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Pattern development in cellular automata triggered
by site-specific reactive processes: Dynamical aspects
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In this paper we continue our study of the (discretized) evolution of regular and fractal patterns
initiated by a site-specific reactive event. By formulating and solving (numerically) the stochastic
master equation descriptive of the model introduced (for two classes of initial conditions and for
two locations of the target site), we are able to demonstrate that symmetry-breaking instabilities
which generate fractal patterns (here the Sierpinski gasket) propagate slower than those which gen-

erate Euclidean ones (here the triangular lattice). A connection is made between (two) characteris-
tics of the system s evolution (the zero-mode relaxation ti~e and an effective relaxation time
descriptive of the overall decay of the initial state) and results calculated using the theory of finite

Markov processes (the mean walk length of a coreactant diffusing on the underlying lattice). Using
this relationship, the trends observed in our study are interpreted in light of recent theoretical work
on the problem of diffusion on fractal lattices and in terms of the notion of a "fractal" valency, a
concept that places stress on insights drawn from earlier analytic and numerical studies of random
processes on finite planar lattice of integral dimension d =2. Finally, the possible relevance of our
results to a specific problem in pattern formation and development, the generation of neural net-

works of the Purkinje type, is discussed.

I. INTRODUCTION

It is known from the work of Gefen, Aharony, and
Alexander' that diffusion on percolation networks is
slower than on Euclidean ones, viz. , the mean-square
displacement of a random walker is given by (, r (t))
—t ' + ' with 6=0.8 in dimension d =2 for percolating
networks versus 0=0 in the Euclidean limit. To explore
some consequences of this result as it relates to ongoing
studies of pattern formation and pattern development,
we recently introduced a simple model whose elabora-
tion we hoped would cast light on this problem. The
model was phrased using the language of cellular automa-
ta since, as Wolfram has documented, both regular and
fractal patterns can be generated using simple rules in
which the evolution of a given site is determined by the
state values of its nearest neighbors. For example, given
the eight possible states of three adjacent sites (111, 110,
101, 100, 011, 010, 001, and 000) evolving via "rule 90"
(the binary code for the number 90: 01011010)a Sierpin-
ski gasket is generated (Fig. 1), whereas "rule 50" (binary
code 00110010)generates a regular triangular lattice.

In our model, we considered diffusion-controlled pro-
cesses wherein the development of a specific fracta1 pat-
tern occurred in discrete stages. The triangular pattern
(see Fig. 1) coded by sites 1,2,3 was defined as stage I,
that coded by the sites 1, . . . , 15 was denoted stage II,
that coded by 1, . . . , 42 as stage III, and that coded by
1, . . . , 123 as stage IV.. We then assumed that the onset
of growth at each stage required a chemically specific
"trigger mechanism. " In particular, we considered a
molecule localized initially at site 1 which, upon activa-
tion, is released from site 1 and migrates randomly

throughout the lattice, reacting eventually (and irreversi-
bly) at a single, specific site (reaction center) on the far
boundary of the system: For stages I—IV, the set of
boundary sites is the one-dimensional sequence of points
2,3; 11,12,13,14; 34, . . . , 42; and 107, . . . , 123, respec-
tively. Thus, suppose the pattern defined by stage II has
been generated; in our model, once the diffusing coreac-
tant reacts with the target molecule at a given reaction
center on the boundary, we suppose that the nearest-
neighbor information coded by rule 90 is processed at
each of the points defining the boundary (i.e., the points
11, . . . , 14) and the next stage (III) in the development of
the pattern takes place.

The basic strategy taken in our earlier work was to cal-
culate, using the theory of finite Markov processes, the
first moment of the probability distribution function
describing the above pattern generation process (specif-
ically, the mean walk length of the coreactant diffusing
from site 1 to a target site). The consequences of consid-
ering several possible locations of the reaction center
were examined and the whole calculational procedure
carried through both for the Sierpinski gasket (di-
agrammed in Fig. 1) and for the associated, triangular
(Euclidean) lattice (e.g. , for %=15, the structure di-
agrammed in Fig. 1 with all sites 1, . . . , 15 connected).
Upon examining the values of the mean walk length of
the coreactant diffusing from site 1 (( n ) &) (as well as the
overall average walk length (n)) to target molecules
similarly positioned on the two lattice structures con-
sidered, we inferred that the development of fractal pat-
terns is distinctly slower than for regular (Euclidean)
ones.

As recognized in our earlier study, the conclusion
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drawn from calculations of the stochastic variable (n ),
(or (n )) can be made more precise by studying explicitly
the full dynamics of the process (rather than inferring the
dynamics from calculations of the mean walk length and
estimates of the mean jump time between adjacent lattice
points). To this end we have taken up in this paper the
formulation and (numerical) solution of the (time-
dependent) stochastic master equation for the model de-
scribed above. Determination of the zero-mode relaxa-
tion time for the process considered and extraction of an
effective relaxation time descriptive of the overall decay
of the initial state of the system allow a more definite
statement to be made regarding the unfolding of
(representative) fractal or Euclidean patterns triggered by
a site-specific recognition event (or reactive process).

The formation of the stochastic master equation and
analysis of the attendant eigenvalue spectrum for the
model are presented in Sec. II. In Sec. III we display
graphically some of the principal trends uncovered in our
study. Finally, in Sec. IV after summarizing the overall

conclusions that can be drawn from the calculations re-
ported here, we speculate on the possible relevance of
these results to a concrete problem in biophysics. An is-
sue which is of much interest today in experimental stud-
ies of neural networks is the manner in which patterns of
neuronal connections are generated. The model elaborat-
ed here (which, in fact, was designed with this problem in
mind) allows some preliminary conclusions to be drawn
regarding the extent to which the neural network itself
infiuences ( 'participates in") its further growth.

II. THE STOCHASTIC MASTER EQUATION

The time dependence of diffusion-controlled reactive
processes can be studied by formulating a stochastic mas-
ter equation

dp. N

G, p (t) (i=1,2, . . . , N)

/
L —- N= l23

FIG. 1. The Sierpinski gasket with sites coded.
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for the specific geometry characterizing the reaction
space of the system. Here p; (t) is the probability of real-
izing a particular state i and G, . is an N XN matrix that
describes the transition probabilities between the states of
the system. As is demonstrated in Refs. 2, 6, and 7, the
general solution of the above system of linear equations is
of the form

m=1

where a; are coefficients determined by the initial condi-
tions and A, are the eigenvalues of the G matrix above.

Two classes of initial conditions are considered in this
study and these will now be described. Consider first a
coreactant initiating its motion at the (top) vertex site k
(=1) of the lattice unit. From that moment (t =0) on,
the coreactant is assumed to diffuse randomly on the lat-
tice from site to site until it reacts irreversibly with a tar-
get molecule anchored at a particular site on the far
boundary (the base). The number of discrete steps in this
trajectory will be some number, say k, . Note, however,
that the trajectory followed by the diffusing coreactant
starting from that initial site k is not unique; a variety of
possible paths on the lattice can be taken by the coreac-
tant and each will be characterized by a walk length k;.
The most probable or average walk length will be the sta-
tistical average of all possible paths from site k to the re-
action center and this number will be denoted (n ) &. Of
course, one could imagine the coreactant starting its tra-
jectory at any one of the N —1 satellite sites defining the
lattice under study. The corresponding, overall average
walk length characterizing all possible Aows from all pos-
sible nontrapping sites will be denoted ( n ).

Relative to the system of Eqs. (1), the first class of ini-
tial conditions is specified by assigning pI, (t =0)=1 with

p;(t =0)=0 for all iWk T. he second class of conditions
is characterized by assigning pl, (t =0) =(X—1) ' for all
k (excluding the target site or trap).

For a given choice of initial condition, we consider sys-
tematically the unfolding of regular (triangular) or fractal
(Sierpinski) patterns as triggered by site-specific reactive
processes. In this work, the consequences of positioning
the target molecule at two different locations are exam-
ined in detail. The first site, labeled A, is one of the (two)
vertex sites on the "base" of the lattice structure extant at
each generation; the second, labeled 8, is the midpoint of
the base at each generation of growth.

In studying the dynamics on the lattice structures con-
sidered here, it is important to note that the Aow of the
diffusing coreactant is constrained by the boundaries of
the structure present at a given generation of growth.
Thus we assume that when the diffusing coreactant is on
a boundary site, only adjacent sites on the boundary or
(nearest-neighbor) sites in the interior of the lattice are
accessible to the coreactant. This constraint necessitates
a distinction between the local versus global connectivity
(or valency) of the lattice structure. Specifically, one
must distinguish between the number vt, of pathways (to
or from) a particular lattice site k versus the overall (or
average) connectivity v of the lattice. For example, at
each stage of generation, the Sierpinski gasket will have
three vertex points characterized by a valency vI, =2
while all other boundary and interior sites of the gasket
will have a local valency v& =4. Thus the overall connec-
tivity v of the network will change with each successive
generation of growth as the number of interior and non-
vertex boundary sites begins to dominate the number of
vertex sites. In particular, for the Sierpinski gasket the
overall (or average) valency v of the network changes sys-
tematically from v=3.600 to 3.8571 to 3.9512 as N
changes from N =15 to 42 to 123. On the other hand,

TABLE I. Correspondence between ( n ), vA, , ', and v A, SCx denotes Sierpinski gasket.

Pattern

Triangle
or SG

Triangle
or SG

Sierpin ski

Triangle

Sierpinski

Triangle

Sierpinski

Triangle

15

15

42

123

153

A

B
A

B
A

B
A

B
A

B
A
B

B

3.0000
3.0000
3.6000
3.6000
4.0000
4.0000
3.8571
3 ~ 8571
4.8000
4.8000
3.9512
3.9512
5.3333
5.3333

N T

3 A 2.0000

9.200
3.800

43.429
17.714
44.674
17.723

211.561
85.342

223.809
85.284

1047.312
420.262

1118.42
437.95

0.330921
0.697 224
0.080 844 3
0.183 897
0.089 145 7
0.212 013
0.017 327 3
0.040 340 2
0.021 147 9
0.054 087 1

0.003 546 48
0.008 31427
0.004 700 17
0.012 544 2

2.0000 1.000 000

vA, ,
'

2.000

9.066
4.303

44.530
19.576
44.870
18.867

222.602
95.614

226.973
88.745

1114.118
475.231

1134.710
425. 163

D](%)'

0.00

—1.46
13.24
2.54

10.51
0.44
6.45
5.22

12.04
1.41
4.06
6.38

13.08
1.46

—2.92

0.081 628 6
0.186 602
0.090 380 6
0.212 672
0.019463 2
0.045 254 9
0.021 871 5
0.055 255 3
0.003 579 30
0.008 407 48
0.004 711 14
0.011 891 9

——
1

vA,

44. 102
19.292
44.257
18.808

198.174
85.231

219.464
86.869

1103.903
469.962

1132.068
448.485

D2(% )

1.55
8.91

—0.93
6.12

—6.33
—0.13
—1.94

1.86
5.40

11.83
1.22
2.41

'D/(%)=[(vA, /

' —(n ) )/(n )]X100.
D~ (% ) = [(v A. —( n ) ) /( n ) ] X 100.
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This general conclusion pertains to all the lattices con-
sidered in this paper: the coreactant "finds" the target
molecule much more easily when the latter is positioned
at the centrosymmetric site on the base of the lattice unit.

FIG. 4. The survival probability p(t) of a coreactant diffusing
on an N =15 triangular lattice (solid line) vs an N =15 Sierpin-
ski gasket (dotted line). The target molecule is positioned at the
midpoint of the base and, as the initial condition, we assume an
equal a priori probability of the diffusing coreactant being at any
of the N —1 satellite sites at time t =0.

The case N = 1S is particularly interesting since this is
the only (nontrivial) lattice unit for which a triangular
lattice and a Sierpinski gasket have exactly the same
number N of total sites. In terms of bond connectivity
(reaction pathways), however, the overall (effective)
valence of the triangular lattice is v=4. 000 whereas that
for the Sierpinski gasket is v=3.600. In Figs. 4 and S we
assume that the target molecule is anchored at the rnid-
point (8) of the base and find that, both for the case
where the diffusing coreactant initiates its motion from
any of the N —1 satellite sites with equal a priori proba-
bility (Fig. 4) or where the trajectory is initiated from the
(top) vertex site farthest removed from the target (Fig. 5),
decay on the fractal lattice is distinctly slower than on the
regular lattice. These trends persist when one switches
the target molecule to one of the vertex positions on the
base (Figs. 6 and 7).

The next generation of the lattice structures results in
an N =42 Sierpinski gasket and an N =45 triangular lat-
tice. Despite the fact that the triangular lattice has three
more satellite sites than the Sierpinski gasket, the trends
noted in the preceding paragraph are still sustained: For
both choices of initial condition, the decay on the fractal
lattice is distinctly slower than on the regular lattice, re-
gardless of whether the reaction center is positioned at
the midpoint (8) of the base (Figs. 8 and 9) or at one of
the vertex sites (Figs. 10 and 11).

The above conclusions may be brought out in a
different way by comparing corresponding values of A.

&

for the Sierpinski gasket versus the triangular lattice as

I.O-

I.O- 0.8-

0.8-

~ 06-

CD
N py-
CD
O
CL

0.2-

g 0.6-

Cl~ o~-
CQ
O
lX
CL

0.2-

0.0
0

L~
L' ~L' ~~ ~~ ~

~O ~
~

~

~O

8 l2 16

TIME f (arb. units)

I

20

0.0
0 8 l2 l5 20

TIME. t (arb. units)

FIG. 5. The conventions here are the same as in Fig. 4 except
that we assume the diffusing coreactant initiates its motion at
the vertex site farthest removed from the target on the base.

FIG. 6. The survival probability p(t) of a coreactant diffusing
on an N =15 triangular lattice (dashed line) vs an N =15 Sier-
pinski gasket (dotted line). The target molecule is positioned at
one of the vertex sites on the base and, as the initial condition,
we assume an equal a priori probability of the diffusing coreac-
tant being at any of the N —1 satellite sites at time t =0.
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FIG. 7. The conventions here are the same as in Fig. 6 except
that we assume the diffusing coreactant initiates its motion at
the vertex site farthest removed from the base.

reported in Table I. The initial conditions relevant for
the data specified in Table I are those for which the
diffusing coreactant is assumed to initiate its trajectory
from any of the X —1 satellite sites. As noted previously,
A, , is the smallest eigenvalue of the system (1) and is the
eigenvalue which dominates the decay of this initial state
in the limit of long t. For every generation of lattice

FIG. 9. The survival probability p(t) of a coreactant diffusing
on an N =45 triangular lattice (solid line) vs an N =42 Sierpin-
ski gasket (dotted line). The conventions here are the same as in
Fig. 5.

structure (i.e., N=15, 42, 123 for the Sierpinski gasket
and N= 15,45„153 for the triangular lattice) and for ei-
ther location of reaction center [base midpoint (8) or ver-
tex ( A) site], it is seen that A, , for the triangular lattice is
larger than the A,

&
for the Sierpinski gasket, even when a
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FIG. 8. The survival probability p(t) of a coreactant diffusing
on an N =45 triangular lattice (solid line) vs an N =42 Sierpin-
ski gasket (dotted line). The conventions here are the same as in

Fig. 4.

FIG. 10, The survival probability p( t) of a coreactant
diffusing on an N=45 triangular lattice (dashed line) vs an
N =42 Sierpinski gasket (dotted line). The conventions here are
the same as in Fig. 6.
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FIG. 11. The survival probability p( t ) of a coreactant
diffusing on an N=45 triangular lattice (dashed line) vs an
N =42 Sierpinski gasket (dotted line). The conventions here are
the same as in Fig. 7.

given generation is characterized by a different number
(N —1) of satellite sites. Thus in stage IV of the pattern
generation process, there are 30 more sites accessible to
the diffusing coreactant on the triangular lattice
(N =153) than on the Sierpinski gasket (N =123), yet
the A, , value (and hence the decay rate) for the triangular
lattice is -25% larger than the I, , value for the Sierpin-
ski gasket for a target molecule positioned at site 8 (and
—34% larger for a target at site A). This result provides
an important clue in understanding the importance of lat-
tice connectivity in influencing the dynamics on the
structures considered, a point which will be taken up in
the following section.

IV. CONCLUSIONS

The overall conclusion which follows from the calcula-
tions reported in this paper is that pattern development
triggered by a site-specific recognition event (or reaction)
on a Sierpinski gasket is distinctly slower than the corre-
sponding process on a regular triangular structure.
These results are entirely consistent with the theoretical
predictions of Gefen, Aharony, and Alexander, ' reported
in their analytical study of diffusion on percolation versus
Euclidean networks. They are also consistent with our
earlier calculations of the mean walk length (n )& (or
(n )) for the model considered here. That the latter cal-
culations are consistent with the present study follows
from the large N correspondence noted previously, viz. ,
vA, ,

'= ( n ), where A, , is the smallest eigenvalue of the
system (1). Generally speaking, this correspondence is
quite close and, in fact, becomes even closer if one com-
putes (n ) using the average A, . Recall that the latter
quantity is an effective or overall calibration of the decay

[constructed by performing a least-squares analysis of the
data generated via numerical solution of the system (1)].
Thus A. gives an estimate of the influence of the complete
set [ A, , j of eigenvalues governing the decay or, converse-
ly, gives a numerical estimate of the extent to which the
overall decay is driven by the single eigenvalue A,

&
(the re-

ciprocal of the zero-mode relaxation time). Since the
correspondence between (n ) and vX, ' [or VA, '] is evi-
dently quite good, one can use either characteristic, ( n )
or A, „to discuss the fate of a randomly diffusing coreac-
tant on lattices of integral or fractal dimensions.

A second conclusion which follows from the work
presented in this paper is that if the reaction center is po-
sitioned at a more centrally located site (the midpoint site
8 versus the vertex site A) the efficiency of the diffusion-
controlled reactive process is enhanced, regardless of the
integral or fractal character of the lattice. Using the ( n )
values reported in Table I for targets positioned at site 8
versus site A to compute the percentage difference
D(%)=—((n ) „—(n )~)l( n)„X100, for the specific
lattice considered, the difference is 59.2%, 59.7%, and
59.9% for the three, stages II—IV, in the unfolding of the
Sierpinski gasket and 60.3%, 61.9%, and 60.8% for the
same three stages in the growth of the triangular pattern.
These results are fully in accord with one s intuition re-
garding the relative probability of encounter of the
diffusing coreactant with a target positioned at site B
versus site A, but the near constancy of the percent
difference in (n ) ( -60%) for both fractal and Euclidean
patterns provides a useful benchmark in quantifying
differences in reaction efficiency for the encounter-
controlled process studied here.

It will be a principal aim of our subsequent work to
make definite the relationship between our results and
earlier theoretical work dealing with diffusion on fractals
[see especially the recent review of Orbach, the paper of
O'Shaughnessy and Procaccia (and references cited
therein), and the work of Blumen et al. ' and others" ].
In a somewhat broader context, it is interesting to com-
pare the structure of the evolution curves [i.e., p(t) versus
t] generated for the two choices of initial condition con-
sidered here in the neighborhood of t =0. In more
descriptive language, the initial condition pI, (t =0)=1
with p;(t =0)=0 for all iWk corresponds to evolution
from a "pure state" while the second class,
pk(t=0)=(N —1) ' for all k, corresponds to evolution
from a "manifold of states. " The "shoulder" in the decay
curve which appears when the former class of initial con-
ditions is considered (compare Figs. 8 and 9, and Figs. 10
and 11) is reminiscent of the shoulder which appears
when evolution from a pure state is studied in exactly
solved Hamiltonian models. This effect, noticed by
Zwanzig' nearly 30 years ago in his study of the master
equation and of the statistical mechanics of irreversibili-
ty, was corroborated in a study of the exact dynamics of
an excited two-level atom in a radiation field in the
latter study, based on the quantum-mechanical master
equation, the pure state from which evolution occurred
was a single level of the excited atomic system. In the
present study (based on a stochastic master equation), the
pure state is the (top) vertex site k = 1 (see Fig. 1).
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There are two senses in which differences in the time
scale (or the (n ), or (n ) values} characterizing the de-
cay of the initial state (for either choice of initial condi-
tion) on fractal versus Euclidean lattices may be attribut-
ed to difFerences in the topological structure of the under-
lying lattice. The first is that which is captured in the
seminal work of Mandelbrot and the research reported
in Refs. 1 and 8 —11, i.e., the concept of fractal dimen-
sionality. A difFerent perspective can be provided by tak-
ing advantage of results obtained in studying the depen-
dence on lattice valency of random walks on lattices of
integral dimensionality. In a recent study' of random
walks on d =2 finite lattices subject to confining (or
periodic) boundary conditions with a centrally located
(deep) trap, calculated values of (n ) were compared with
those predicted using analytic (asymptotic) expressions
derived by Montroll' (and revised by den Hollander and
Kasteleyn' for square planar lattices}. Specifically, re-
sults calculated for d =2 lattices of valency v=3, 4, and
6 reconfirmed the essential correctness of Montroll's
asymptotic results in the limit of large N. The leading
term in the Montroll expressions is of the form

with

(n ) — ( A, N lnN),
N —1

=0.413 496 672 for v= 3
3&3
4~

=—=0.318 309886 for v=4,1

(4)

=0.275 664 448 for v =6
v'3

~sier, %=123

&n &if&, iv=iss

1047.312
1118.42

(5)

calculated using the data presented in Table I, with the
value calculated using Eqs. (4), namely,

~ SierX= 123,
~tri, N=153

N
N —1

N lnN N= 123, -4, V

N
N= I53,v-6A NlnN

=0.889,

Thus, it may be seen that for a given N and a common
metric, the value of (n ) calculated for a d =2 Euclidean
lattice decreases with an increase in the valency charac-
terizing the underlying lattice. Let us now examine the
relevance of this insight to results reported in the present
study. As noted previously, the effective or overall valen-
cy v of the Sierpinski gasket converges to v=4 with in-
crease in N while the v for the triangular lattice unit con-
verges to v=6; given Montroll's results, we anticipate
that for lattices characterized by a common value of N,
( n ) should be smaller on lattices of valency v=6 than on
lattices of valency v=4 in the limit of large N. A plot of
( n ) versus N using the data presented in Table I (see also
Figs. 2 and 3 in Ref. 3) confirms this expectation for
N ) 15. This ordering can also be inferred by comparing
the ratio

a difference of 5.0% vis-a-vis the result (5). [Use of the
full (four-term) asymptotic expression for (n ) for each
valency (see Table VII of Ref. 14) yields a percent
difference of 8.4%.] The closeness of these results
(despite the somewhat different boundary conditions) sug-
gests that it may be useful in some applications to regard
flows on lattices of fractal dimensionality as flows on lat-
tices of integral dimensionality (here, d =2) but of "frac-
tal" valency.

Finally, it is of interest to speculate on the possible
relevance of results obtained in the present work to a
concrete physical problem and to this end we focus on an
issue which is of much interest today in experimental
studies of neural networks, specifically the generation of
patterns of neuronal connections. Until relatively recent-
ly, the standard view (the "chemoaffinity theory") has
been that these connections are the consequence of
(unique) complementary recognition molecules on the
pre- and postsynaptic cells. Over the last decade, howev-
er, experiments have tended to suggest that specific con-
nections (in vertebrates) probably involve (1) competition
between axon terminals, (2) trophic feedback between
pre- and postsynaptic cells, and (3) modifications of con-
nections by functional activity. ' Thus the difference be-
tween these two views relates to the extent of participa-
tion of the neural network itself in influencing its further
growth.

The type of (vertebrate) neuronal network to which our
study might apply is the cerebellar Purkinje cell. This
cell represents an extreme in neuronal specialization, as
may be appreciated by examining illustrations in stan-
dard texts. ' Despite its complexity, however, the exten-
sive dendritic arborization of the Purkinje cell is not
bushlike but rather planar. It is known that signal
transmission in this network is initiated via interaction
(synapse) with millions of axons which pass through the
holelike spaces in the dense arborization; in the language
of Hubel, ' these axons run "like telephone wires perpen-
dicular to the plane" of the Purkinje network.

The fractal and Euclidean patterns studied here
represent two idealizations of Purkinje dendritic struc-
ture. The sites 3 and B on the frontier of these fractal or
Euclidean patterns may be regarded as sites at which a
recognition event can occur. The issue then is whether
the many axons which play a role in signal transmission
once the dendritic network is fu11y developed also play a
role in "guiding" pattern development at an earlier stage
of morphogenesis. Calculations on our model suggest
that regardless of the pattern generated (fractal or Eu-
clidean), activation of the developing network at a mani-
fold of sites rather than a stimulus propagated from a
somatic source (here, the site k =1) leads to an accelerat-
ed unfolding of subsequent stages in the pattern (compare
Figs. 2 and 3, 4 and 5, 6 and 7, 8 and 9, and 10 and 11).

The above ordering can be seen in a more direct way
by comparing the ( n ) i versus ( n ) values reported in
Ref. 3, from which one finds that (n ),) (n ) for all N.
Moreover, using these data, an interesting difference
emerges in studying the development of the Sierpinski
gasket versus the triangular lattice. If one computes the
percent difference, D(%)=[((n ),—(n ) )I(n )

&
&& 100]
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for a target positioned at the frontier site B, one finds an
increase from 29.1% to 31.7% to 32.7% for stages II—IV
in the development of the Sierpinski gasket but a decrease
from 23.7% to 21.7% to 18.2% for the triangular lattice.
The corresponding percentages calculated for the frontier
site A are 13.1% (stage II), 15.4% (stage III), and 16.2%
(stage IV) for the Sierpinski pattern and 11.1% (stage II),
10.8% (stage III), and 9.4% (stage IV) for the triangular
one. These data clearly show that di8'erences between
single-site versus multiple-site activation of the network
become of less consequence with growth of the regular
(Euclidean) pattern but of somewhat greater consequence

for the fractal one. Since the fractal pattern more nearly
represents the complicated pattern structure of the Pur-
kinje network, we conjecture that multiple-site (e.g., ax-
onal) stimulation of the developing neuronal pattern is
the more e%cient morphogenetic process.
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