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Chaos and order of laser-cooled ions in a Paul trap
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We present recent experimental and theoretical results on the behavior of two-, three-, and four-
ion crystals close to the Mathieu instability. In particular, we show that the crystals are stable until
the Mathieu instability is reached, i.e., for the parameter space investigated, there is no "melting" of
the crystals. Laser and rf heating are studied in detail. A simple model of chaotic rf heating as well
as a classification of the ion dynamics into four characteristic regimes are presented.

I. INTRC3DUCTION

For centuries the study of nonlinear systems has been
neglected because it was thought that every given non-
linear system needs its own individual method of solu-
tion. In such a case not much can be learned for the set
of all nonlinear systems by considering only one. More-
over, the solutions of nonlinear systems tend to be very
complicated, in some cases even leading to chaos. A sub-
stantial breakthrough occurred when Feigenbaum
showed some ten years ago' that there is universality in
chaos and that much can be learned about the class of
nonlinear systems by studying only a few representative
examples. Since then, researchers have concentrated on
the study of kicked systems and the continuously
driven hydrogen atom. ' Although quite different,
these physical systems can be treated in a unified way us-
ing the new language of "chaos" and "localization"
theory.

In this paper we discuss yet another physical system
which shows all the standard features of chaos: laser-
cooled ions confined in the dynamical potential of a Paul
trap. It appears that recently observed dynamical effects
exhibited by trapped laser-cooled ions are purely classical
in origin and can be attributed to the occurrence of chaos
in the ion dynamics. ' ' With laser-cooled ions it is
possible to reach the quantum limit' and thus to chal-
lenge the monopoly of hydrogen and alkali-metal
Rydberg atoms perturbed by strong electromagnetic
fields as the experimental paradigms of quantum chaos
research.

In connection with crystallized beams in storage rings,
the investigation of the dynamics of trapped ions has
gained additional relevance in recent years since a Paul
trap can model confining forces and focusing sections in
ion storage rings. The feasibility of crystallization in ex-
isting and planned heavy-ion storage rings is currently
much debated, ' and the experience accumulated by
studying ion traps might be helpful for the production
and diagnostics of Coulomb crystals in ion storage rings.

The paper is organized in the following way. After
quickly reviewing the case of a single ion in a Paul trap
and deriving the equations of motion for an arbitrary
number of ions in the trap (Sec. II), we present a detailed
study of the problem of two ions interacting via the

II. IONS IN A PAUL TRAP: BASIC EQUATIONS

The equations of motion of a single ion in the dynami-
cal quadrupole potential

U„+V so(cAot )
d '"'"'(x,y, )=z, , (~ +y'- —2z'-)

I 0 +2zo

of a Paul trap are given by'

X t xUo+ Vocos(At )
vl g =2e

dt ro+2zo
y =0.

—2z

In the above equations Uo and Vo are the dc and ac parts
of the trap potential, ro is the radius of the ring electrode,

repulsive Coulomb force and confined in the secular po-
tential of the trap (Sec. III). The two-ion dynamics is
treated in analogy to the Henon-Heiles problem, and we
find that for almost all deformations of the secular poten-
tial chaos occurs as soon as the energy of the ions sur-
passes a critical value. For special nontrivial values of
the deformation, the equations of motion of the two ions
are integrable due to the existence of accidental constants
of the motion, which can be calculated analytically. The
recently suggested mechanism of chaotic ion melting' is
the subject of Sec. IV. Searching for this mechanism, we
investigate in detail the behavior of two-, three-, and
four-ion crystals close to the Mathieu instability (MI).
We present experimental and theoretical material which
supports our early numerical result that ion crystals are
stable until the MI is reached, ' i.e., in the parameter re-
gime investigated, there is no chaotic ion melting. In Sec.
V we investigate a mechanism of ion heating and cool-
ing which relies on the micromotion of the ions. Section
VI, finally, presents a simple model of chaotic rf heating
which explains the sharpness and reproducibility of the
observed cloud~crystal phase transitions. '-' ' ' It is
also demonstrated that the ion dynamics in a Paul trap
can be classified into four dynamical regimes. ' '' This
classification seems to be rather universal and shows up
in the dynamics of periodically perturbed polar mole-
cules, the hydrogen atom in strong magnetic fields, and
the periodically perturbed hydrogen atom. ' '
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Se Uo 4e Vo

mfa (ro+2zo) mA (ro+2zo)
(3)

and dimensionless time

and zo is half the distance between the end caps of the
trap. The mass of the ion is denoted by m, and e is the
elementary charge. Introducing dimensionless constants

have worked with different ion species (e.g. , He, Ba, '

Mg, ' ' ' " Hg, etc. ), but due to classical scaling, the
equations of motion (5) depend only on the dimensionless
parameters a and q and thus the results obtained by
different groups can nevertheless be compared directly.
This is no longer true in the quantum limit, where A sets
an absolute scale.

Consider the x component of (5):
~= At /2, (4) x + [a +2q cos(2~)]x =0 . (6)

X X
d2

y +[a+2q cos(2~)] yd7.2
Z —2z

=0. (5)

This set of equations has been studied in detail in the
literature, and it is known that depending on a and q, Eq.
(5) possesses bounded (stable) and unbounded (unstable)
solutions. Figure 1 shows a section of the a-q stability
plane. In the range of a and q values shown here, stable
motion is encountered only in the regions 3 and B,
whereas all the other displayed a-q combinations will
lead to unbounded motion. In this connection, we can
mention an interesting possibility for further research: In
all the ion-trap experiments reported so far, the traps
were always operated in stability region A. Operating
the trap in region B requires more voltage applied to the
trap, but, on the other hand, perturbative approaches are
no longer valid in region B, offering interesting conse-
quences for the ion dynamics. Preliminary numerical in-
vestigations of region B indicate that most probably ion
crystals are not stable in this region unless one invests an
excessive amount of cooling power.

It is important to note that different research groups

the equations of motion (2) are transformed to the stan-
dard form of three uncoupled Mathieu-type equations
corresponding to the motion in the three principal axes of
the trap:

This is a linear differential equation with a periodic
coefFicient, and Floquet's theorem tells us that the solu-
tions are of the form

x(r) =Q(~)4(~),

IPx =xo 1+—cos(2~) e

where the amplitude xo is determined by the initial con-
ditions and

( + & 2)1/2 (9)

The angular frequency of the secular motion in the origi-
nal units is then given by

x Px2 (10)

and since for the z equation q ~ —2q, a ~ —2a, we have

where Q(w) =e'"' represents the slow motion, or secular
motion, and N(w) is a 7r-periodic function representing
the so-called micromotion. In the unstable regimes of the
stability diagram displayed in Fig. 1, p is a complex num-
ber with a negative imaginary part resulting in exponen-
tially unstable motion. For real p, the orbit x(~) is quasi-
periodic (stable) and, to lowest approximation in small a
and q, is given by

p, =[2(q —a )]'~', co, =p, ,—.

Q

Q.5

Let us emphasize again that (8)—(11) are only valid for
a, q &&1, and they are, e.g. , completely invalid in region
B of Fig. 1.

The secular motion allows a rewriting of the equation
of motion (6):

X+p, x+f(~)x=0, (12)

-0.5 where f is the residual interaction

f ( r) = 2q cos(2r) —
—,
'
q (13)

-1.0

-1.5

which is responsible for the micromotion of the ions.
Equation (12) shows quite clearly the decomposition of
the motion into a slowly oscillating part with frequency
p and a fast parametric drive with

-2.0

0.5 1.0 1.5 2.0 2.5

(f(r)) =—f f(r)x(~)d 7 0. '—
77 0

(14)

FIG. 1. Stability diagram of the Paul trap.

The above equation shows that the micromotion part is a
term in the equation of motion which "averages out. "

Let us now switch on the Coulomb force and calculate
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the equilibrium separation d0 of two ions confined by the
secular oscillator. For a &q /2, the ions will lie in the
z=0 plane. Equating the restoring force of the pseudo-
oscillator

d2
y, +[a+2q cos(2r)] y;.

d'7 —2z

dF —Ico
2

OSC X

and the Coulomb force acting between the two ions,

(15) X X=
—,'(a+ —,'q') g

, , /x, —x, )'
J& 1

(21)

e 1Fcoul 4

we arrive at

(16) In analogy to (12) we introduce the secular oscillator on
the left-hand side of (21) and neglect the residual interac-
tion:

1/3
2e 40 pm

mweoQ (a+ —,'q ) [MF (2a+q )]'~

e2

m~e'ofl (q —a )

1/3
25 pm

[MF'(q a)]'—(18)

(17)
where M denotes the mass m of either of the two ions in
atomic mass units and F is the trap frequency in MHz.
The micromotion will explore the nonlinearities of the
Coulomb potential resulting in an equilibrium distance d0
which is somewhat larger than this simple estimate. For-
mula (17) can be checked experimentally as a function of
a and q in the form do(2a+q )=const. For a ) q /2,
the ions will lie on the z axis and a similar derivation
yields in this case

d2

d~2
Zl

2
Px +I

+ v.'y,
2

Pzzi

X; XJ.
=lp.' 2

J&l

(22)

r= y
z

X
=x, —x2, R= Y =

—,'(x, +x2),
z

(23)

the equations of motion (21) separate into

X X

y +[a+2q cos(2r)] y
d 7.2

z .—2z

(24a)

Specializing now to the case of two ions and introducing
relative and center-of-mass (c.m. ) coordinates

We can also calculate the breathing-mode frequency of
two ions, i.e., the frequency of small oscillations of d
a 0:

X
d

Y +[a+2q cos(2r)]
z

X

—2Z

=0. (24b)

F„„(do+Ad) —Fc,„~„b(do+Ad)=—,'mes, bd

2—3' co Ax (19)

Q)b —+36)~ (20)

from which we read off the breathing-mode angular fre-
quency

While the equations of motion (24b) represent three un-
coupled Mathieu-type equations for the c.m. motion, Eqs.
(24a) for the relative motion are nonlinear coupled equa-
tions, which can lead to chaos' ' and therefore cannot
be solved analytically. Introducing the secular oscillator
into (24a) and (24b), we obtain

In order to check these expressions we have applied an
additional ac voltage of 15 mV amplitude to the trap
whose frequency was varied between 100 and 400 kHz.
This way the secular and breathing-mode frequencies can
be resonantly excited, which destroys the two-ion equilib-
rium configuration. Experimentally the destruction hap-
pens for frequencies f=170, 280, and 350 kHz. ' For
the trap we have r0 =2. 5 mm, z0 = 1.77 mm, and

f= 11.25 MHz. For Uo =0 and Vo = 165 V, we obtain

2p r
d2

d'T

R
6

d~2
+ p R

2p, R,R,

2r + p r

r 2
Z p, r,

2pxRx

=0.

(25a)

(25b)

f, = = 170 kHz, f, = = 340 kHz,
27T 277

fb = = v'3f =280 kHz,
2~

which checks well with the experimental results.
As a next step, we derive the three-dimensional set of

equations of motion of an arbitrary number of ions in a
Paul trap. Measuring distances in units of the equilibri-
um distance d0, we obtain

This time, the c.m. motion splits into three decoupled os-
cillator equations which are trivially solvable. We intro-
duce polar coordinates in the x-y plane

r„=pcosP, r =p sing, r, =g .

Because of the axial symmetry of the trap,

L, =p P

(26)

(27)

is a constant of the motion and the remaining equations
to be solved are
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L 2
z + 2 2 P

P 3 Pxp Px
( 2+(2)3/2P P

(28a)

&+I,'0 =v.' (28b)
( 2+ g2)3/2

Scaling the time to match the secular oscillations, the
final set of equations of motion is given by

V P
2 2 3/2

p (p+4 )
(29a)

~+A, ~=
( 2+(2)3/2

which can be derived from the Hamiltonian
2 2

H= + + V(p(),

(29b)

1.0-

-1.0—

I I I I I I I I I l I I I I I I I

0 0.5 1.0 1.5

(30)
2

V(p, g)= —,'p + —,'k g + +
(p'+ 0')'"

where p~=p, p&=g, and v=L, /p„and X=IM, /IM„are
the dimensionless control parameters. The parameter A.

describes the deformation of the secular oscillator and is
real and positive in the stability regions of the a, q stabili-
ty chart (see Fig. 1). A& the MI or, generally, in the un-
stable regions of the trap, A. is purely imaginary, so that

is negative, which results in an inverted harmonic os-
cillator on the left-hand side of (29b) and leads to an un-
stable situation. For A, =1 the secular oscillator is spheri-
cal, for A, & 1 it is steeper in the p direction, and for A. & 1

it is steeper in the g direction. Equipotential lines of the
potential V(p, g) are shown in Fig. 2.

For A, ) 1 the potential V exhibits a minimum (located
on the p axis) and two saddle points (located on the g
axis). For E =E;„=—,', we have p—:1, which corre-
sponds to the crystalline solution, where the ions are
separated by one unit of equilibrium distance do.

III. CHAOS AND ORDER OF TWO IONS IN THE
SECULAR OSCILLATOR POTENTIAL

The solutions of (29) are Newtonian trajectories in
four-dimensional phase space. But since the coupled
equations (29) do not explicitly depend on time, the Ham-
iltonian (30) H is a constant of the motion. For given en-
ergy E =H, the trajectories are therefore confined to a
three-dimensional hypersurface. Visualization of the tra-
jectories is greatly simplified if—in analogy to the
Henon-Heiles problem —we introduce a Poincare sur-
face of section. This means that we plot a point in the
x-y plane whenever the trajectory fulfills the condition

p =0, p&)0 . (31)

I=R+C(p, g), (32)

This is done for different initial conditions. Regular
motion corresponds to a regular pattern of points,
whereas chaotic motion corresponds to a disordered set
of points.

A specia1 situation occurs for A. =1. In this case the
secular oscillator is spherical, the total angular momen-
tum of the ions L is a constant, and the equations of
motion in this case are completely integrable. For A&1
the situation is not so trivial. Figure 3 shows Poincare
surfaces of section surrounded by the equipotential line
for k =v'2, v =0, and three different energies. For
1.5 & E ~ 1.60 we see that essentially all phase-space tra-
jectories are regular [see Fig. 3(a)], but one can already
find some small "islands" which arise from only one ini-
tial condition and surrounding fixed points, i.e., reso-
nances. According to the Kol'mogorov-Arnold-Moser
(KAM) theorem these resonances are the first structures
to break up. This can be seen for E= 1.65 [Fig. 3(b)],
where a small fraction of phase space is already chaotic
and at E=1.8 [Fig. 3(c)] chaos prevails. For high ener-
gies the motion becomes regular again, because the non-
linearities of the potential are not felt any more (Mathieu
regime).

This behavior is found for all v and all A, , except for
A. =2 and A, = —,'. Here all trajectories at any energy are
regular. This points to the existence of an additional con-
stant of the motion (COM) besides the energy, w'hich

confines the trajectories to a two-dimensional hypersur-
face, whose section with the two-dimensional Poincare
surface of section results in one-dimensional curves.

In order to find the COM's, we exploit the similarity
between the present problem and the hydrogen atom.
We first concentrate on the case v=0 and try to con-
struct the COM's from the various components of

FICx. 2. Equipotential lines of the pseudopotential V(p, g)
[defined In (30)] for A. =i/2 and v=O. The axes are in units of
the equilibrium distance do.

where

R=v XL+
r/

(33)



812 R. BLUMEL, C. KAPPLER, W. QUINT, AND H. WALTHER

is the Runge-Lenz vector which is a COM for potentials
V-1/r, and C is assumed to depend only on the position
coordinates. The velocity coordinates are assumed to be
taken care of by the Runge-Lenz vector, which is the
essence of the ansatz. The total time derivative of (32)
vanishes if

C =(1—2A, )pg'+A, g p,
Cg =(~' 2)k—pp+ p'0 .

(34a)

(34b)

(35b)

A generalization to three dimensions (i.e. , v&0), which
yields another term in the equations of motion, results for

(a)

(b)

The function C is a total differential if and only if A= —,',
and C& if and only if A, =2. Therefore, in the two-
dimensional case and for A. = —,', the g component of I is a
COM and for A, =2 it is the p component:

I(v=0) pj 2 pgj+ p 1 (2pP
( 2+ (2)1/2

X=2 just in an additional term (proportional to v ) in I&,
and the COM, in this case I', is given by

2

F(p, p, g, g;v)=I~"= '+
p' (36)

The COM for A, = —,', G, is obtained from the length of the
vector I in the x-y plane. We obtain

G (p p g g v ) I ( v = 0 ) +I ( v =0 ) + 2
(

2 +g
2

) (37)

where I' ' was defined in Eq. (35a) and I& ' is given
by

I~' ) =R~= ——(pp+g') . (38)

It is possible that the existence of the constants of the
motion for A, =2 and A, = —,

' results in additional stability
of the two-ion dynamics even if the micromotion is not
neglected. Experiments addressing this point are now in
progress.

Coming back to the equations of motion (29), we notice
that their structure does not change as long as a and q are
chosen from the stable regions of the stability diagram.
This means that the chaos scenario depicted in Fig. 3 is
qualitatively the same for all of these a and q values and
changes drastically only if (a, q ) is chosen from an unsta-
ble region of the stability chart. Therefore, on the basis
of the calculations presented in this section, we cannot
identify any "special" values of a and q at which the dy-
namics of two-ion crystals would change suddenly, and
which could perhaps be identified as order~chaos tran-
sitions in the control parameter q, as suggested in Ref. 14.
Quite the contrary; due to the structural invariance of
Eqs. (29), we are led to the conclusion that in the absence
of micromotion, two-ion crystals are stable until the MI
is reached. That this holds even in the presence of the
micromotion, i.e., for the realistic system without any ap-
proximations, is demonstrated in Sec. IV.

IV. THE CRYSTAL —+ CLOUD TRANSITION

-0.5-

0-

0 0.5 1.0 1.5

FIG. 3. Poincare surfaces of section showing the transition to
global stochasticity for the dimensionless equations of motion
(29). (a) E=1.6, (b) E= I.65, and (c) E= l. 8.

In order to prove that there is no order~chaos transi-
tion, but instead that the crystal is surrounded by quasi-
periodic solutions of the coupled equations of motion
(21), we have investigated the sensitivity of ion crystals,
consisting of up to five ions, to radial and axial displace-
ments by adding spontaneous-emission noise. ' ' No
melting of the crystals was observed. Since in actual ex-
periments the presence of contact potentials cannot be
avoided, we have also investigated the stability of two-ion
crystals subjected to spontaneous-emission noise and con-
tact potentials which produced electric fields of the order
of 200 mV/cm in the x-y plane and 100 mV/cm in the z
direction. Even in the presence of these additional forces,
our three-dimensional (3D) simulations did not show any
sign of crystal melting, and as a function of the ac voltage
applied to the trap, the two-ion crystals turned out to be
stable until the MI was reached.

A quantitative measure of the sensitivity of a two-ion
crystal to displacements in the z direction is obtained by
starting out in the crystal solution and displacing one of
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the two ions in the crystalline phase a distance 6z out of
equilibrium. This new situation serves as an initial condi-
tion for the solution of the equations of motion (21). (No
laser cooling is present for this type of calculation. ) De-
pending on the magnitude of 5z, the new configuration
leads to two possible behaviors: (i) quasiperiodic motion,
i.e., a motion whose Fourier spectrum exhibits a sequence
of sharp lines (the nonheating phase), (ii) heating, which
finally results in a two-ion cloud. The line in Fig. 4
separates region (i) from region (ii). This line cuts the q
axis only at q=qMI and provides strong evidence that
there is no order ~chaos transition following any of the
standard scenarios, since otherwise the line should have
cut the q axis at q, &qM&.

A more complete investigation of this point should
concentrate on the structure of the phase space surround-
ing the phase-space domain which corresponds to a two-
ion crystal. Let us assume that no angular momentum is
present and that the phase of the rf driving field is fixed
as in (24), i.e. , the argument of the cosine is 0 for r =0. If
we check the position of a two-ion crystal under these
conditions at discrete times ~=0,~, 2m, . . . , we will find
x =1, z=O and x =0, z=0. We now explore the sta-
bility of phase-space points Q surrounding the point
C = (x,z, x, z ) = ( 1,0, 0,0), which corresponds to the
two-ion crystal. The vicinity of C is, of course, four di-
mensional, and we restrict our investigation to a two-
dimensional cut which is defined by x (0)=0 and z(0) =0.
For time ~=0, we choose a point Q from the phase-space
region O~x ~2.2, O~z ~0.2, x =z=0, which serves as
an initial condition for the solution of the equations of
motion (24a), which are integrated forward in time for

100 rf cycles. During the integration it is checked wheth-
er the two ions gain energy, or whether their energy stays
constant. The two cases turned out to be easily distin-
guishable, since in the former case, the time-averaged ki-
netic energy Ez;„=—,'(p +g ) always turned out to be of
the order of 1, whereas in the latter case it was bounded
and EI„„—10 . We therefore chose a dividing line of
E~;„=5 X 10 to distinguish between phase-space points
which correspond to the nonheating and heating phases,
respectively. Figure 5(a) shows the result of this numeri-
cal experiment for a =0 and q =0.452, which is very
close to the MI and much larger than q=0. 425, which
was claimed to be the point which corresponds to the on-
set of chaotic motion in Ref. 14. The black dots corre-
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FIG. 4. Sensitivity of a two-ion crystal to displacements in z
direction as a function of q. The crystal lies initially in the x-y
plane. Then, one of the ions is displaced in the z direction
which defines the initial condition for (29). Depending on its
magnitude this initial displacement can either lead to crystals or
to clouds. The solid curve marks the boundary between these
two regions. The arrow points to the q value at which accord-
ing to Ref. 14 the two-ion crystal should melt.
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FIG. 5. Heating (black dots) and nonheating (white regions)
areas of a section of two-ion phase space. (b) and (c) are succes-
sive magnifications of the areas in (a) marked by the large and

the small rectangle, respectively. Structure is apparent on all

scales indicating that the boundary surface separating heating
and nonheating phase-space areas shows fractal character.
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spond to initial conditions which show heating and
which, after 100 rf cycles, have already developed into a
cloud state. The white region does not show any heating.
Figure 5(a) shows that the stability region around the
two-ion crystal is in fact two dimensional (within the
chosen cut) and no order~chaos transition can take
place. It is also interesting that the boundary between
the stable and unstable region seems to have a very com-
plicated structure. In order to investigate this further,
Fig. 5(b) shows a magnified picture of the region in phase
space which is marked by the large rectangle in Fig. 5(a).
A further magnification [the small rectangle in Fig. 5(a)]
is shown in Fig. 5(c). It is interesting that there seems to
be structure on all scales and the phase-space boundary
between crystals and clouds shows fractal charac-
ter. ' ' In any case, Figs. 4 and 5(a) provide clear evi-
dence that the interpretation of the crystal~cloud tran-
sition as an order~chaos transition in the control pa-
rameter q, which was put forward by the authors of Ref.
14, is at least questionable.

This is also demonstrated by our experiments. We
investigated carefully the behavior of a single ion, and
two-, three-, and four-ion crystals close to the MI, which
for a =0 occurs at q=0. 454. To this aim, we load single
ions or crystals at q =0. 15 and increase q adiabatically in
about 5 sec to q

=0.5( dq /d r = 2 X 10 ). As a function
of q, we record the fluorescence intensity at a detuning of
6 = —200 MHz and laser power P = 100 pW. Figure 6(a)

shows that the fluorescence intensity in the single-ion
case drops to zero exactly at the expected q=q~, . For
comparison, Fig. 6(b) shows that even in the two-ion case,
the fluorescence, and therefore the crystal, survives until

q =q M, is reached. This shows clearly that a two-ion
crystal, even in the presence of spontaneous-emission
noise, did not melt until the MI was reached. Of course,
due to uncontrollable sources of technical noise, the
"melting" points of the ion crystals scatter considerably
over relatively large ranges of q. This we noticed already
in earlier work on this subject, e.g. , in Ref. 15, Fig. 3,
which shows a five-ion crystal "melting" at q & qM&.

Figure 7 displays all our experimentally obtained
crystal~cloud transition points in the form of a histo-
gram plot which shows the probability of occurrence of a
transition as a function of q (bin size Aq =0.005) for
several values of a and particle number n. For zero dc
voltage and n =2, a large body of transition points occurs
at q values which are substantially higher than the pub-
lished value' of q =0.425+0.005 which was claimed to
be the reproducible value of the onset of chaotic motion.
Even for the case of three to five ions, the calculations
predict that there is no chaotic ion melting and that ion
crystals are stable even if laser cooling and spontaneous-
emission noise are switched on. ' ' Three-ion crystals
are apparently more sensitive to perturbations since the
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FIG. 6. A single scan of the Auorescence intensity (given in

counts per second) of (a) a single-ion and (b) a two-ion crystal as
a function of q for a =0. The fiuorescence drops sharply at

q =q~, where both the single ion (a) and the crystal (b) fall out
of the trap. The scan time for q was = 5 sec. For the two-ion
case, the crystalline structure is preserved up to q=qM, . The
arrow marks the positions where, according to Ref. 14, the
crystal~cloud transition should have occurred.

FIG. 7. Probability distribution of experimentally observed
transition points for the crystal~cloud transition as a function
of q and for several values of a and the ion number n. The plot
was produced from a statistical basis of 200 investigated crys-
tals. The arrows for a =0 and n =2, 3 mark the q values where
according to Ref. 14 the two- and three-ion crystals should have
melted.
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bulk of the three-ion transition points shown in Fig. 7 is
lower than in the two-ion case. This behavior was also
noted in Ref. 14, although our three-ion transition points
occur at considerably larger q reaching up to q =0.45,
very close to the MI ~ The results for four ions, also
shown in this figure, reflect an even larger sensitivity and
underline the general trend. We conclude that for zero
dc voltage and without external technical noise, ion crys-
tals are stable until the MI is reached, even in the pres-
ence of laser cooling which causes system-inherent per-
turbations, namely, spontaneous-emission noise.

The diff'erence between the above results and those
presented in Refs. 14 and 26 might be due to the follow-
ing reasons. (i) The pressure of the background gas was
reported in Ref. 14 to be 1.3 X 10 mbar, whereas in our
experiments it is more than a factor of 6 better and
amounts to 2 X 10 ' mbar. The lower pressure in our
trap guarantees a lower collision rate of rest gas mole-
cules with the stored crystals and hence a higher stability.
(ii) Due to the slower q-scan time in the experiments of
Ref. 14, the ion crystals are exposed for a longer time to
any perturbations which might melt the crystals. This,
obviously, results in a shift of the statistics of "melting
points" toward lower q values. (iii) In the calculations of
Ref. 14, the authors implemented spatial displacement
noise to describe the influence of spontaneous emission,
whereas a more appropriate model would have been to
use random noise in the momentum of the ions. More-
over, the initial conditions in the simulations reported in
Ref. 14 were slightly displaced and not fully converged.

Of course there is still a possibility of obtaining
genuine order~chaos transitions for nonzero dc voltage.
We have performed similar ion-melting experiments for
16- and 32-V dc voltage applied to the ring electrode of
the trap. Even in this case, Fig. 7 shows that the experi-
mentally obtained transition points are consistent with
the claim' ' that ion crystals can be stable up to
q qMi'

The results displayed in Fig. 7 have been obtained us-
ing a specific value of the laser detuning and laser power
P=100 pW. Since laser cooling is a highly nonlinear
process, the question arises, whether for different values
of the detuning and the laser power, or larger number of
ions, ion crystals can be heated up, which would lead to
the melting of the crystals. Remarks addressing this
point have been put forward in Ref. 14 and on various
other occasions.

ONE ION COVERED

Q --.i

4b 0C'

LJ

Vl

U TWO rONS

q =0.065, P= 100 pW, 6= —150 MHz). In contrast to
Ref. 40, in the present work the time-to-amplitude con-
verter (TAC) was triggered by the rf generator directly
instead of using photon signals. The TAC was then
stopped by the arrival of a fluorescence photon in the
detector. The height of the output pulses of the TAC is
proportional to the delay time between the rf trigger
pulse and the arrival time of a photon, a pulse-height
analysis gives then the time-diff'erential structure of the
photon pulses. The result of such an experiment is shown
in Fig. 8(b). We observe two maxima of the fluorescence
signal per rf period, which reflects the fact that in a two-
ion crystal the micromotion of the individual ions is 180
out of phase. Covering one constituent ion of the crystal
indeed generates only one maximum per field cycle [see
Fig. 8(a)]. The excitation spectrum acts as a transfer
function (modulator) for the translation of the velocity
modulation into the corresponding variations of fluores-
cence intensity. For a small velocity modulation ampli-
tude the response in the fluorescence intensity is harmon-
ic. If a linear approximation to the excitation spectrum
would be permissible, the fluorescence intensity should be
a fiat function in Fig. 8(b). The fact that modulations in
the fiuorescence intensity are clearly present in Fig. 8(b)
proves that the amplitude of the micromotion is already
so large that the nonlinearities of the excitation spectrum
are important. The contact potential, or other asym-
metries in the trap field, cause the signals from the indivi-
dual ions to have diff'erent amplitudes. The combined
signal is then asymmetric. By applying a compensating

V. LASER COOLING AND LASER HEATING

Except for Ref. 26, the theory of laser cooling of ions
stored in a Paul trap was treated only for ions confined in
the secular pseudo-oscillator potential neglecting the mi-
cromotion. Since here we are interested in the behavior
of stored ions close to the MI; the name "micromotion"
is somewhat misleading, since in the two-ion case, the
amplitude of the micromotion oscillations amounts to
about 20% of the equilibrium separation of the ions.
This micromotion can be seen in the modulation of the
fluorescence intensity as reported earlier. Here we dis-
cuss similar measurements with a two-ion crystal (a =0,

0--
0 2

Time (rf periods)

FIG. 8. Time dependence of the fluorescence intensity (in ar-
bitrary units) resulting from the micromotion of the ions in a
two-ion crystal close to the center of the trap. The crystal is
oriented in the x-y plane (see inset). The laser beam was nearly
orthogonal to the crystal axis in the x-y plane. For the upper
curve, the signal of one ion was blocked, the lower curve was
obtained from the fluorescence light of both ions.
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+ cx: J„'(P)
I(b )—

(b, +nf ) +(I„,/2)'
(39)

In this formula 5 is the laser detuning with respect to the
resonance frequency of a single ion at rest, P is the modu-
lation index given by

k vo

0,
(4O)

and I „,is the power-broadened natural linewidth. The
amplitude of the micromotion velocity is denoted by vo.
Figure 9(a) shows the function I(b ) in the range
—1 (6 ( 1 GHz. With these parameters, 130 Bessel
functions were necessary for convergence, which means

voltage between the caps of the trap, this asymmetry can
be equalized. In the measurement shown in Fig. 8(b), a
dc voltage of 100 mV was necessary for compensation.

In general, the micromotion corresponds to a frequen-
cy modulation of the laser light in the rest frame of the
ions. Therefore the excitation spectrum of harmonically
moving ions is not just a single Lorentzian, but a sum of
saturation broadened Lorentzians, peaked at co=col +nA
and with a strength proportional to the square of the nth
Bessel function:

that 130 rf sidebands contribute to the final shape of the
curve.

Let us now consider a single ion sitting a distance d
away from the center of the trap, e.g. , an ion in a crystal
or a single ion displaced out of the trap's center by an ad-
ditional dc voltage applied between the end caps of the
trap. Such an ion will exhibit strong micromotion, and
on time scales larger than one rf period, will lead to the
typical double-humped excitation function shown in Fig.
9(a). Suppose that we now choose a laser detuning
6 =6, & 0 left of the first hump of the excitation function,
and distort the ions such that on top of the micrornotion
it exhibits a small-amplitude secular vibration. Due to
the Doppler eftect this additional velocity component
generates a modulation of the detuning in the range
b, ,

—6 ( b, & 6&+6 [width of the hatched area around 6
&

in Fig. 9(a)] with respect to the rest frame of the ion.
Since, to a good approximation, the area under the exci-
tation function in a certain range of detunings 6 is pro-
portional to the number of photons scattered, the area
3", , e.g. , is proportional to the number of photons scat-
tered while the ion is moving in the direction of laser
light propagation, and 3,"' is the number of photons
scattered while the ion is moving in the opposite direction.
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FIG. 9. Synthetic sideband spectrum resulting from the mi-

cromotion of an ion displaced from the trap center ((3=60,
f=11.25 MHz, and 1,„., =150 MHz). The figure is used for ex-

plaining (a) local and (b) global heating and cooling. For details
see text.

FIG. 10. Experimental sideband spectrum of a single-ion (a)
and a two-ion crystal (b). In both cases the ions were displaced
85 pm from the trap center by means of a contact potential.
The laser is tuned slowly (5 sec for the total scan) across one
(6 & 0) of the two sideband structures. The position of the un-
shifted resonance frequency is marked by 0. The frequency cali-
bration of the laser light was performed by means of a
Doppler-free iodine spectrum before frequency doubling. The
parameters are q=0. 044, a=0, and P=350 pW. The fluores-
cence intensity is given in counts per second.
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FIG. 11. Secular motion of one and two ions under the influence of local heating and cooling. (a) and (c) show a single ion with
the laser tuned to the left (a) and right side (c) of the sideband structure. In the case (c) local heating causes a strong secular motion
pointing towards the trap center which is 85 pm away from the equilibrium position. (b) and (d) show the corresponding images for
two ions. In this picture, the laser points vertically up~down. The parameters are q =0.044, a =0, and P=300 pW; and (a),(b)
4= —550 MHz, (c) 6= —300 MHz, and (d) 6= —330 MHz. The colors in the plots reflect the intensity of the fluorescence light in
percent of maximum fluorescence. Color code: blue, 0—20%; red, 20-40%; orange, 40—60%; yellow, 60—90%, and white,
90—100 %.
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Cooling, therefore, results if 3 ',
"' ) 2 ',", which is fulfilled

for a=a, .
In contrast, for 6=62, we have 2 z"' & 3 2" resulting in

a heating of the ion. Naively one could think now that
due to this mechanism the ion is finally heated out of the
trap. But Fig. 9(b) shows that for very high amplitudes of
the motion, i.e., globally, the area 3 '"') 3 '", resulting in
a global cooling of the ion. Apparently we are here in the
presence of two counteracting mechanisms which, after
some time, will lead to a new equilibrium situation in
which the ion is still stored in the trap. The investigation
of this new type of ion motion is the subject of the follow-
ing experiments.

With the help of an additional electric field, a single ion
was displaced out of the center of the trap. The radial
component of the displacement was d =60 pm and
d =60 pm. The z component was negligible. Here the x
and y axes are defined such that the projection of the
laser-beam direction on the x-y plane is parallel to the
(vertical) y axis and orthogonal to the (horizontal) x axis.
The source of the electric field was the contact potential
which is always present in our apparatus due to uninten-
tional coating of the ring electrode with the neutral beam
of Mg atoms during the loading cycle of the trap. The
corresponding fluorescence spectrum of the single ion is
shown in Fig. 10(a). At zero detuning, the fluorescence
vanishes because the ion is repelled out of the laser focus
due to global heating. Detuning the laser to the left of
the first hump of the excitation function, we observe the
ion in the form of a dot [see Fig. 11(a)]. Detuning the
laser to the right of the first hump, the ion heats up and
results in the elongated dash shown in Fig. 11(c). The
dash represents the new equilibrium situation in which
local heating and global cooling balance out. The origin
of the elongated appearance of the ion is the secular
motion resulting from the local heating. The direction of
this secular motion is parallel to the micromotion, i.e., it
points to the trap center. Scanning the laser frequency
from a large negative detuning toward the atomic reso-
nance frequency, the oscillation amplitude of the ion
starts to increase exactly at the top of the first hump
where local cooling turns into local heating. Scanning
the frequency back again, no hysteresis is observed. With
the help of a photon-photon correlation experiment, the
nature of this new equilibrium phase can be investigated
in more detail and shows clear evidence that the motion
of the ion is composed of the micromotion superimposed
on the secular motion which was excited by the local
heating condition. The results of the correlation experi-
ments are shown in Figs. 12(a) and 12(b). In Fig. 12(a)
the laser was tuned to the positive slope of the sideband
spectrum [10(a)] and in Fig. 12(b) to the opposite side. In
the lat ter case the secular motion shows up clearly,
whereby the time variation is governed essentially by
twice the secular frequency of a single ion. The frequen-
cy is doubled since the amplitude of the motion causes a
Doppler tuning of the laser frequency far beyond the
maximum. This result provides further evidence of the
existence of global cooling, since otherwise the ion would
not stay in the trap.

During the time the ion is oscillating with the secular

frequency, the micromotion is changing periodically: It
is larger when the ion is further displaced and smaller
when the ion is closer to the center. Therefore the side-
band spectrum resulting from the micromotion is chang-
ing periodically also. An indication of this variation can
be seen in Fig. 12(b), since every other maximum of the
G' ' signal is larger than the neighboring ones. Figure
12(a) does not show the secular motion, since in this case
the laser is tuned to the left side of the sideband max-
imum where cooling is present. It should be mentioned
here that the antibunching cannot be seen in Fig. 12,
since the signal recording was started at a time corre-
sponding to 500 times the natural lifetime of the excited
state.

The same type of experiment was performed with a
crystal consisting of two ions. The crystal was again dis-
placed a distance d =85 pm out of the trap's center and
appears as two dots for laser detunings left of the first
hump [see Fig. 11(b)]. Tuning the laser to the right of the
first hump, the ions perform a synchronized large-
amplitude motion which results in the two parallel dashes
displayed in Fig. 11(d). A nearly identical excitation
function is obtained [see Fig. 10(b)]. Also in the two-ion
case a photon-correlation experiment has been per-
formed. The result is shown in Fig. 13. The time scale is
different from Fig. 12 so that the micromotion can be
seen in addition to the secular motion. It is also obvious
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FIG. 12. Photon correlation measurement [G"'(r) ] for a sin-

gle ion displaced 85 pm from the trap center. In (a) the laser
was tuned to the left-hand side and in (b) to the right-hand side
of the sideband structure. The secular motion of the ion shows

up in (b). The frequency displayed is double the frequency of
the secular motion for a single ion. In this case the micromo-
tion is not resolved [see Fig. 13(b) for comparison]. More de-
tails are given in the text. The slow decrease of G' toward
larger times is due to the fact that the average counting rate was
somewhat too large; this favors a larger signal at shorter times.
The parameters are P=250 pW, q =0.044, and a =0; and (a)
6= —600 MHz and (b) 6= —400 MHz.
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confirming the negligible inAuence of the micromotion.
It should be mentioned here that the micromotion has
also been studied by deVoe, Hoffnagle, and Brewer. In
their experiment the ion was displaced in the z direction
and a change in the effectiveness of the laser cooling due
to the presence of the micromotion was observed by
measuring the amplitude of secular oscillations which
were excited by an additional ac voltage applied to the
trap electrodes.

In summary we can say that although a proper
order~chaos transition might be encountered for
q, ) qM&, this transition cannot be observed since the
motion in the trap becomes globally unstable at q =qM, ,
where the ions fall out of the trap. For an order~chaos
transition to occur, the system has to be kicked by an
external perturbation from the nonheating, quasiperiodic
region of phase space into the chaotic, heating region.
The location of the order~chaos transition points are
therefore of no physical relevance, since they merely

FIG. 13. Photon-correlation measurement G' '(~) for a two-
ion crystal (a) and a single ion (b). For this measurement the
laser was tuned to the right-hand side of the sideband structure
such that local heating is present. The time scale is larger than
in Fig. 12, so that the micromotion can be observed. The arnpli-
tude of the micromotion is changing periodically with the secu-
lar motion depending on the position of the ions in the trap.
Except for the detunings, the parameters are as in Fig. 12. (a)
5= —90 MHz and (b) b = —120 MHz.

from the figure that the amplitude of the micromotion
changes periodically depending on the position of the
two-ion crystal with respect to the trap center. (This
effect was mentioned already in connection with the
single-ion spectra. ) This new type of motion does not
represent a melted crystal and so, even in the presence of
local sideband heating, two-ion crystals do not melt.

In connection with the heating by the micromotion it
is interesting to investigate how much the ion crystals
themselves can be affected by this additional heating
effect. For this purpose the crystal has to be investigated
close to the actual trap center in a situation where no per-
turbation by a contact potential is present. In order to
obtain a contro11ed displacement, a small voltage is ap-
plied between the cap electrodes shifting the ions in the z
direction. Measurements with a single ion are shown in
Fig. 14(a). The upper curve shows the excitation spec-
trum when a voltage of 390 mV is applied, leading to a z
displacement of 31 pm. The larger micromotion of the
displaced ion produces a sideband spectrum with an
outer maximum at roughly 200 MHz. A change of the
voltage to 625 mV resulting in a displacement of 50 pm
shifts the sideband maximum to 600 MHz corresponding
to a P of 87. The excitation spectrum of the two-ion crys-
tal (crystal at the trap center) is shown in Fig. 14(b). The
spectrum corresponds to the one of a single ion at the
trap center, thus demonstrating that the micromotion is
negligible in this case. When the light of one of the two
ions is blocked, a spectrum is obtained which is up to
normalization identical with the two-ion spectrum
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FICx. 14. (a) Sideband spectrum of a single ion shifted in the z
direction by applying a dc voltage between the cap electrodes.
The displacement of the ion is hz =31 pm and hz = 50 pm, re-
spectively. In this case, the influence of the contact potential
was negligible since the trap potential was much steeper than in
the case of Fig. 10. (b) Spectrum of a two-ion crystal in the
center of the trap (negligible contact potential and no additional
voltage applied). The lower curve was obtained when the
fluorescence light of one of the ions was blocked. The spectrum
shows negligible influence of the micromotion.
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reflect the strength of the uncontrolled external perturba-
tion which provides the energy to bridge the gap between
heating and nonheating phase-space domains.

Crystal melting might be assisted by local laser heating
and since the heating erat'ect depends on the amplitude of
the micromotion, a proper chaos transition in the pres-
ence of the laser light might be encountered for very large
crystals. For small crystals we did not observe such a
transition, but saw clear evidence for the presence of lo-
cal laser heating which reflects itself in the large ampli-
tude vibrations of a single-ion and a two-ion crystal in
Figs. 11(c) and 11(d), respectively. While in this section
we concentrated mainly on the regular phase-space
domains and the order~chaos transition, Sec. VI will
focus mainly on the chaotic phase-space domains and the
chaos ~order transition.

VI. THE rf HEATING MECHANISM

The rf heating mechanism is concealed in the proper-
ties of the equations of motion (21), and major results
concerning this mechanism have already been presented
in Refs. 15—17. Here we attempt a more detailed and a
more quantitative treatment and show new results, which
support the general ideas outlined in Ref. 15. In order to
unravel the origin of rf heating, one might think of inves-
tigating simpler versions of (21), e.g. , a one-dimensional
string of ions subjected to nothing but the rf trap force
and the mutual Coulomb repulsion. Whether the
simplified one-dimensional model of the ion trap reveals
the origin of the rf heating mechanism is answered by the
following numerical experiment: We integrated the x
component of (21) and monitored the average kinetic en-
ergy of two to five ions as a function of time. For less
than five ions we could not observe any gain in energy
over several tens of milliseconds. For five ions a slow in-
crease in energy was recorded, unfortunately too small to
account for the stability of ion clouds in the presence of
laser cooling. A fast-Fourier transform of the positions
x„(j ) of the n th member of the one-dimensional ion
chain taken at discrete times t =jT

A' —
1

Pi,"'= —g x„(g)exp&N

k=0, 1, . . . , X—1 (41)

(%=2048 in the present case) shows a sinall number of
discrete frequencies dominating the spectrum, thus quali-
fying this model as being close to integrable and lacking a
heating mechanism. Although the one-dimensional chain
of particles cannot be used to explain the heating mecha-
nism in a Paul trap, it is interesting in its own right and
closely related to the integrable chain of particles in-
teracting by two-body harmonic and 1/x potentials
(Calogero-Moser system ' ).

Two-dimensional ion traps behave essentially like one-
dimensional traps if the motion is restricted to the x-y
plane. In the x-z (y-z) plane, however, strong heating
occurs. In order to study this observation in more detail,
we have calculated the power spectrum ~PI, ~

of the posi-

tions of two ions. As already shown in Sec. IV there is al-
ways a small phase-space region around the crystalline
solution in which no heating occurs (compare Fig. 5).
The power spectrum is discrete in this case, typical for
quasiperiodic motion. In the quasiperiodic phase, the
ions are unable to extract energy from the rf field and if a
cooling laser is present, they eventually end up in the
crystalline state. Such a power spectrum characterizes
phase-space domains which act as basins of attraction for
the crystal (see white regions in Fig. 5). However, when
we choose initial conditions, which correspond to typical
separations in a cloud state [dotted regions in Fig. 5(a)j,
the spectral power of any one of the two ions shows con-
tinuous bands in frequency. This provides evidence for
the occurrence of deterministic chaos in the cloud
phase.

For a quantitative investigation of chaotic rf heating,
we calculated the work done by the rf field per unit time
(angular brackets denoting ensemble averages)

n—f g Ft P) «I' )d,
)I (42)

for the case n =5 ions, VO=780 V, UO=0, f=11.25
MHz, and b, = —300 MHz as a function of the rms radius
r =(r )' = ((g", , r, )' } of the five ions. The rms ra-
dius was controlled indirectly by the laser power P which
we varied from 10 to 150 pW to obtain the heating
curve' displayed in Fig. 15. For zero laser power and
large r, we did not observe any net heating of the ions.
This is confirmed by our experiments, in which, even in
the absence of a cooling laser, large clouds of ions can be
stored in a Paul trap over several hours without being
heated out of the trap. The ions are far apart from each
other, the Coulomb force is small, and on short time
scales the ions behave essentially like independent single
stored ions. For this reason, we called this part of the
heating diagram the "Mathieu regime. " Turning on a
small laser power, the rms radius r reduces drastically,
but comes to a halt at about 14 pm where chaotic rf heat-
ing sets in and balances the cooling power of the laser.
Increasing the laser power results in an even smaller
cloud. The smaller cloud produces more chaotic rf heat-
ing, as seen clearly by the negative slope of the heating
curve (Fig. 15) in the range 8 (r & 14 pm.

In the range 4 & r & 8 pm there is still chaotic heating
but the slope of the heating curve is positive. As a conse-
quence of the resulting triangular shape of the heating
curve at about P =150 pW, corresponding to r = 8 pm,
the chaotic heating power can no longer balance the cool-
ing power of the laser and the cloud collapses into the
crystalline state located at r =3.8 pm. A phase transi-
tion has occurred. Since the rf heating power depends on
a and q and the laser cooling power on P and 6, the oc-
currence of the cloud~crystal transition is a rather com-
plicated function of a, q, P, and A. Due to this collapse
of the cloud state, the behavior of the heating rate in the
range 3.8 & r & 8 pm cannot be studied by equilibrating
laser cooling and rf heating. In this case we start out



40 CHAOS AND ORDER OF LASER-COOLED IONS IN A PAUL TRAP 821

80--
L

quasipe
regi

Chaotic Regime Mathieu Regime

60--

40--

20--

3
)i

Leal V'

3
Q

crystal

Z

5"

0--

)0 x

10 12

) p2 tom)

Z
50"

C..

p. .
' lb ' ~ I

50'
-50 0 50 x

14

50

50

18

-100 0 100 x

FIG. 15. Average heating rate ~ of five ions in a Paul trap vs the rms radius of the ion configuration. The insets show the power
spectrum and the corresponding stroboscopic Poincare sections in the x-z plane of relative separation for two ions in three charac-
teristic domains: the quasiperiodic regime, the chaotic regime, and the Mathieu regime. All length scales are in units of microme-
ters.

from the crystal state and slightly displace the ions to ex-
plore the vicinity of the crystal. We observe no heating
for 3.8 ( r & 4 pm, but quasiperiodic motion, and thus
dubbed this regime the "quasiperiodic" regime. We call
the upper edge of the quasiperiodic regime (r =4 p, m) the
"chaos threshold. " An initial condition beyond the chaos
threshold, i.e., satisfying r )4 pm, leads to heating, and
expansion of the ion configuration and numerical data
relevant for the shape of the heating curve can be taken
during this explosion phase. The laser power P is set to
zero for this type of experiment. We conjecture that,
apart from the trivial case of a single stored ion, the heat-
ing curve is universal, i.e., its qualitative shape, including
the existence of the chaotic regime, does not depend on
the number of simultaneously trapped ions, and, as al-
ready mentioned in the Introduction, even applies to sys-
tems as remotely connected as, e.g. , Rydberg atoms in
strong electromagnetic fields.

For the quasiperiodic, the chaotic, and the Mathieu re-
gimes, respectively, we display the corresponding type of
power spectrum as the insets above the abscissa of Fig.
15. The data were actually taken for the case of two ions,
but would not look much different in the five-ion case.
We obtain a discrete spectrum in the quasiperiodic re-
gime and a complicated noisy spectrum in the chaotic re-
gime. The spectrum in the Mathieu regime is again quite
simple and dominated by the secular motion frequency.
We also show stroboscopic pictures of the locations of
the ions in the x-y plane of the trap characterizing the
three regions (insets below the abscissa of Fig. 15).

As a function of increasing rf voltage, the chaos
threshold moves towards the radius of the crystalline
configuration. However, before the chaos threshold
reaches the crystal radius, the equations of motion (21)
become unstable in z direction, indicating that in this par-
ticular situation the particles would fall out of the trap.
In order to achieve proper melting without losing parti-
cles, the crystal radius has to be enlarged artificially by
noise so that the size of the distorted crystal overlaps
with the region of chaotic heating. Proper melting
without the assistance of noise should be possible if we
start in a quasiperiodic state typified in the bottom left in-
set of Fig. 15. Such configurations have a larger radius to
begin with, and the chaos threshold could be reached be-
fore the single-particle Mathieu instability sets in.

An interesting numerical experiment concerned replac-
ing the 1/r Coulomb repulsion between ions by a
screened Coulomb (Yukawa) potential e " Ir, where a
was set to 2 pm. This replacement did not change the
cloud~crystal transition points, and we conclude that
the heating properties of an ion cloud do not depend sen-
sitively on the long-range properties of the ion-ion poten-
tial. Heating, i.e., energy gain, seems to originate from
very close ion-ion collisions. This observation offers
another possibility for future research: the investigation
of the heating properties of a hard-sphere gas and its
comparison to the heating properties of the more conven-
tional Coulomb gas confined in a trap.

We conclude this section by briefly comparing the rf
heating mechanism in a Paul trap with the ionization
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mechanism of Rydberg atoms in strong microwave fields
(compare also ref. 15). In both cases, heating, i.e. , ab-
sorption of energy from the driving field, heavily relies on
the occurrence of chaotic motion. But in contrast to the
situation in ion traps, a proper order~chaos transition
marks the onset of strong ionization in the case of Ryd-
berg atoms. Diffusing models similar to the ones
developed for Rydberg atoms should be designed in or-
der to obtain the energy diffusion coefficient, which al-
lows for an analytical calculation of the steady-state
size of ion clouds and the exact location of the
cloud~crystal (chaos —~order) phase-transition points.

VII. CONCLUSION

In this paper we present a detailed theoretical and ex-
perimental study of the transition of few ion crystals into
clouds. It could be shown that this transition cannot be
described as an order~chaos transition occurring at a
critical value of a control parameter. The crystalline
phase can exist until the Mathieu instability limit is
reached. When this limit is approached, the system be-

comes very sensitive to perturbations, so that the melting
of the crystal can be observed well before the instability
limit.

In addition, we discussed the inhuence of the micromo-
tion on the stability of the crystals. Additional heating
and cooling by the micromotion could be demonstrated.
The effects are, however, only relevant if the ions are
strongly displaced from the trap center. Crystals with a
small number of ions are not affected by the micromotion
so that these effects are only of minor importance for the
transitions between the crystalline and cloud phases.

In detailed studies of one-, two-, and three-dimensional
simulations of ions in a Paul trap, we have shown that de-
pending on the radius of the ion arrangement, the dy-
namics of ions in a Paul trap can be classified into four
dynamical regimes: (i) the crystal, (ii) the quasiperiodic
regime, (iii) the chaotic regime, and (iv) the Mathieu re-
gime. The crystal, the quasiperiodic regime, and the
Mathieu regime are the nonheating regimes. Strong heat-
ing occurs only in regime (iii) by a diffusive gain of energy
due to the occurrence of deterministic chaos.
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