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We calculate the phase distribution of a highly squeezed state using both a definition of a phase
eigenstate and the area-of-overlap principle. This probability curve undergoes a transition from a
single- to a double-peaked distribution when we decrease the product of squeeze and displacement
parameters.

A squeezed state, '
~ y,q), of a single mode of the elec-

tromagnetic field, or in its most elementary version of a
harmonic oscillator described by the two conjugate dimen-
sionless variables, coordinate x, and momentum p, exhib-
its an asymmetrical redistribution of the corresponding
Heisenberg uncertainty fluctuations. The possible en-
hancement in sensitivity of devices, such as a gravitational
wave detector, ' a ring laser gyroscope, or of quantum
noise limited communication, has boosted the experimen-
tal and theoretical study of such nonclassical states. The
remarkable property of an oscillatory photon number
probability, W [~ tlr,q)], of a highly squeezed state result-
ing from interference in phase space ' represents only
one side of the coin of complementarity in quantum
mechanics. "' Distribution in phase, W~[ ( y,q)], that is,
in the variable conjugate to m, constitutes the other. But
what is the striking feature of Wv, [ ~ y,q&]? A bifurcation,
that is, a transition from a single-peaked phase probability
curve to a double-peaked curve induced by either a de-
crease of the displacement parameter a or an increase of
the squeeze s, that is the central result reported in this
Rapid Communication. Insight into this bifurcation phe-
nomenon, which we have not been able to find in the per-
tinent literature, ' ' springs' from (i) a mathematical
definition of a phase eigenstate' —the foundation of a re-
cently proposed ' ' phase operator in quantum mechanics—and (ii) the area-of-overlap principle.

The question of a phase variable, that is, of a phase
operator in quantum mechanics, is a long-standing prob-
lem since the decisive year 1926—the dawn of the Bohr-
Sommerfeld Atommechanik ' and the rise of the
Schrodinger-Born-Heisenberg- Jordan quantum mechan-
ics. ' In contrast to Atommechani k, which makes
heavy use of action-angle variables m and p, this new Un-
dulationsmechanik or Matrizenmechanik is formulated in
terms of the conjugate variables x and p. However, when
Dirac in the same year quantizes the radiation field rely-
ing on m and p, London ' already recognizes the impos-

sibility of constructing a Hermitian matrix representing
the phase operator in the number state bases. In the late
1950's and 1960's, masers and lasers producing elec-
tromagnetic waves with relatively well-defined phases
stimulate the search for such operators. Again Louis-
ell points out the pathological character of the Dirac
phase operator: its matrix elements in the number state
bases are indefinite. Since then many new phase operators
have been suggested as summarized in the review of Ref.
27.

A recent approach' ' ' starts from the definition of
states'

~q»- hm ~q '"'&, (la)

where
P

lq& ')=[2n(r+1)] ' g exp(imp) ~m).
m 0

(lb)

Here
~
m) denotes the mth number state.

The so-defined states display' properties expected from
states of well-defined phase. However, the limit r ~ in
Eq. (la) has to be taken with great care, that is, only after
all relevant calculations have been performed with large
but finite r. The failure of all earlier attempts to find a
phase operator result' ' from taking this limit at a
premature stage.

With the help of the phase eigenstates, Eq. (lb), we
now calculate the phase probability amplitude,."[IW.q&]

—=«"
I V.q&

[2tt(r+1)] 't g (m
~ y,q)exp( —imp),

m 0

of a squeezed state

ter,q(x) =(x ) y, q& -(s/tr) 't exp[ —(s/2)(x —&2tt) ] .

(3)
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Here s & 0 and a denote the squeeze and displacement parameter, respectively. According to Eq. (2) the phase probabil-
ity amplitude, ~~' [ I ysq)], of a squeezed state is the one-sided, finite, discrete Fourier transform of the photon number
probability amplitude

' m

~ [ I y,q)]
—= (m I y,q&- s+1 s+1 (2 m!) 'exp — a2$

s+1

' - I/2
S

H~ 2 &t2
J2a

(s —1)
(4)

Here H denotes the mth Hermite polynomial.
In the limit of strong squeezing in the x variable, ' that is, for s 2/e»1, where 0 & m&&1, the quantity~ [I y,q)],

Eq. (4) allows the asymptotic representation '

~ [I yq)]=-
0 form &a

A '~ exp(i& ) +A '~ exp( —ip ) for m & a
(sa)

where

, exp[ —e(m + —,
' —a')]

~ -=[./(4n)]'"
(m + —,

' —a') 't' (sb)

and

—= (m+ —,
' )arctan[(m+ —,

' —a )'t ja]
—a(m+ —,

' —a') ' ' —x/4. (sc)

~,[ I y,q) ] =— lim [(r + 1) 't'~„'"']
y~ oo

-(2tr) 't' g ~ [I y,q&]exp( —imp).
m 0

(6)

Thus the phase distribution W~[l y,q)] of the squeezed
state Eq. (3) reads

w~[ I v .q&]
—= l~~[ I v.q&] I

', (7)

where~~ follows from Eqs. (4) and (6). Before we evalu-

Hence, for m & a the expansion coefficients ~ [Eq.
(4)] decay and the sum [Eq. (2)] converges even without
the factor (r+1) 't, that is,

I

ate this distribution we note that the expression Eq. (6) is
a special case of the phase functional' ~„[ly)], an ex-
pression for the phase probability amplitude of an arbi-
trary state I y) whose photon number probability amp!i
tudes ~~[I y)] decay such that the discrete m-Fourier
transform exists.

The term (m!) 't in~ [I y,q)], Eq. (4), and hence in
the sum Eq. (6) rules out an exact analytical treatment.
We therefore evaluate the sum numerically. In Fig. 1 we
display the so-calculated phase distribution W~[l y,q)] in
its dependence on the displacement parameter a for a
fixed squeeze, s 21. In the limit of appropriately large a
values the phase probability W~[l y,q)] exhibits a single
maximum at y 0, whereas in the neighborhood of
a, 3 a bifurcation occurs: Values of a below a, intro-
duce two maxima located at nonzero phase values. In the
limit of a highly squeezed vacuum a 0 two narrow peaks
located at phases p,„(a 0) ~ x/2 make their appear-
ance.

More insight into this bifurcation phenomenon is
oA'ered by an approximate analytical treatment of the sum
Eq. (6), which capitalizes on the approximate photon
number probability amplitude~ [I y,q)], Eq. (5), togeth-
er with the stationary phase approximation. ' The result-
ing periodic approximate phase distribution '

x ' (wa )'
2

for —x/2&p&n/2,&t2 2 &t2 exp( —ea tan g)
W [I y.q)] —= ' cos2q

0 for n/2 & y & 3&/2,

is thus a Gaussian distribution in the variable tang. The
uncertainty hp in phase, that is, the width of W~[l y,q)]
defined by the exponential falloff'of the Gaussian reads as

arctan[(ea ) ' l.
Moreover, for ea & 1 the distribution, Eq. (8), exhibits a
single maximum located at ~ 0, whereas for ea (1
this maximum turns into a minimum and two maxima at

+ arccos[(ea ) 't ] emerge, in full accord with the
numerical evaluation of Eq. (6) leading to Fig. 1. More-
over, this approximate treatment suggests the appearance
of the same bifurcation scenario when we keep the dis-
placement parameter a constant, but increase the squeeze,

I

that is, decrease e.
We conclude by approaching the question of the phase

distribution, W~[ I y,q)], of a highly squeezed state from
yet another angle. The guiding principle in the present
search for W~[ I y,q&] is the concept of area-of-overlap-in-
phase space. ' ' ~ The quantum-mechanical scalar
product ~„[I y,q)] =(p

I y,q) between two quantum states
such as the phase eigenstate la) and a squeezed state

I y, q& is identical to the area of overlap between the two
states represented in phase space. But can one represent
in phase space a squeezed state I y,q) and a phase state?

The Gaussian Wigner-cigar '
P'q '(x,p) =tr exp[ s(x J2a) s p ] (10)
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FIG. 1. The probability, W~[~ y~&], to find the phase of an

oscillator to lie between the value g and ~+dy when the oscilla-
tor is in a state ) ls'~&, Eq. (3), highly squeezed in the x variable
(s 21) undergoes a bifurcation for decreasing displacement a
of the state: For values of a appropriately larger than 3 the
probability curve exhibits a single maximum located at the
phase angle y ~ 0 whereas below this critical value t~o
symmetrically located maxima at nonvanishing phases s —,„(a)
occur. In the limit of a highly squeezed vacuum a 0 the distri-
bution W~[ [ y~&] is strongly peaked at the phase values
s ~+,J(a 0) x/2 and y~ „~(a 0) —x/2. A similar bifurca-
tion scenario makes its appearance when instead of reducing a
and keeping s constant we increase the squeezing while leaving
the displacement unaltered. The curves presented here result
from a numerical evaluation of the phase probability expression,
Eqs. (4), (6), and (7), based on the mathematical definition of a
phase eigenstate, Eq. (1).

shown in Fig. 2 is the obvious answer to the first question.
Less obvious, however, is the response to the second in-
quiry. In a first attempt we associate with a state ( w& of
well-defined phase, a ray32 in x-p oscillator phase space
emerging from the origin and directed under an angle p
with the x axis as depicted in Fig. 2 by the dashed-dotted
lines. More appropriate, however, is the picture' of ( o&
as a diverging beam shown in Fig. 2 by the dark phase
space wedge. Then the phase probability 8'~[( ysq&l is
identical to the phase space slice cut out of the Gaussian
cigar, Eq. (10) by the phase state wedge represented in
Fig. 2 by two panes and given in polar coordinates by

W&[ i y.q&] =„dp „dy'pb(y —p')

(x p c soy';p p sing') .
(11)

When we substitute Eq. (10) into Eq. (11)and perform
the integration in the limit of large squeezing s 2/e
where 0 & e«1, we arrive' at Eq. (8).

Area of overlap between the phase-space slice and the
Gaussian cigar —no simpler visualization of the squeezed
state phase probability offers itself. Moreover, this for-
malism provides deeper insight into Eq. (8). It readily
identifies the phase uncertainty hw, Eq. (9), as the angle
in phase space determined by the height (2/e) '/ of the
Gaussian cigar Eq. (10) defined by its contour line of ex-
ponential falloff and its displacement J2a, from the ori-

FIG. 2. In its most elementary version we associate with a
state

~
e& of well-defined phase s a ray propagating in x-p oscil-

lator phase space, emerging from its origin and directed under
an angle g relative to the x axis shown by the dashed-dotted
lines. A more appropriate visualization of (y& starts from a
divergent beam of solid angle dy propagating along this center
line as illustrated by the dark wedge-shaped phase-space slice.
The Gaussian Wigner-cigar, P~~ ~, of Eq. (10)—depicted here
by the hump shape —serves as a representation of a highly
squeezed state [ yr~&, Eq. (3), of squeeze s 21, and displace-
ment parameter u 0.7. The area-of-overlap-in-phase-space
principle associates with the phase probability,
W~[ ( tp~&1 [ ie [ ls'~& [, of this highly squeezed state, the
weighted area, that is, the volume of the shaded phase space
slice cut out of this hump by the wedge forming planes of
glass —the knife edges of the phase state. The volume of this
slice is a measure of phase probability —no simpler pictorial rep-
resentation offers itself.

gin. Even the bifurcation phenomenon depicted in Fig. 1

and hidden in the numerical evaluation of the sum Eq. (6)
becomes more transparent in this approach. Consider the
Gaussian cigar of Fig. 2 corresponding to a state highly
squeezed in the x variable and elongated in p. When lo-
cated far away from the origin of phase space, that is,
when the displacement J2a of the cigar is much larger
than its height, (2/e)'/, this angle hy(a) is small and
hence the phase is well localized around the phase zero.
In the extreme case of the squeezed vacuum a 0 the
elongation of the Gaussian cigar along the p axis intro-
duces an asymmetry in phase space, confines the phase to
the values +n/2 or —m/2, and gives rise to the two maxi-
ma of the phase distribution. Since the probability curve
has to be a continuous function of the displacement a, a
bifurcation must occur between these two extremes, that
is, when the height, (2/e) '/, is identical to the displace-
ment J2a of the cigar, or when ea2 1.

This striking bifurcation phenomenon arising in the
phase distribution of a highly squeezed state remains to be
detected in the realm of quantum optics.
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