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Scaling properties of diatomic potentials
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The existence of a universal reduced potential valid for all diatomic molecules has been predict-
ed on a theoretical basis and verifie using Rydberg-Klein-Rees (RKR) potentials. The reduced

RKR potentials for various molecules have been shown to coalesce into virtually a single curve

when they are plotted against z z&+ —,
' (1 —

)P& ( )z/+ —,
'

(pz ——,
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(p& ) + -', )z(, where

z( JZ(R/R, —1) and P( a(/h((z. The Morse curve [1 exp—( —z)]2 —1 is found to represent

the universal curve well. Here R is the internuclear distance, 6 is the Sutherland parameter, and

ai are the Dunham coefficients.

F z 1+ QP(z —1 (1)
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where z ~ JZ(R/R, —1) is the "linear" scaled dis-
tance ' ' and p( a(/b, / (1 1,2, . . . ) are species-
dependent combinations of spectroscopic constants. R, is
the equilibrium internuclear distance, 6 is the Sutherland
parameter, ' and aI are the Dunham coefficients. " It is
obvious from Eq. (1) as Graves and Parr have found, F is
not a universal function of z( unless all p's are pure num-
bers independent of molecular species. Suppose that there
exists a scaled distance z so that F is a species-
independent universal function of z. Then we may expand
z into a power series of z ~,

z-z(+ g b(z((, (2)
2

for z ~ is an excellent choice for the scaled distance near
the equilibrium point z 0. Now the existence of the
universal function F(z) would depend on the answer to
the question of whether it is possible to determine the
coefficients b( (1 2, 3, . . . ) so that F would reduce to a
species-independent function of z. For this we solve Eq.
(2) for z~ in terms of z and b's, and substitute the result-
ing expression into Eq. (1). We then have

F z 1+ g h(z( —1.
I-1 '

Here the coefficients h( (1 1,2, . . . ) are related to b's

(3)

The concept of universal description of all diatomic po-
tentials is irresistible, and it has led to conjecture' about
the existence of a universal reduced potential F(z) E/D,
valid for all diatomic molecules. Here E is the ground-
state vibrational potential energy, D, is the sum of dissoci-
ation energy and zero-point energy, and the scaled dis-
tance z is a function of R. Although several approximate
scaling procedures have been developed' and successful-
ly used for comparative studies~ of diatomic potentials,
the very existence of the universal reduced potential has
not been well established. In this work we will predict
a universal reduced potential on a theoretical basis and
prove its validity using Rydberg-Klein-Rees 'n (RKR)
potentials for various diatomic molecules.

We begin with the well-known Dunham expansion" of
the potential function E which can be rewritten as

and p's through the following relations:

bz- 2 (p( —h(),
b3 z (P2 ~ P(' h(pi+—4 h&' —hp),

2 (P( (
—f( i)-,

where f( ( is a relation among p~, . . . ,p( 2, h~, . . . , h(
Apparently, the reduced potential F(z) [Eq. (3)) is a
universal function of z, if and only if, the set of coefficients
lh(j is independent of molecular species. From now on we
assume that h's are pure numbers. In this case, the
specific bonding characteristic of individual molecules
would be involved only in the definition of the scaled dis-
tance z through the coefficients b's. Here we should notice
that both z and F(z) depend manifestly upon the still un-
determined set of constants lh(j, and the method of une-
quivocal determination of the constants is of vital impor-
tance in proving the uniqueness of the functions as well as
in assessing the convergence criteria of the series Eqs. (2)
and (3). But the question of how we find those constants
corresponding to the true universal function should be
answered not by mathematics but by experimental facts.
Suppose that we truncate the series Eq. (2) by setting
bi 0 for all I ~ N+ 1, then we have

PN fN(pl& ~ ~ ~ spN l hl~ ~~~ ~ ~hN) 1— (4)

and similar relations for P( (1 ~ N+1) in terms of
P&, . . . ,PN —(,h &, . . . ,h(. The expression Eq. (4) repre-
sents a functional relationship among the specific com-
binations of spectroscopic data p~, . . . ,PN. Thus it seems
quite natural to use Eq. (4) for finding h(, . . . , hN by the
principle of least squares. fh(, . . . , hNj will be chosen to
minimize g(PN —f(v), where the sum extends over all
samples values for fp~, . . . ,PNj of diatomic molecules,
and z and b's will be determined in terms of h's thus ob-
tained. Here we have tacitly assumed that the truncated
series for z and the corresponding (infinite) series for F
would converge to the true functions in the limit of large
N. We also remark that we may accelerate the conver-
gence of the truncated series by choosing b~+ l

2 (pN —pN), where pN represents the least-squares
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fitted expression for P~. In this approximation scheme,
P& for an individual molecule is exactly reproduced.
However, all those predictions must be verified in experi-
ments. With experimental verifications in mind, we will
examine the first several cases of truncation approxima-
tion.

If we retain only the first term in Eq. (2), then we re-
cover the scaling procedure attributed to Ferrante, Smith,
and Rose and the spectroscopic data should satisfy the
unrealistic relations P const for all m~ I as Graves
and Parr have found for z z ~. On the other hand, when
we make a truncation at the second term, we have z z2,
where z2 z ~+ b2z ~,
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and b2 —,
'

(P~
—h ~). Since P~ (0, we used —

I P~ I for P~
in Eq. (5). Equation (5) represents a relation between P~
and P2 involving two unknown numerical constants h ~ and
h2. We have calculated P~ and P2, as Graves and Parr
have done, from the spectroscopic data' for 150 diatomic
molecules for which D„ the harmonic frequency m„ the
vibrational anharmonicity co,x„ the rotational constant
B„and the vibrational-rotational coupling constant a,
were all available. From the scatter diagram in Fig. 1 we
see that the data points lie very close to a single curve, and
it is most natural to make a least-squares fit of the expres-
sion Eq. (5) to the experimental data. The solid line in
Fig. 1 represents the fitted curve,

P2- 4 Pi' —Iti IPi I

—
4 hi'+&2

where h = —1.0731+0.0281 and h2 0.7438+0.0458.
Here it is gratifying to observe that the predetermined
functional form [Eq. (6)] is consistent with the observed
correlation between P~ and P2 of real diatomic molecules.
In this approximation, the experimental data for P2 of dia-
tomic molecules cannot be reproduced; instead they are
represented by the points on the line in Eq. (6). However,
as we pointed out before, we should be able to reproduce
experimental data for P~ and P2 by choosing
b3= 2 (P2 —P2). Then we have an improved approxima-

Z1

FIG. 2. Ten reduced RKR potentials vs zl. The dots in the
inset represent experimental values of P~ and P2 for 10 molecules
and the sign + represents the predicted value.

tion z z3, where

z3 z&+b2z& +b3zI (7)

We still use the same h ~ and h2 determined in the previ-
ous approximation. If higher-order Dunham coefficients
a 3,a4, . . . were known, then we could systematically
determine h3, h4, . . . by means of least-squares fitting.
However, the availability of reliable data for Dunham
coefficients is rapidly diminishing with the increasing or-
der I, and the approximation z z3 may set the practical
limit on the truncation approximation. Thus the proof of
the rapid convergence of the series, Eq. (2), is essential.
In due consideration of successful applications of Morse
or Rydberg functions ' based on z z&, the series is ex-
pected to converge very rapidly, but it still remains to be
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FIG. l. Experimental data distribution of P) and Pq for 150
diatomic molecules. The solid line represents the fitted curve,
Eq. (6).

Z2

FIG. 3. Ten reduced RKR potentials vs z2. The solid line in

the inset is the predicted curve, Eq. (6).
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FIG. 5. Ten reduced RKR potentials vs z~. The dashed line
represents the Morse curve.

FIG. 4. Ten reduced RKR potentials vs z3. P) and Pz for
each individual molecule is exactly reproduced.

verified in experiments. For this purpose, we have exam-
ined the ground-state RKR potentials of the following ten
molecules: Br2 (Ref. 14), Clz (Ref. 15), IC1 (Ref. 16), CO
(Ref. 17), N2 (Ref. 18), Cs2 (Ref. 19), Kq (Ref. 20), Li2
(Ref. 21), Na2 (Ref. 22), NaK (Ref. 23). The selection
criterion of those molecules is the availability of RKR po-
tentials, spectroscopic constants used for constructing
RKR potentials, and D, . If our scaling law characterized
by Eqs. (2) and (3) is true, then all the reduced RKR
curves plotted against z &, z2, and z3 must converge rapidly
toward a single universal curve F(z) as the order of trun-
cation increases. We have plotted ten reduced RKR po-
tentials versus z~, z2, and z3 in Figs. 2, 3, and 4, respec-
tively. The inset in each figure depicts the values for P&

and Pz for the molecules in each approximation. Figure 2
is the plot of the reduced RKR potentials against the
linear scaled distance z~. Although those curves seem to
lie around a single curve, the spread among the curves is
excessively high both in the repulsive and attractive
branches, and P~ and P2 are independent of molecular
species. This exemplifies the limitation of the linear scal-
ing as pointed out by Graves and Parr, and Tellinghuisen
et al. On the other hand, Fig. 3 shows a much improved
overall picture especially in the repulsive branch. Finally,
all ten curves nearly coalesce into a single curve when they
are plotted against z3, as we see in Fig. 4. Thus a single
curve F(z) is found capable of representing all ten RKR
curves to a good approximation, and this clearly implies
that our scaling procedure has been indeed well founded.
We notice that the present scaling is given by the series
representation [Eq. (3)] whose accuracy should be under-
stood in a perturbative sense. This eff'ect is well reflected
by the increase in the difference between the universal
curve and the RKR potentials for large l z l. We also no-
tice that the relation 1»b2»b3 holds for all cases, and
the convergence of the series for z is found sufficiently fast

so that we may regard z3 as an exact representation of z
for all practical purposes. Though we have shown that re-
duced RKR potentials coalesce into a single curve, the
functional form of the curve F(z) is still undetermined.
In conjunction with the determination of analytic expres-
sion for F, it is worth noting that the reduced curves in
Fig. 4 almost coincide with the Morse function
[1 —exp( —z3)] —1. This near congruity is not a fortui-
tous accident. We should be able to understand this by
observing that the least-squares fitted h& and h2 are not
much different from those of the Morse function, namely,
h~ —1 and h2 ]'2 . Moreover, the eff'ects due to small
differences in h's also have been partly taken into account
in the definition of b3 so that 6, a ~, and a2 are the same in
both cases. In the absence of reliable higher-order Dun-
harn coefficients for most diatomic molecules, constructing
a higher-order truncation approximation becomes unreal-
istic. Thus it is more reasonable to choose the Morse
function for F(z) and construct corresponding z3 (which
we will denote by z~ hereafter) using h&

—1 and
h2 ]'2 to have analytic approximations to F and z. It
has been shown in Fig. 5 that all ten curves plotted against
zM coalesce into a single curve virtually identical to the
Morse curve, and we have

F~ - [1 —exp( —zsr)]' —1,
~ - +-'(1-lu I)"+-,'(n - .'I3' IV I+-')-"-
These expressions can be used most conveniently to con-
struct an accurate ground-state potential-energy E for a
diatomic molecule from its spectroscopic data. Note that
the possible inaccuracy at large lz l, which may be
significant for the van der Waals molecules, can, in princi-
ple, be refined by including higher-order terms in zM,
since 1/R can also be approximated by the above expres-
sions.

In this work, a self-consistent scaling procedure has
been developed to show the existence of a universal re-
duced potential valid for all diatomic molecules. Further
applications of this work will be presented in forthcoming
publications.
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