jth particle, () /Bx . Depending on the
sign of c, the interaction among the bosons enhances or
opposes the free diffusion and thus makes the problem
more complicated. For this reason, it is worthwhile to
look at the equation in the absence of the interaction and
to obtain a full analytical solution of the problem. The
solution corresponds to the phenomenon of an optical
pulse in a linear, dispersive Aber.

IV. DIFFUSION OF NONINTERACTING BOSONS

When c =0, (3.7) becomes

d " (j2
i f„(x,, . . . , x„,t)= —g f„(x„.. . , x„,t) .

Iki, . . . , k„,t)
l=Jv„—f„k k ( x i, . . . , x„,t )
n! " 1''''' n

X()) (x, ) . . P (x„)dx, . dx„~0)

(4.4)

The normalization constant A'„can be determined from
the following normalization condition:

& k'), k~, . . . , k„', t ~k„. . . , k„,t )

(4.Sa)

It is

The eigensolutions are of the exponential form

(4.1) 1

)n/2
(4.5b)

with

E„=g k
j=l

—iE„t"exp i+ k.x
j=l

(4.2a)

(4.2b)

To construct a pulse, one has to superimpose these eigen-
states

~l() =g a„fg(k(, . . . , k„)~k„.. . , k„,t)dk) dk„.

(4.6)
Here g(k„. . . , k„) is a symmetric function of
k „.. . , k„. To satisfy the normalization condition

This energy can be seen to be the sum of the kinetic ener-
gies of particles (with mass =

—,') as represented by the
momentum operator squared.

To satisfy the symmetry condition, all the permutation
terms should be included. Therefore the general form of
the solution is

& ply() =1,
we require

f ~g„(k„.. . , k„)~'dk) dk„= 1 .

(4.7)

(4.&)

(4.9)

—iE„tf«k (x„.. . , x„,t)=e " g exp i+ kt)(.)x.
lQ1

(4.3)

A natural choice for a„ is a Poisson distribution, and for

g„, a product of distributions:

+0 —
~ a0~ /2a„= e (4.10)

n!

where the summation over [Q ) is the summation over all
possible permutations of [1,2, . . . , n] and Q(j) is the j
the component of Q.

Using (4.3), we can construct the eigenstates of the
Hamiltonian,

(4.1 1)g„(k, , . . . , k„)=g g(k. ) .
j=1

Using (4.4) —(4.6), (4.10)—(4.11), and the fact that the
multiple integrals can be written as products of integrals,
(4.6) can be expressed in closed form:

—~a ~'j2
~P) =e ' exp f f a0g(k)e '" 'e'""dk ()!') t(x)dx ~0) .

&2n.
(4.12)

This is a coherent state with the mean value

f a0g(k}e " 'e'""dk .
&2m

(4.13)

It is illuminating to see the changes when the nonlinear
Kerr interaction is turned on.

V. CONSTRUCTION OF FUNDAMENTAL
SOLITON STATES AND PHASE SPREADING

The expectation value is the classical solution of a
pulse on a linear, dispersive fiber; g(k) is its Fourier
transform at t =0. The pulse shape is the Fourier trans-
form of the distribution in momentum space. Because of
the nonlinear phase term in (4.13), the pulse will disperse.

Equation (3.7) can be solved approximately by using
the time-dependent Hartree approximation. ' This ap-
proximation is valid when the number of particles is
large. The basis of the Hartree approximation is the as-
sumption that every particle "sees" the same potential
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caused by the interaction with other particles. Therefore
we can use a single-particle wave function to describe a
system of particles. To be explicit, we define a Hartree
wave function by the following ansatz:

(5.1)f„' '(x, , . . . , x„,t)= g 4„(x,, t) .
j=1

The functions 4'„' are to be determined by minimizing
the following functional:

tl 2

I n X ) ~ ~ ~ o ~ Xn ~ t l +
Bt j=1 ~+j 1 ~i & j~n

6(xi —x;) f„' '(x, , . . . , x„,t)dx, . dx„

=n 4„ i 4„+ 2
4„—n —1 c4„'4„4„dx .

Bx
(5.2)

It turns out that the above functional reaches its
minimum value if +, obeys the classical nonlinear
Schrodinger equation with the nonlinearity scaled by
n —1:21 ln, p, t)H= —f 4„~(x,t)p (x)dx IO) .

n!
(5.8)

With (5.7), we can construct the Hartree product eigen-
states according to (5.1).

i N=—— @ +2(n —1)c+*@4&
Bt n n n (5.3) A superposition of these states using a Poissonian distri-

bution of n gives the fundamental soliton state
This fact is one of the connections between quantum
theory and classical theory.

Equation (5.3) has the following fundamental soliton
solution:

N„(x, t)=2lc(n —1)l ' riexp[ 4i(g ri—)t-
—2ig(x —xo ))

Xsech[2g(x —xo+4gt)] .

e ' f@„~(x,t)P (x)dx IO) .
n

(5.9)

(5 4) If the photon number is large,

f Id&„(x, t)I dx =1 .

This leads to the following quantization condition:

(5.5)

Contrary to the classical case, q cannot be arbitrary be-
cause N„has to satisfy the normalization condition (5.5)

n, = Ia, l'))1,
the nonlinearity not excessive,

and the time of observation limited,

(5.10a)

(5.10b)

Icl = —Icl .
n —1 n

4 4
(5.6a) no+nolcI't « I, (5.10c)

Substituting (5.6a) into (5.4) and setting

g= —p /2, (5.6b)

then the summation in (5.9) can be equated to an ex-
ponential and I P, )H can be recognized to be a coherent
state:

where p plays the role of momentum, one has

&n —1 ~~2 . (n —1) 2Icl'"exp i fcl't ip't—
+ip(x —xo)

lttt ) =g, e ' f&b„(x t)P (x)dx IO)nt

=e ' exp f aors„~(x, t)P (x)dx IO) .

(5.11)

X sech Icl(x —xo 2pt)—(n —1) (5.7) Here we have ignored the n dependence of N„by replac-
ing the variable n by its average no. The mean field is

no 1„,— (no —1) no —1

H(P, IP( )lgx, ) =H4a„o( tx)= Icl' exp i Icl t —ip t+ip(x —xo) sech Icl(x —xo 2pt)—
(5.12a)

This is just the classical solution. If the time of observation is long enough, then the n dependence of the phase cannot
be ignored. The mean field becomes
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H &@,Ip(x)lg, &H =pe ', lcl' exp i lcl t ip—t+ip(x —xo) sech —lcl(x —xo —2pt) . (5.12b)
n

Equation (5.12b) makes a very important statement. The
expectation value of the field is the average of a set of
classical solitons. This is a surprising result, because the
field propagates in a nonlinear medium, and hence a sim-
ple superposition of solutions as the expectation value of
the field was not anticipated. Since in (5.12b) com-
ponents of different n's have different phase velocities, a
soliton experiences phase spreading when it propagates.

Note that we have used a single value of the "momen-
tum" p, not a superposition. However, ln,ft, t &H is not
an eigenstate of the momentum operator P and thus a
distribution of momenta is in fact associated with the
state. In the following paper, we shall find that a distri-
bution of momenta is necessary to construct a soliton
state. Classically the self-phase modulation and the
dispersion balance exactly to form a soliton. Quantum
mechanically only the mean values of the two effects are
in balance. There still are higher-order phase-spreading
effects and higher-order dispersion effects. It has been

I

Q(a, x, t)—= l&a, «ly, &I', (5.13)

where

la, x&—=e-~ ~ "y [y'(x)]"Io&
n=o " (5.14)

is a local coherent state at the point x.
Substituting (5.9) into (5.13), we have

shown in Ref. 22 that when a monochromatic coherent
wave passes through a Kerr medium, the self-phase-
modulation spreads its phase distribution and "squeezes"
it. This kind of "squeezing" effect is different from that
which occurs in a degenerate parametric amplifier or in a
four-wave mixing process. In Ref. 22 the quasi-
probability-density (QPD) was used to visualize this
efFect. Here we also define a QPD for the field amplitude
at the point x and time t:

n!n=0

«'ao)"
Q(a, x, t)=e ' g [4„z(x,t)]"

n=o

(a ao) . n (n' —1)
exp i lcl t inp t—+inp(x —x )

n 'f 4 0

n 2
no —1 no —1

Icl'"sech '
lcl(x «o 2pt )— — (5.15)

Here we have ignored the n dependence of the amplitude
but retained the n dependence of the phase. The evolu-
tion of this QPD at the peak of the soliton is calculated
and plotted in Fig. 1. The effect of the self-phase-
modulation can be clearly seen from this plot. The mag-
nitude of this effect in the side lobes of a soliton would be
less than at the peak because the field amplitude is less.

One may also define a QPD for the field amplitude as a
function of "wave vector" p and time t:

It„(p, t)=9'[4 „(x,t)] . (5.19)

Im(c )

The evolution of Q(a, p, t) is basically the same as
Q(a, x, t). The magnitude of the self-phase-modulation

Q(a, p, t) =
I &a,ply, & I',

where

(5.16)

la p&=e-~. ~ "y [~'(p)]"Io&
0 n! (5.17) a al a I s a

t=o
= Re(tt)

is a coherent state of wave vector p. For the soliton state
lg, &H in (5.11),

2a*a,
Q(a, P, t) =e g [4„~(P,t)]"n!

(5.18)

where +„~(p,t ) is the Fourier transform of &b„„(x,t):

FIG. 1. Half-power contours of the quasi-probability-density
at the peak of the soliton. no=16, lcl =0.25, p =0, t =0, and
0.1.
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effect is greatest at the peak of the spectrum. Recently,
Drummond and Carter studied soliton propagation
efFects by solving numerically the linearized stochastic
differential equation which is equivalent to the linearized
quantum operator equation. They also concluded that
the soliton will be squeezed and the effect is greatest at
the carrier frequency. However, because they had to
linearize the equation, their result can be correct only
when the effect is not too large. As has been pointed out
in Ref. 22, the squeezing effect due to self-phase-
modulation looks like the ordinary squeezing effect when
its magnitude is small.

The magnitude of the phase spreading can be estimated
from (5.12b). After propagating a period of time tps, the
phase distribution is doubled when

nohn

2
~c tps =38, (5.20)

8m

n2 2
(5.21)

Therefore,

tps no60
4~En Sm

(5.22)

for a Poisson distribution. From (5.22), one can see that
the broadening of the phase distribution due to self-
phase-modulation is a significant effect which has a
characteristic length less than a soliton period.

The Hartree approximation predicts phase spreading
due to the self-phase-modulation effect. We know that
the self-phase-modulation effect is caused by the uncer-
tainty of photon number. One may expect that the un-
certainty of momentum should cause a dispersion effect
of its own. This dispersion effect is lost under the Har-
tree approximation. We shall study this effect in the fol-
lowing paper.

where An is the bandwidth of the photon number distri-
bution and 60 is the original bandwidth of the phase dis-
tribution. For a Poisson distribution, b, n =+no and
60 ~ 1/2hn.

To develop an estimate for the magnitude of the effect,
we compare tps with the soliton period. From (5.12a),
the soliton period is

different wave functions, although photons in the same
group still interact and can be assumed to have the same
wave function. Based on the above argument, we con-
struct a two-soliton state that has n =n, +nz photons
with n

&
and n& photons bound together, respectively. We

can assume that the total wave function is

in collision and

nl +n2

j=],
(6.1)

n1 n1+n2
=g g @'„"( g..., t) Q @'„",( g„,, t) (6.2)

I QI j =1 j=n1+1

1 /2
n& (p(1)+

n&+n& 1

' 1/2
n 2 q)(2)

n] +np "2 (6.3)

We shall use (6.3) to establish the connection between the
wave functions before and after collision. This approach
is somewhat analogous to the WKB method in quantum
mechanics. By substituting (6.1) into (5.2) and minimiz-

ing the functional, one gets

a2
i 4„„=—

z 4&„„+2(n&+nz —1)c~&0„„~ 4„„
1 2 1 2

(6.4)

not in collision. In the latter expansion the summa-
tion is over Q, over all possible permutations of
[1,2, . . . , n, +nz] with the grouping of photons into
[1,2, . . . , n, ] and [n, +1,n, +2, . . . , n, +n~] un-
changed. The summation appears because f„' '„has to be

1 2

symmetric with respect to the x 's. All the wave func-
tions N„„,N'„",N'„' satisfy the normalization condition1' 2 1 2

(5.5). The connection between @„„and@'„",O'„ I can be
1 2 I 2

established by noting that in a sense 4„„ is the "mean"
wave function of a photon. When the two-soliton state is
not in collision, since there are nI photons with wave
function 4'„"and nz photons with wave function +'„', we

1
"2'

can conclude that the asymptotic approximation of N„„
1 2

should be

VI. CONSTRUCTION OF HIGHER-ORDER
SOLITON STATES AND SOLITON COLLISION

The derivation is the same as that of (5.3). Substituting
(6.2) into (5.2) and minimizing the functional, we have

In this section we use the Hartree approximation to
construct two-soliton states and study soliton collision
effects. The construction is not as straightforward as that
of the fundamental soliton states in Sec. V because the
two-soliton states in collision and two-soliton states not
in collision have to be treated differently. When a two-
soliton state is in collision, all the photons occupy the
same space and interact. Every photon behaves in the
same way and therefore has the same wave function.
However, when a two-soliton state is not in collision, it
consists of two independent groups of photons. Photons
in different groups behave differently and therefore have

a2
&
—eI,"=— e'„"+2(n, —1)c ~a "'~'e'„", (6.5)

~ a = a'e"'= — C "'+2( —» ie"'i'e"'
2

(6.6)

In the derivation of (6.5) and (6.6), we have used the fact
that N'„" and N'„' are two well-separated functions. This

approximation is used frequently in the derivation of this
section.

Note that if one substitutes (6.3) into (6.4) and
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separates 4'„" and 4'„', one obtains (6.5) and (6.6) again.

This proves that (6.3) is consistent with the criteria of the
Hartree approximation. Moreover, (6.S) and (6.6) are the
same equations as (5.3). This justifies our expectation

that a two-soliton state not in collision is the product
state of two fundamental soliton states.

The solutions of (6.S) and (6.6) have been obtained in
Sec. V. They are

1/2
n —1

q)( j)
2

(n, —1) 1
lcl' exp i '

lcl t —ip t+ip (x xo—)+iO sech ' lcl(x x~o
—2pjt—) (6.7)

1/2

n, +n2 l

n2

n2+ n2

1/2

q)(2)
n2

with j=1,2. However, the phases and mean positions
can be different before and after collision. The difFerence
can be determined by noting that before and after col-
lision,

is the asymptotic approximation of the same 4„„,i.e.,1' 2

the asymptotic solution of the CNSE (6.4). It has been
shown that the CNSE has two-soliton solutions. Before
collision, a two-soliton solution is like two fundamental
soliton solutions. After collision, it is still like two funda-
mental soliton solutions except for a phase shift and a po-
sition shift. According to Zakharov and Shabat the
magnitude of these shifts for the first soliton are

58)(n ),p„n2,p2) = —2 arg
0i —

02

—,
' lcl(n, +nz)= —2 tan

P2

—,
' lcl(n, —n, )—tan (6.&)

5x, (n„p„n~,p2)

ln (p2 —p, )2+ (n2 n& )
——ln (pz —

p& ) + (n2+n, )
1

(6.9)

Here g, =g, +ig„gz=gz+igz, and we have used the definition (5.6a), and (5.6b) for g and g. The shifts for the second
soliton are analogous.

With these solutions, one can construct the following Hartree states:

ni+n2
ln, ,p„n,p, t) =JV'„„ I g Q @'„"(x,, t) g N'„'(, t) P t(x, )

. P (x„„)dx, . dx„„ l0)
IQI j =1 j =nl+1

n+n !
JV„„JN'„"(x,t)P (x)dx J4'„'(x, t)P (x)dx 'l0) .

(6.10)

JV„„ is to be determined from
1 2

(n~ p& n2 p2 tin~ p~ nz pq ) —1 .

The result is

(6.11)

n tn2!JV„„=
(n

& +n)!
Therefore,

(6.12)



852 Y. LAI AND H. A. HAUS

X fN'„'(x, t)P (x)dx (6.13)

1 ] n&

ln],p], nz, pz, t &= N'„"(x, t)P (x)dx
n, .n2.T 1

collision. @]„J](x,t) (j=1,2), is the fundamental soliton
J

solution of (6.5) and (6.6), respectively.
The two-soliton states can be constructed by superim-

posing over all n
&

and n2,

The matrix elements of the field operator for these states
are nl, n2

a, (n])az(nz)~n], p], nz, pz, t & . (6.16)

&n],p], nz, pz, tlat(x)ln]+ l,p], nz, pz, t &
The natural choices for a](n] ),az(nz ) are Poisson distri-
butions,

=Qn, +1@'„",(x, t),
& n],p], nz, pz, tlat(x)ln], p], nz+ l,pz, t &

(6.14)

a, (n, )=
nl

(a]o) —/a]o/zzz

n)!
(6.17)

=Qn z+14&'„'+]( x, t) . (6.15)

The other elements are zero. Here C]'„'](x,t)=@'„](x,t)
before collision and N'„~'(x, t)=e 'N'„~'(x —5x, t) after

az(nz) =
tl2

(~zo) —
~

I'Iz

Qn z!
The mean field can be calculated to be

(6.18)

Ia](n])I Iaz(nz)I []z]o+",'+](x t)+tzzo@', ,'+](x t)]
nl, n2

g la](n])l'~]o@'."+](x,t) + g laz(nz)l'~zo@.",'+](x, t)
nl

(6.19a)

before collision and

az(nz) I'~]oe '@".
,
'+](

nl, n2

+ g ~a](n] )~ ~az(nz)~ azoe '4'„+](x 5xz, t)—
nl, n2

(6.19b)

after collision.
This result also contains the quantum fluctuations pro-

duced in the collision. The 58 s and 5x s (i =1,2) are
functions of n (j=1,2) and thus are determined proba-
bilistically.

VII. CONCLUSIONS

We have set up the solution of the nonlinear
Schrodinger equation in the Schrodinger formulation,
looking for eigenfunction solutions of given energy. In
this way, the problem is reduced to a linear problem.
This is analogous to, but not congruent with, the inverse
scattering approach to the solution of the classical non-
linear Schrodinger equation, which also reduces the prob-
lem to the solution of linear equations.

In solving the problem, we made the Hartree approxi-
mation according to which the bosons move in the com-
mon potential produced by them collectively. When con-
structing a solitonlike solution with a phase that has
nonzero expectation value, a superposition of eigenstates.

I

of different photon number was necessary. The distribu-
tion of photon number and the self-phase-modulation led
to the phase spreading of a soliton. This effect cannot be
ignored because it has a characteristic length less than a
soliton period.
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APPENDIX: UNCERTAINTY RELATION
OF SOLITON POSITION AND MOMENTUM

In this appendix, we prove the uncertainty relation
(3.11). The photon-number operator I, the total momen-

turn operator P, and the mean position operator x have
been defined in (3.13), (3.14), and (3.12). With the help of
the commutation relations (3.3), the commutator of x and
P can be calculated as follows:

[x,p]= —i—f d»' f d» I [»'p (x')])](x'),p (x)p (x)]—[x'p (x')p(x'), p„(x )p(x)])A'- (A1)

Omitting terms that integrate to zero,
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[x'(b (x')tb(x'), (b (x)(b, (x)]=x'P (x')(b(x')(b (x)P„(x)—x'P (x)tb„(x)P (x')tb(x')

=x'(b (x')(b, (x )5(x —x') —x'(b (x)(b(x')—5(x —x')
Bx

=x'P (x')(b, (x)5(x —x')+x'(b „(x)(b(x')5(x —x')

= [x tb (x )tb, (x ) +x (b, (x )(b(x ) ]5(x —x '
)

[x(b (x)P(x)]—(b t(x)P(x) 5(x —x'),
Bx

(A2a)

[x'P (x')P(x'), P„(x)(b(x)]=—[x'(b (x')(b(x'), (b (x)P, (x)] .

Therefore,

(A2b)

(A3}

In the derivation of (A3), we have used

Jx'(b ( x) b(tx)dx', 1V =0 .

From (A3),

Q2
&ax'&(aP'& &

(A4)
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