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Vibrational transitions in collisions of two polyatomic systems are described in terms of a Hamil-

tonian bilinear in momentum and position operators, for several degrees of freedom. The relative

motion is assumed to be classical and leads to time-dependent coefficients in the Hamiltonian. The
present treatment employs a simple procedure that does not require the construction of the time-

evolution operator and leads to recursion relations for transition amplitudes, suitable for numerical
applications. As examples, we consider the special cases of a single degree of freedom, and of the

linearly driven harmonic oscillator.

I. INTRODUCTION

The interaction of two molecular systems at thermal or
hyperthermal relative velocities results in transitions
among their vibrational levels. The corresponding transi-
tion probabilities are needed, for example, in the model-
ing of the kinetics of energy transfer in gases, and of the
scattering of molecules by adsorbates on solid surfaces.

These and many other physical processes, such as
those involving charge- and spin-density Auctuations and
nonlinear optical effects, can be described in terms of po-
sition coordinates X and their conjugate momenta Pz,

J
where 1 j ~ f, and f is the number of degrees of free-
dom of the system. The corresponding Hamiltonians can
be expanded around average values (X, ), and (Px ), of

j
these variables, keeping only up to bilinear terms in

x, =X, —(X, ), and P =P —(P ), .
j j j

Transition probabilities can then be obtained in princi-
ple from the time-dependent Schrodinger equation using
a basis of vibrational states. However, for systems with
large total energy E, such as highly excited ones or ex-
tended systems, that approach is not practical because it
would involve too many basis functions. Hence there
have been several alternative treatments in the literature
to avoid expansions in basis sets. Some of them rely on
path-integral methods to calculate propagators and then
transition amplitudes some others solve the equation of
motion for the time-evolution operator, or use opera-
tor algebras to construct the time-evolution operator. '

A solution based on wave packets has also been
developed. " These treatments have been available for
a single degree of freedom. For several degrees of free-
dom, they are more involved and have been developed
only within certain approximations, ' with two excep-
tions.

One of the general treatments for multidimensional
Hamiltonians relies heavily on results of the theory of Lie
algebras to construct the time-evolution operator and
then its matrix elements between vibrational states the
other one takes a more direct approach to calculate tran-

sition probabilities directly from the equations of motion
of position and momentum operators. ' ' In this contri-
bution we expand on the second approach to obtain re-
currence relations for transition amplitudes. These re-
currence relations are well suited for computational work
and can be applied to a large variety of problems.

In what follows we concentrated on collisional excita-
tion of molecular vibrations. We treat the relative posi-
tion R as a classical variable, dependent on the time t.
The X are vibrational coordinates whose average values
can be extracted from the wave function
4( X, , . . . , Xft) as (X ),=(%(t)~X ~4(t)). The aver-
ages need not be equilibrium values. Provided the disper-
sion of values of the X is small during the duration of the
transition, we can expand the potential energy
V(R, X&, . . . , Xf ) in the form

V(R, X)'P(X, t ) = V (t)+ g V"'(t)x

+ —,
' g V""'(t)x,x„e(X,t),

j,k

where we have kept only second-order terms in the
x =X —(X ), . Adding to this the kinetic-energy opera-
tor times 4, we can identify a bilinear Hamiltonian, valid
even when the average vibrational coordinates depart
significantly from equilibrium values. In the present
study, however, we assume that a linear transformation
has been made from the x to the usual normal vibration
coordinates g, describing displacements from equilibri-
um positions of bond lengths and angles. This transfor-
mation maintains the bilinear form of the Hamiltonian.

The Schrodinger equation for a bilinear Hamiltonian
has been solved in several other ways' ' in addition to
those mentioned above. Transition probabilities have
been exactly calculated for one degree of free-
dom. ' ' ' "" The purpose of this paper is to present an
alternative way of obtaining transition probabilities. The
present method is based on the integration of equations
of motion and avoids calculations of either the time-
evolution operation or the propagator. As a result it is
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easily applied to a bilinear Hamiltonian with many de-
grees of freedom, yielding recurrence relations for the
transition probabilities which are most suitable for com-
putational purposes.

In what follows, Sec. II introduces the notation for the
multidimensional problem and the interaction picture
used to calculate transition probabilities. Section III de-
scribes the equations of motion and the procedure fol-
lowed to derive the recurrence relations, with Sec. IV de-
veloping as special cases the problem with a single degree
of freedom, applied to He+H2, and the one with vanish-
ing or small quadratic terms in the potential. The con-
clusions in Sec. V briefly describe how the same approach
can be applied to the calculation of collisional time-
correlation functions for the same problem. '

II. BILINEAR HAMILTONIAN
AND THE TIME-EVOLUTION OPERATOR

H(t) =Hp+ V(t), (2.5b)

f
Hp= —,

' g co (p +q ) .
j= 1

The vibrational states are

~N&=~n, , n, , . . . , n/&,

(2.5c)

(2.6)

where n =0, 1, . . . , is the jth vibrational quantum num-
ber. Therefore

in unity of co, co and Ace, respectively. This choice cor-
responds to setting A = 1. Therefore the Schrodinger
equation becomes

U(t, t, )= —iH(t)U(t, t, ), U(t, , t, )=I, (2.5a)
d
dt

where J is the identity operator and

The vibrational Hamiltonian for the isolated molecules
can be written

f
HpIN&=EJvlN&, E~= g roJ(n, + —,') . (2.7)

f
Hp= g (P, /m +k Q )/2,

j=l
(2.1)

The transition probability from an initial state ~N & to a
final state ~N' & is given by

qJ=(m to /A')' Q

a =
J

(2.2a)

(2.2b)

where f is the total number of vibrational degrees of free-
dom, Q is the displacement from equilibrium of the jth
normal coordinate, P =ilia/BQ, and m and k are the
mass and force constant for the jth normal mode of vi-
bration. It is convenient to introduce dimensionless coor-
dinates and momenta as follows:

P„„,= I & N IS IN' & I', (2.8)

Ut(t tp)= UpU(t tp) Up=exp[ i(t tp)Hp]

This operator satisfies

dUr

dt
= —iHr U

where

(2.9)

(2.10a)

where S = Ut( ~, —oo ) and Ut(t, tp) is the time-evolution
operator in the interaction picture

where co =(k /m )'~ is the jth normal frequency.
Therefore the Hamiltonian operator reads Ht=UpV(t)Up . (2.10b)

f
Hp =

—,
'A' g to (p +q. ) .

j=1
(2.3)

A straightforward generalization of the treatment for one
degree of freedom shows that

The interaction potential is a function of the normal
coordinates Q = ( Q „Qz, . . . , Q/ ) and depends on time
through the coordinates of the relative motion R(t). As
indicated by Eq. (1.1) it can be expressed as

V(t) = V(Q, R(t))
f= Vp(t)+ g V, (t)q,

j=l
f f

+ —,
' g g V k(t)q qk+
j=l k=1

(2.4)

where Vo, V, and Vk have dimension of energy because
of Eq. (2.2a). If the displacements QJ are much smaller
than the corresponding equilibrium bond lengths and an-
gles then larger-order terms in the expansion (2.4) can be
neglected.

Further simplification is obtained by selecting an arbi-
trary frequency co (for instance, the largest in the set
co„co&, . . . , co/) and giving frequencies, time and energy

Ht= —,'[p A(t)p+q B(t)q+p C(t)q+q C(t) p]

+D(t) rp+ F(t)rq+ Vp(t)I, (2.11a)

AJ&
= VJksin[co, (t tp)]sin[tok(t tp)]

8~k = VJkcos[co&(t tp)]cos[cok(t tp)]

C&k
= V Jski [neo (it

—tp)]cos[tok(t tp)]

D = V sin[co (t tp)], —

F = V cos[co (t —tp)] .

(2.11b)

It must be remembered that V and V k are given in units
of %co.

The method developed in what follows applies to any
bilinear operator of the form (2.11a) with arbitrary real

where p and q are f X 1 matrices with elements p and q,
respectively, and the superscript T means the transpose.
Here A, 8, and C are f Xf matrices, and D and F are
f X 1, matrices, with elements
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time dependent matrices A(t), B(t), etc. The matrix ele-
ments (2.lib) are just a particular case. Clearly, the
physical meaning of the transition probabilities in Eq.
(2.8) requires that Ht ~0 as

I
t

I
~ ~.

III. EQUATIONS OF MOTION
AND TRANSITION PROBABILITIES

0= UqOUq, (3.1)

The calculation of transition probabilities for the mod-
el in Sec. II is greatly simplified by considering the canon-
ical transformation

The number of these equations is 2f f—and, for this

reason, there are only 2f +3f independent functions.
Equation (3.6) can be used as a test for the numerical
solution of Eq. (3.5).

In order to obtain the recurrence relations for the tran-
sition probabilities it is convenient to introduce the occu-
pation number representation given by the column ma-
trices of annihilation and creation operators

Qi

Q2
a= —(q+ ip) =

v'2

where 0 is a linear operator. The rate of change of the
operator 0 is easily found to be

Qf
(3.7)

=i [0,Ht ]+ Ut Ut . (3.2)

The canonical transformation in Eq. (3.1) does not corre-
spond to any of the well-known quantum-mechanical pic-
tures. It becomes the identity transformation when the
interaction potential V vanishes. We choose such an
unusual transformation here because it simplifies the fol-
lowing calculations.

Since [Ht, p] and [Hz, q] are linear combinations of p
and q, the solution of Eq. (3.2) for these operators can be
written

Q2
—(q —tp)=+

Qf

They satisfy

a In, , . . . , n, . . . , nf)

=(ni)' In, , . . . , n —1, . . . , nf ),
(3.8)

a In&, . . . , n, . . . , nf )

p=u (t)+u (t)p+u (t)q,

q=u (t)+u (t)p+u (t)q,
(3.3)

=(n +1)' In„. . . , n +1, . . . , nf) .

It follows immediately from Eqs. (3.3) that

where u, and u are f X 1 real matrices and u, u

u, and u are f Xf real matrices. Since p(to)=p and

q(to) =q it follows immediately that

a=GO+G a+G+a+, a+ =Go+G* a++G+a,
(3.9)

u~(to)=u~(to)=0, u (to)=u~~(to)=0,

upp(to) =uqq(to) =1, (3.4)

where

GO=2 ' (u +iu ),

PP

iuqp

pq

Uqq

upp upq

.Uqp uqq

CT Q
—C

where 1 is the identity matrix. Upon introducing Eq.
(3.3) into Fq. (3.2) we obtain the equations of motion for
the matrices u:

G =2 '[u +u +i(u —u )],
G+ =2 '[u —u +i(u +u~~)] .

Besides, according to Eqs. (3.4) and (3.6) we have

G(to)0=0, G (to)=1, G (to+)=0,

(3.10)

(3.1 1)

up

uq

PP

.Uqp

upq F
Uqq ~ 0

and

G G —G+G+ = 1, G G+ —G+G =0, (3 12)

wher- the dot stands for time differentiation and the su-
perscript T means transpose. It is not dificult to verify
that these equations are closely related to Hamilton's
equations of motion for the classical analog of (2.11a).

According to Eq. (3.3) the operators p and q are
defined by 4f +2f functions of time. However, not all
of them are independent since [p,pk]=[q, qz]=0 and

[q,p& ] =i 5 &, which lead to

&N'IaU, IN&=G [&N'IU, aIN& —G,&N IU, IN)
—G+&N'Ia+U, IN &], (3.13a)

respectively.
Upon taking matrix elements (N'I IN) on both sides

of U&a=aU& and U&a+ =a+ U~ we have, after solving for
(N'IaUtIN ) in the former,

T T
"qqupp Uqp Upq

T T
pq pp pp pq

T T
uqquqp

—
uqpuqq

—0 .

(3.6) (3.13b)

respectively, where the following notation is used:

( N'
I U, a+ I

N ) =Go & N'I U, I
N ) +G'

&
N'

I a+ Ut IN )

+G+&N'iaU, IN &,
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(N'I UtalN ) =

&N'I U, af IN &

(3.14)

etc. Notice that the elements of the column vectors
(N'I UtaIN ), etc., are the desired transition amplitudes,
except for coefficients that can be easily determined. Be-
sides, since the eigenvalues of Cx+Cx+ are larger than or
equal to zero, it follows from Eq. (3.12) that those of
G Cx will be larger than or equal to unity and
IdetG I

~1. Therefore G exists for all t values.
Equation (3.13b) can be rewritten in a more convenient

way by introducing Eq. (3.13a) into it and using Eq.
(3.12). The result is

(N' Uta IN) =(Go —G+G:'Go)(N'IUtIN)

+G*,G &N'IU, aIN &

+(G ) (N'Ia+ Ut iN ) . (3.13b')

The starting point of the recursive process is
IN &

= Io&, IN) =10&, where IO) =In, =O,n2=0, . . . , nf
=0) is the ground state of Ho. In the first step we obtain

( 0
I
a U

I
0 ) = —G G & 0

I U, I
0 &,

&OIU, a+10& =«o —G+G Go)&OIUtlO&
(3.15)

which yield all the transition amplitudes for IO) ~aj IO),
and a, IO) ~ IO), j=1,2, . . . , f, respectively. Strictly
speaking, the recurrence relations (3.13) provide the tran-
sition probabilities divided by ( 0

I Ut I
0 ), which can be

easily calculated as shown below.
Since aIO) =0 we have aUtIO) =0 which, because of

Eqs. (3.7) and (3.9), is a first-order partial differential
equation for Ut IO). The solution is easily found to be

u, calculated at time t&, are used to construct the ma-
trices G in Eq. (3.10). Finally, the transition probabilities
are obtained from the recurrence relations in Eqs. (3.13).
The time dependence of the matrices u is asymptotically
smoother in the interaction picture (described in Sec. II)
than in the Schrodinger picture. For this reason, choos-
ing the former picture facilitates both the integration pro-
cess and the determination of the final time t, for which
convergence is achieved up to the desired accuracy.

IV. TWO EXAMPLES
FOR MOLECULAR COLLISIONS

—G n' I„ i„),
I„„+,=(n+1) ' G [(Go 6 —G+Go)I„„

+ iy2G* I, „
+n' I„,„],

(4.1a)

(4. lb)

where I„„=(n'IUtIn ) and Go, G, and G+ are com-
plex numbers. Given I„.„, I„., „, and I„.„,, the re-
currence relations (4. la) and (4.1b) proceed rightwards
and upwards yielding I, +, „and I„„+&, respectively.
The calculation of I5, is shown in Fig. 1. The transition
amplitudes can be written I„.„=J„.„Ioo where [J„„;
n'n, =0, 1, ] is a solution of Eqs. (3.13) with the ini-
tial condition Jo o= l. The transitions probability IIo oI
can be obtained either from Eq. (3.18) or from

In order to illustrate more plainly how the recurrence
relations (3.13) work, two simple particular cases are dis-
cussed below. To begin with, consider an atom-diatom
collision. Since there is only one vibrational degree of
freedom then f =1 and Eqs. (3.13a) and (3. 13b') reduce
to

I„+& „=G:'(n'+1) ' (n '~ I„.„&—GoI„.„

(qI UtIO) =N exp( —g, q —
—,'q g2q),

g, =2' (1—G 'G ) 'G G

g~=(1 —G G+) '(1+G G+),
where

IN I

= [m. det(Reg2) ]'

Xexp[ —
—,'(Reg, ) (Reg2) '(Reg, )] .

(3.16a)

(3.16b)

(3.16c)

(3.17)

II„I'=(1+
I J, , I'+

i Jo,21'+ )-'

because IIo oI + II„, I
+ . =1. This series is found to

converge quickly enough so that only a few terms are re-

In this last equation Re stands for the real part of a com-
plex number. Finally, since IO) =sr f exp(q q/2) we
have

&OIUtlO& = INI[~ det(1 —G 'G+)]'~

Xexp[ —
—,'(G 'G ) (1—G 'G ) 'G 'G

+iH], (3.18)

where 0 is a phase factor that is immaterial for the
present purposes.

In actual applications, one first integrates the equations
of motion (3.5) from an initial time to before the interac-
tion to a final time t, after the interaction. The matrices

FIG. 1. Example for the calculation of the transition ampli-
tude I5 3. Equations (4.1a) and (4.1b) are used to move right-
wards and upwards, respectively. Circles indicate the input into
I5 3 The points are generated in the order (n, n')=(0, 1), (0,2),
(0,3), (0,4), (0,5), (1,3), (1,4), (2,4), (1,5), (2.5,), and finally (3.5).
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0

TABLE I. Transition probabilities P„„for the He-H, collision (m& =4, m& =m&=1, 0=0.2 A,
and a=0.3) (Ref. 14) calculated with the recurrence relations {RR) and with the basis-set expansion
(BSE) for M= 10. The total energy is chosen to be 5%co.

n' RR CPU time (sec) BSE CPU time (sec)

0.2317
0.016 78
0.1979

31
32
32

0.2317
0.01679
0.1982

1741
1534
2554

quired to obtain ~ID o~ accurately. However, Eq. (3.18) is
preferable when there are many vibrational degrees of
freedom. In order to show the computational advantages
of the present method we consider the collision between
an atom A and a diatomic molecule BC; i.e.,

A+BC(n)~A+BC(n') . (4.2)

The most widely used interaction potential V between
an atom and a diatom is an exponential function

V(r„ti )=D exp( —r„ti/a ), (4.3)

where D and a are potential parameters and r~z is the
distance between 3 and B. This potential can be written
as V(R, q), where R is the distance between A and the
center of mass of BC and q is the dimensionless displace-
ment of the harmonic oscillator BC from equilibrium.

Since the purpose of the present paper is to illustrate
the use of recurrence relations for the transition ampli-
tudes we choose, for the sake of simplicity, R (t) to be the
solution of the classical equations of motion for the po-
tential V(R, O). Upon expanding V(R(t), q) as
V, (t)q+ V»(t)q /2 we find'

V, (t)=(irim 'co ')' ya 'E sech [(E/2iM)' a 't],
(4.4a)

V„(t)=[(irim 'co ')' ya ']V, (t), (4.4b)

E =
—,
' p [—,

'
( u, + Uf ) ] (4.&)

where U, and Uf are the initial and final relative velocities,
respectively. It is also convenient to introduce the di-
mensionless parameter a =a '(A'm 'co '

)
'

The calculation is very simple. First Eqs. (3.5) are in-
tegrated from to (&0 to t ))0 in order to obtain the real

where y=mc/(ms+me), m =yms, p=(m~
+mc)ma/(ma+ma+me) and co is the frequency of
the harmonic vibrations of BC. The average relative ki-
netic energy E is given by

numbers u (t), u (t), u (t), u (t), u (t), and u (t).
Next we calculate the complex numbers Go(t), G+(t),
and G (t) according to (3.10) and obtain I„.„/Io0 for
the desired n' and n values from Eqs. (4.1). Finally, Io 0
is calculated as discussed before and P„„.=

~
I„.„~ .

We also calculate the transition probabilities by means
of the usual basis-set-expansion method:

M

Uz(t, —~ )~n ) = lim g a „(t)exp( —iE~A 't)~j),M~ oo J=

(4.6)

where the expansion coefficients aj„(t) are solutions of an
infinite set of first-order diff'erential equations with the
initial conditions a „(—~ ) =5 „. Then, P„

The transition probabilities for a model He-Hz collision
with the parameters given in Ref. 3 were calculated using
both the present algorithm and the basis-set expansion.
In both cases the interaction potential was expanded in a
Taylor series up to second order as shown in Eqs. (4.4).
Therefore results are expected to agree provided conver-
gence is reached. Results are shown in Table I.

The diff'erential equations were solved with the
Richardson method of successive extrapolations. The re-
currence relations are found to be about 60 times faster
than the basis-set expansion. The larger the number of
vibrational degrees of freedom, or the quantum numbers
of the transition, the larger the diff'erence in running
times between both procedures. The recurrence relations
enable one to obtain many transition probabilities very
quickly. Some of them are shown in Table II for the
same system and large quantum numbers, for which the
basis-set-expansion method would be very time consum-
ing. Numerical results are collected here for comparison
purposes; for n

' = 8 the transition probabilities are small-
er than 10

In the next example it is assumed that the quadratic
terms in the Taylor expansion (2.4) for the interaction po-

TABLE II. Transition probabilities for the He-H& collision at the total energy of 10%co. The num-
bers in square brackets are powers of 10.

n' Po

0.1029
0.2601
0.2659
0.1400

P,

0.2601
0.1132
0.1899[—1]
0.1965

n' Po

0.3990[—1]
0.5950[—2]
0.4109[—3]
0.1011[—4]

Pl

0.1742
0.5261 [—1]
0.6028[—2]
0.2182[—3]
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tential can be neglected, but we consider a general f, suit-
able for molecule-molecule collisions. Although this spe-
cial case has been fully discussed in the literature, we will
briefIy consider it here in order to show the quite simple
form of the recurrence relations (3.13). Since
A=B=C=O then Eqs. (3.5) can be easily solved and the
result is

and

u„=u,q
——~, upq

——
uqp

——0,
u (t) = J F(s)ds, u (t) = —J D(s)ds ,

0

iso=2 ' (u +iu ), Cs =1,

(4.7)

(4.8)

which clearly shows that the recurrence relations (3.13)
do not couple the components of the transition-
probability column vectors. In other words, we have 2f
recurrence relations of the form

and increases by unity can be made in each quantum
number at a time (for instance, n, and n,') with-out alter-
ing the remaining ones.

V. CONCLUSIONS

The method just presented allows the calculation of
transition amplitudes for general f-dimensional time-
dependent quadratic Hamiltonians. The procedure is
quite simple. First, the classical equations of motion (3.5)
are integrated from to to t and the matrices u are ob-
tained. Second, they are used to calculate the matrices G
and the integral &0~ Ut ~0&. Finally, the recurrence rela-
tions (3.13) are used to obtain the desired transition am-
plitudes.

&
N' ai Ut ~

N &
=

&
N'

I Utah ~
N &

—
Goj &

N'
I Ut I

N &

&N'(Uta (N & =Go, &N'(Ut(N &+ &N')a Ut(N &,

j=1,2, . . . , f (4.9)

This procedure offers at least two advantages. First,
the recurrence relations (3.13) are most appropriate for
computational purposes because they only involve ma-
trices. This is certainly very convenient when there are
many degrees of freedom. Second, instead of the non-
linear differential equations for the parameters in the
time-evolution operator we obtain linear differential
equations which are closely related to the classical equa-
tions of motion.

It has been argued that the bilinear (or harmonic) ap-
proximation would not lead to acceptable results in some
other cases involving different interaction potentials. '

For the interaction potential and atomic masses used in
the present paper we have verified here that the bilinear
Hamiltonian gives very good results, in accordance with
expectations. We have further investigated our model
for other masses introducing expansion around average
trajectories.

In closing we add that the procedure just described is
also useful in calculating time-correlation functions.
For instance, a diagonal matrix element of the form
Civ(t) = &N~S S(t)IN &, where S is given in Eq. (2.3) and

S(t)=exp(itHo)S exp( —itHo),

can be written as Civ(t)= &N~I ~N &exp( —itEiv), where
I =S exp(itHo)S=exp(itS HoS ) defines a canonical
transformation. Since I aI and I a+ I are easily ob-
tained, one can therefore apply the procedure of Sec. IV
with Uz replaced by I to derive a recurrence relation for
the matrix elements of I .
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