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A detailed discussion of the path-integral formalism for stochastic processes described by a sto-
chastic differential equation driven by a nonwhite noise is given. The path-integral representation
in the configuration space of the transition probability for a process driven by Ornstein-Uhlenbeck
noise is derived. We show how to treat in this approach any kind of initial conditions, including the
question of the coupling with the noise at initial time. Known approximations are reobtained in

this context. Markovian approximations based on the Lagrangian are also discussed. The station-

ary distribution of the process in the weak-noise limit is obtained from the Lagrangian without rely-

ing on the use of Fokker-Planck or Markovian approximations.

I. INTRODUCTION

Path-integral methods arose from the context of sto-
chastic processes. They have become a standard tech-
nique to analyze continuous Markov stochastic processes
described by Fokker-Planck equations. ' These processes
are equivalently described by stochastic differential equa-
tions of the Langevin type driven by a Gaussian white
noise. The colored noise problem refers to the calcula-
tion of the statistical properties of a stochastic process
described by a stochastic differential equation driven by a
nonwhite noise. In this case the process is non-
Markovian. The analysis of this type of non-Markovian
processes in terms of a path integral formulation is rare '

up to recent times. ' It seems, however, to be a rather
useful alternative point of view to study some of the is-
sues of the colored noise problem. In this paper we give
a detailed discussion of the path-integral formalism for
such stochastic processes, together with some relevant
applications. We will particularly deal with processes
driven by an Ornstein-Uhlenbeck noise, but some of our
results hold for more general cases.

A review of results concerning stationary distributions,
steady-state dynamics, and transient dynamics of colored
noise-driven stochastic processes is given in Ref. 6. The
recent literature in this problem is overwhelmingly exten-
sive (see, as a representative sample Refs. 6—10) and
rather controversial, mainly in connection with the calcu-
lation of activation rates and mean first passage times in
bistable systems. The ubiquitous presence of statements
about confusion reveals that a satisfactory theoretical un-
derstanding has not been achieved. The basic difhculty of
the problem is the non-Markovian nature of the process,
so that well-known Fokker-Planck techniques can not be,
in principle, used. However, most of the theoretical ap-
proaches proposed so far force the description of the pro-
cess, in one way or another, into a Fokker-Planck formu-
lation. Such Fokker-Planck approximations arise, via

functional methods, cumulant expansions, or other tech-
niques, as a result of truncations or resummations of ex-
pansions in the correlation time v. of the noise. Although
early analogical" and numerical' simulations were use-
ful to check qualitative predictions of the theory, the va-
lidity of these approximations is often dificult to assess.
The advantage of the path-integral formulation is that it
takes a rather different approach to the problem, avoid-
ing, in principle, the question of a Fokker-Planck approx-
imation. Using the path-integral formulation it is possi-
ble to obtain some exact results and methods which do
not use ~ as an expansion parameter. An example of
these results is the exact expression for the action in-
tegral. A remarkable fact is that this action integral
does not contain any terms involving powers of ~ of order
higher than r . The problems associated with r expan-
sions can then be, in principle, bypassed in this formula-
tion. We follow here, as in Ref. 3, a path-integral formu-
lation in the configuration space, while other recent
formulations " "introduce a phase-space representa-
tion. The advantage of a configuration-space representa-
tion is that the stochastic process is discussed in the space
of physical interest without the introduction of additional
unphysical variables. The formulation of Ref. 4(d) is also
in the configuration space, but it seems to use paths
defined in the time interval ( —00, + ~ ). In such formu-
lation an arbitrary initial preparation of the non-
Markovian stochastic process cannot be considered.

The summary of contents and main results of this pa-
per are as follows. In Sec. II we analyze different possible
alternative ways to derive the path-integral representa-
tion of the transition probability for a process driven by
Ornstein-Uhlenbeck noise. Two particular routes are
useful to understand two main points. One of them
clarifies the fact that the action integral contains contri-
butions in r only up to order r . This is related to the in-
version of the correlation function of the noise which,
however, contains terms to all orders in ~. A second

7312 1989 The American Physical Society



PATH-INTEGRAL FORMULATION FOR STOCHASTIC. . . 7313

route permits a detailed discussion of preparation effects
and boundary terms of the action integral. We show how
to treat in the path integral approach any kind of initial
conditions including the question of the coupling with the
noise at initial time. Preparation effects are crucial in
non-Markovian processes due to the memory of the dy-
namics. Technical aspects are relegated to two appen-
dixes. Appendix A contains the calculation of the inver-
sion of the correlation function of the noise. Appendix B
substantiates our results through a discretized version of
the path integral.

In Sec. III we address the problem of deriving approxi-
mate evolution equations for the probability density start-
ing from a path-integral formulation. Most of the results
here are valid for arbitrary colored noise. The general
presentation features a cumulant expansion of the path-
integral expression for a generating function. Depending
on the type of cumulants used one arrives to integro-
differential or differential equations for the probability
density. We discuss how different known approximations
are reobtained in this context. As a separate question we
examine the conditions to obtain a Markovian Fokker-
Planck approximation from the path integral formulation
of Sec. II. We conclude that the adiabatic approximation
of Ref. 10 folds within these conditions, being consistent
with the the Markovian Fokker-Planck approximation
for the dynamics. Our analysis indicates how to imple-
rnent such approximation in more general cases.

The calculation of the stationary distribution of the
process in the weak-noise limit is considered in Sec. IV.
The novelty of this calculation is that it neither makes
use of Fokker-Planck or Markovian approximations, nor
relies explicitly on ~ expansions. It directly addresses the
variational problem which appears in the path-integral
formulation without invoking appropriate evolution
equations for the probability density. The problem is dis-
cussed from two alternative points of view. One is the
direct calculation of the minimizing path and the other a
Hamilton-Jacobi type formulation. This second formula-
tion permits a treatment which is rather independent of
particular models. Our result for the nonequilibriurn po-
tential identifies the contents of an expression obtained in
a variety of independent calculations. A technical discus-
sion of the properties of the minimizing path and its rela-
tion with the minimizing path in phase space is given in
Appendix C.

II. PATH-INTEGRAL REPRESENTATION
FOR PROCESSES DRIVEN

BY ORNSTEIN-UHLENBECK NOISE

We consider a stochastic process characterized by a
stochastic differential equation (SDE) for a variable q(t )

of the form

q(t)= f(q)+g(q)g(&), (2.1)

where g(t) is an Ornstein-Uhlenbeck process. That is,
Gaussian with zero mean and correlation

C(t, t') =(g(r )g(r') ) =—exp( —
~t r'~/r), —

7
(2.2)

The process q(t ) might be described by Markovian
methods at the price of enlarging the space of variables
considered. Indeed, g(t) can be considered as an addi-
tional variable driven by a Gaussian white noise g(t ),

g(t)= —r 'g(t)+r 'g(r), (2.4)

where (q(t)r)(t')) =2D 5(t —t'). The set of equations
(2.1) and (2.4) define a Markovian diffusion process in
(q, g) space characterized by the following Fokker-
Planck equation:

B,P(q, g, t }=—8 [f(q)+g(q)g]P(q, g, t )

+Bt P(q, g, t)+ B~P(q, g, t) . —(2.5)
7

We are interested in a path-integral representation of
the process q(t) in the q-configuration space of interest.
The transition probability from qa at ta, to q at time t is
shown below to have the general expression

where D is the noise intensity and ~ its correlation time.
Equation (2.1), with specified initial conditions, defines a
non-Markovian process in the configuration space of the
variable q(t). In the limit r~O, C(t, t')~2D 5(t t'—)
and q(t) becomes a Markovian diffusion process' whose
probability density P(q, t) obeys the following Fokker-
Planck equation'

d, P(q, t ) = —8 f(q )P(q, t )+Dd g (q )8 g (q )P(q, t ) .

(2.3)

P(q, t/qa, t0)= f Dg[q(s}]exp —f dsL r[q0 f(qa)—] /[2D—g(qa) ]
q 0

(2.6)

where Dg[q(s)] is a shorthand notation for
D[q(s)/ jg(q(s))dq(s)].

The integral is over all the paths going from (qa, t0) to
(q, t). L is the Lagrangian-like function' which for (2.1)
turns to be '

L = [r[q f'(q)q g'(q)q(q ——f(q»/—g(q)]

+q f(q)]'/[4Dg(q }'l . — (2.7)

In the limit ~=0 it reduces to the well-known Lagrangian
associated with (2.3) in the prepoint discretization. ' '
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The Langrangian (2.7) depends on q, so that properly
speaking, it is not a Lagrangian function. Such depen-
dence, together with the appearance of the initial condi-
tion in (2.6), refiects the non-Markovian nature of the
process associated. The Lagrangian (2.7) is an exact re-
sult containing all the required information on the pro-
cess q(t ) which concerns statistical properties depending
on a single time. A remarkable feature in (2.7) is that it
only contains terms linear and quadratic in ~ while most
studies of the colored noise problem are based in expan-
sions involving a power series in ~ with infinite terms.

The derivation of (2.6) and (2.7) has two possible start-
ing points which correspond to the original SDE repre-
sentation (2.1) and to the Markovian description in an en-
larged space given by (2.5). In both cases attention
should be paid to the delicate problem of initial condi-
tions and preparation effects. As we shall see later, the
natural framework to discuss these problems is the en-
larged Markovian description. The first starting point is
the one followed in the original derivation of Ref. 3.

p(g(s);to ~ s ~ t )

=N exp —
—,
' f du f du'g(u )R(u, u'g'(u')

0 0
(2.8)

where R (u, u') is the inverse of the correlation function
C(t, t') [see Eq. (Al)].

The transition probability of the non-Markovian pro-
cess q(t ) is obtained from Eqs. (2.1) and (2.8) by integrat-
ing over all the paths q(t ) going from (qo, to) to (q, t ).
The following expression follows in the prepoint discreti-
zation:

Here attention is paid to the trajectory in q space and it
follows the same line of thought that related work for
white' or colored noise. Let us recall such derivation
for the particular case g =1.

Inserting the characteristic functional of g we get the
probability density of a noise realization which is given
by

P(q, t/qo, to)= f D[q(s)]exp —
—,
' f du f du'[q(u ) f(q(u ))]R—(u, u')[q(u') f(q(u')—)]

qo 0 0
(2.9)

Now if we use the expression for R given by Eq. (A4)
with g =1, it is easy to see that, after some integrations
by parts, expression (2.6) is recovered in the additive case
g =1. The multiplicative case can be treated in a similar
way. This derivation makes clear the reason why L in
(2.7) does not contain terms proportional to w", n )2.
Due to the exponential form of the correlation C, the ex-
pansion of its inverse R in powers of r is cut at order H.
This can be understood from the fact that the inverse of
the Fourier transform of exp( —

~t ~/~)/(2~) is 1+@ H.
In this derivation we have assumed that g is in the sta-

tionary state. To include any kind of initial conditions
we must obtain the inverse of the nonstationary correla-
tion function of the noise. The problem of initial condi-
tions and preparation effects will be discussed later.

The second starting point to obtain (2.7) is the path-
integral representation of the Markovian process de-
scribed by (2.5). Such representation for an n-variable
diffusion process is standard. " The only delicate point
is that the diffusion matrix associated with (2.5) is singu-
lar since the q variable obeys a deterministic equation of
motion in the (q, g') space. This prevents the use of the
standard Lagrangian representation in configuration
space. The path integral representation is then developed
in an enlarged phase space" in which conjugate mo-
menta q and g associated with the variable q and g are in-
troduced. These conjugate momenta are the c-number
variables associated with the operators introduced by
Martin, Siggia, and Rose' to define response func-
tions. ' ' ' ' For the transition probability from (qo, go)
at time t =to to (q, g) at time t we have, in the prepoint
discretization,

and the Hamiltonian-like function H is given by

H=iq(f(q )+g(q )g) i gglr D(i() /—r—(2.12)

It is interesting to note that the Lagrangian function
can be obtained through the Legendre transformation of
the complex function (2.12) in which iq~q, ig~g We.
have

L (q, q, g, g) =i@+ig H(q, g, iq, —i g)

4D
(g+ g/~) (2.13)

In the present two-variable approach Auctuations are as-
sociated with the g variable, while q obeys a deterministic
equation. This is the reason why a Lagrangian that
weights different possible paths is in (2.13) independent of
q. The weighting of paths can be transferred to the q
space if one replaces g and g' in (2.13) as obtained from
(2.1). In this way one recovers the Lagrangian function
(2.7). This short cut from (2.12) to the Lagrangian (2.7) is
justified by making the integrals over g, g, and q in (2. 10).

(q, g)

P(q, g, t/qo, go, to)= f D[q(s)]D[g'(s)]D[q(s)]

XD[g( )s]exp( —S), (2.10)

where the action integral is

S= f ds [iq(s )q(s )+i g(s)g H(q(s ), g(s ),—iq(s ),if(s ) )),
0

(2. 1 1)
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This can be done in six different ways depending on the
order of integration. Two of these ways (integration in
the following orders: g, g, q and g, g, q) require the inver-
sion of the noise correlation function. As we have dis-
cussed when recalling the original derivation of (2.6),

such procedures are particularly interesting because they
make clear the reason why L in (2.7) does not contain
terms proportional to ~", n )2. If we first integrate over
the noise variable g and then over its conjugate momen-
tum g, we obtain

—i/2
—s) +i f ds g(s)( j—f(q))

P(q, g, t /qo, go, to) = [4nDr 'sinh(t to)/—r] '~ f '
D[q(s )]D[g(s )]e

(qo, $0)

where

(2.14)

S, =[4Dr sinh(t —to)/r] '
g e'~'+foe ' —2$0$—

gf ds iQ(s)g(q(s) }sinh(s —to)/7
0

4D
go f ds iq(s )g (q(s ) )sinh(t —s ) /r

to

+ f ds f ds'q(s)g(q(s))sinh(t —s)/rsinh(s' t 0) /Q—( s')g(q( s')) . (2.15)
8D

'0 'o

If we integrate over all final possible values of g, we get
an equation similar to (2.14) and (2.15). Now, to take
into account preparation effects we must keep the vari-
able go in (2.15) and afterwards integrate over go and qo
with a joint distribution. Then the integration over q in
(2.14) and (2.15) requires the inversion of a time-
dependent function. This function corresponds to the
nonstationary noise correlation function we have men-
tioned when recalling the original derivation of (2.6).
Preparation effects will be analyzed later in a more con-
venient way.

The transition probability in q space for the
case of stationary noise is obtained from (2.14) inte-
grating over all possible final values of g and over the
initial values go with the stationary distribution
P„(go)=(r/2nD)' exp( —(or/2D), resulting in

P(q, t/q, t )= f dgdg P„(g )P(q, g, tlq, g, t )

Dqs D s

Xexp[ —A(q(s },g(s)}], (2.16)

C(s, s')=g(q(s))C(s, s')g(q(s')) . (2.18)

X 5(q(to) —q, )5(g(t, ) —go)

Xexp( —S} . (2.19)

The result (2.16)—(2.18) was also obtained by Phytian
much in the same spirit of our first derivation of (2.7)
given here, that is, following the SDE representation (2.1)
and without going to the enlarged Markovian representa-
tion. The result (2.16)—(2.18) is in fact exact for a general
Gaussian noise. The final integration over Q in (2.16)
leads to an expression similar to (2.9), but with the in-
verse of C, instead of the inverse of the noise correlation
function. Taking into account the discussion after (2.9)
we recover again (2.6) in the Ornstein-Uhlenbeck case.

To discuss preparation effects we include in (2.10) the
initial and final conditions for q and g by the use of ad
hoc 6 functions

P(q, g, t/qo, go, to)= fD[q( )]sD[g( )]sD[q( )]s

XD[g(s)]5(q(t }—q)5(g(t ) —g)

where

A (q (s ),g(s ) ) = i f ds q(s )[q—(s ) f(q(s ) )]—
+ —,

' f ds f ds'q(s )C(s,s')q(s'), (2.17}

In this way the integral is over all the paths. The shortest
path to treat arbitrary initial conditions is the following.
We first integrate over q. This results in the appearance
of the 5 functional 5[q(s ) f(q(s ) ) —g(q(s ) )g(s —) ],
which makes the integration over g immediate, yielding
the expression

P(q, g, t/qo go, to)= fD [ ( q)]s[Dg( )]s5(q(t) —q}5(q(t) f(q(t)) g(q(t)g—')—
X 5(q(to }—qo)5(q(to ) —f(q(to) ) —g(q(to) )go)exp ——f ds((s )

0

Xexp i f dsg(s) I[q(s) —f(q(s))]/g(q(s))I+ [q f(q)]/g(q—)—
10 ds 'T

(2.20)
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The Gaussian integral over g results in

P(q, g, t/qp, gp, tp)= f D [q(s)]5(q(t) f—(q) —g(q)g)5(q(tp) f—(qp) g—(qp)gp)exp —f ds L
qp

(2.21)

where the integral is over all the paths q(t) going from (qp, tp) to (q, t) and L is given by (2.7). The derivation given
here of (2.21) is rather formal. A derivation from (2.10) using the prepoint discretized version of the path integral is

given in Appendix B.
If we integrate (2.21) over all possible final values of g' and over the initial values gp with the stationary distribution of

the Ornstein-Uhlenbeck noise, we recover (2.6). This transition probability in q space corresponds to initial decoupled
conditions for q and g, the noise being in the stationary state.

If we consider arbitrary initial conditions given by a joint distribution Pp(qp, gp), we get from (2.21)

r

P(q, t/qp tp Pp)='f D&[ q( s)]P p( qp [q(tp) f(q(tp))]/g(q(tp)))exp —f ds L
qp 'p

(2.22)

We have then found the path-integral representation for the non-Markovian transition probability density with arbi-
trary initial preparation. When Pp(qp, gp) is the stationary probability density, we obtain the stationary transition
probability density. However, since the stationary probability density is not known, this is only a formal result.

As a final point we want to consider the extension of the above results to the case when a Gaussian white noise is add-
ed to Eq. (2.1).' '"' We consider the SDE

q(t ) =f (q )+g(q )g(t )+ rt(t ), (2.23)

with ( g(t )g(t') ) =2@5(t—t'). We can repeat the procedure employed to obtain the Lagrangian (2.7). If we consider
the case g = 1, the following expression is derived:

P(q, t/qp, tp)= f D[q(s)]D[q(s)]exp i f ds q(s)[q(s) f(q(s))] ——
—,
' f ds f ds'q(s)C(s, s')q(s')

qp tp tp
(2.24)

where C is the correlation function of the Gaussian noise
I+a

III. EQUATIONS FOR THE PROBABILITY
DENSITY

C(s, s') =2@5(s—s')+ —exp( —
~s

—s'~ /r) .
D
7

(2.25)

1

2 D+e

D
2e(D+e)

J

5 '(s —s'),
e+D

(2.26)

The integration over q leads to an expression similar to
(2.9) but with the inverse of C instead of the inverse of C.
Using the expansion (A3) for the exponential term, one
finds

In this section we use the path-integral formalism to
derive evolution equations for the probability density
P(q, t ). Our aim is not to obtain new equations, but rath-
er to discuss connections among several different approxi-
mations taking the path-integral expression for the prob-
ability density as a starting point. Functional methods
have been successfully applied ' ' to derive Fokker-
Planck-like equations for P(q, t). The discussion of these
equations from a true path-integral representation of the
probability is a quite natural procedure.

We consider stochastic differential equations with a
general noise. The case of the Ornstein-Uhlenbeck noise
is considered later as a particular case. Hence, we start
with Eq. (2.1) but now g'(t ) being any kind of noise. The
probability density can be obtained by averaging
5( q

—
q ( t, q p t p g( t ) ) ) over all possible realizations, i.e. ,

where boundary terms have not been taken into account.
The inverse of the correlation function of the Gaussian
noise g(t)+g(t ) contains then all the powers in r and
5'"'(s —s'). Therefore the Lagrangian contains arbitrary
time derivations of q. The implications of this fact for
the case of Markovian Fokker-Planck approximations
will be discussed at the end of Sec. III.

P(q, t /q„t, ) = (5(q q(t, q, , t p, g(t ))))—, (3.1)

where q(t, qp, tp, g(t)) is the solution of (2.1) for a given
realization g(t) of the noise and with initial condition
q( t p ) =qp, independent of g( t ). The delta functional
5(q —

q ( t, q p, tp, g( t ) ) ) in path-integral representation
reads
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5(q —q(t, qo, to, g(t )))= f D[q(s )]D[q(s )]5(q q—(t ))exp —i f ds q(s)[q(s ) f—(q ) g—(q )g(s )]
qo 0

(3.2)

After averaging in (3.2) over the realizations of the noise we obtain the probability density as a path integral in phase
space given by:

P(q, t/qo, to) = f D[q(s )]D[q(s )]5(q q(—t ))expI —i f ds q(s )[q(s ) f(—q )]}Cg[q(t ),q(t) }
qo 0

including the characteristic functional of the stochastic term g(q )g(t )

e

@ q(i S), O( )sj=(esp if dsQ(s)g(q(s))g(s)
to

(3.3)

(3.4)

This functional allows us to establish a connection with other methods used to study colored-noise problems which are
based on cumulant expansions. These cumulants can be defined either by imposing a differential or an integro-
differential equation for the evolution of 4&[q(t ),Q(t ) } (Ref. 25). Assuming an integro-differential form it is possible to
obtain a closed equation for P(q, t). Following the projection method of Ref. 27 we obtain an integro-differential equa-
tion for N,

f dti f, dt's
' f dt„(g(t) . ((t„))Tip(t) iq(t„)g(q(t„))@jq(t„),q(t )}, (3.5)

where ( g(t ) g(t„) ) T are Terwiel's cumulants defined as

(g(t) ' ' g(t„))T=[P((t)(l P) (—1 P)g(t„)],—

P being a projection operator that acts similar to averaging over g.
Taking the time derivative in (3.3) and substituting the expression of d&ldt given in (3.5) we obtain

(3.6)

where

f(q)P(q, t)+ g f dt, f dt2 f dt„(g(t) . ((t„))TGT(q, t, , t„),
Bq n=l 0 0 0

(3.7)

GT(q, t, , t„)=fD[q(s)]D[q(s)]5(q q(t))iQ(t)g—(q(t)) . iq(t„)g(q(t„))

Xexp —i f ds q(s)[q f(q)] 4[q—(t„),g(t„) }
0

Taking into account the formal expression of the deterministic evolution

q,.f D[q(s)]D[g(s)]exp i f ds Q—( s)[q( s) f(q)] =e—xp f ds f(q, +, ) 5(q; —q;+, )
q ~ +I i+1 i+1

(3.8)

(3.9)

and operating in (3.8), we obtain

. . . a 'n —
1 ()

GT(q, t, , t„)= g(q)exp f ds f(q) . g(q)exp ds f(q) P(q, t„) .
Bq Bq Bq Bq

(3.10)

Substituting this expression in (3.7) we obtain a formally exact integro-differential equation for P(q, t) (Ref. 27). Retain-
ing only the second-order cumulant in this expansion we obtain the Bourret approximation. Such approximation be-
comes exact in the case in which g(t ) is a dichotomic Markov process. In this case Terwiel's cumulants of order higher
than 2 vanish. The Bourret approximation can be advantageously used in time-dependent problems where a convolu-
tion term is easily treated. However, this approximation introduces spurious boundary conditions which are usually
difficult to handle. This fact makes desirable to find a difFerential equation for P(q, t ). In the limit of small-noise inten-
sity a differential equation can be formally derived from the Bourret equation replacing P(q, t') by

exp —f ds f(q) P(q, t)
Bq

in the integral part of the equation. The resulting equation is the lowest-order approximation of Van Kampen s expan-
sion (see also Refs. 6, 12, and 29). The complete cumulant expansion of Van Kampen s is difficult to obtain directly
from a functional formalism but can be recovered from (3.10) (Ref. 27).

A second alternative to derive evolution equations for the probability density is assuming a differential evolution
equation for @[q(t),Q(t)}:
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(I)

f dt, . f " dt„(((t). . . g(t„)),ig(t)g(q(t)) . ig(t„)g(q(t„))4[q(t), q(t)] .
n ——1 0

(3.11)

In this case (g(t) g(t„)), are ordinary cumulants. Taking as before the time derivative in (3.3) and substituting
d@ldt given by (3.11), we obtain an equation similar to (3.7) now with ordinary cumulants instead of Terwiel's cumu-
lants, and Gr substituted by G, (q, t, t&, . . . , t„),where

G, (q, t, . . . , t„)= fD[q(s)]D[q(s)]5(q q(t—)iq(t )g(q(t )) . . iq(t„)g(q(t„))

Xexp i f—ds q(s)[q —f(q)] 4tq(t), q(t ) j .
0

This last expression in terms of functional derivatives reads

(3.12)

G, (q, t, . . . , t„)= g(q)= a 6
aq 5 (t, )

5(q q(tqp—tpt,(t )), )) , .
5

5 t„
(3.13)

The replacement of (3.13) in (3.7) yields an equation
obtained several years ago by applying the generalized
Novikov formula to the averaged term
(g(t)5(q —q(t, qo, to, g))) of a stochastic Liouville equa-
tion.

A main difference between the treatment based on the
differential equation (3.11) and the one based on (3.5) is
that in the differential equation treatment the characteris-
tic functional is not decoupled in (3.12). As a conse-
quence a further approximation seems to be necessary in
order to obtain a closed equation for P(q, t). This has
been extensively studied in the Ornstein-Uhlenbeck noise
case where ordinary cumulants of order higher than 2
vanish, so that only the leading term remains„

reAects itself in the presence of terms involving q as well
as in the initial condition terms in (2.6). It is then ap-
parent, in order to have a consistent Markovian approxi-
mation to the process, to remove such dependences from
the action, instead of making "expansions" in ~. The
most drastic of all possible Markovian approximations is
to neglect the initial boundary term in (2.6) and to take
q =0 in (2.7). In the additive case (g = 1) this leads us im-
mediately to a true Fokker-Planck Lagrangian corre-
sponding to an effective multiplicative white-noise SDE.
By comparison with the general structure' for the La-
grangian of Fokker-Planck operators it coincides with
the adiabatic approximation of Ref. 10. This justifies the
dynamical contents of the Fokker-Planck equation pro-
posed by Jung and Hanggi. For the multiplicative case
(2.7) and in the approximation in which q =0, we are still
left with a Lagrangian that has q contributions. These
contributions are not allowed in a Lagrangian associated
with a Markovian Fokker-Planck equation. ' The easiest
way to recover a desired Fokker-Planck approximation is
to get rid of all powers of q larger than quadratic [that
means to neglect the term g'(q)q in (2.7)]. The Fokker-
Planck that results in such a case is

G, (q, t, t, )= g(q) 5(q —q(t)))
6

aq

g(q) 5(q —q(t))) .
a 5q(t)

(3q Bq 5 t,
(3.14)

Equations (3.7) with (3.14) were obtained by operator
methods in Ref. 30 and by functional methods in Ref. 12.
They are the starting point of the small-~ and small-D ap-
proxirnations reviewed in Ref. 6. More recent attempts
to obtain a closed equation for P(q, t) taking (3.14) as a
starting point are due to Fox and Hang gi. ' Fox uses
an approximation of the response function 5q(t)I (5'(t, )
for small (t t, ) which restr—icts the validity of the equa-
tion for small correlation time, much in the same spirit of
the small-~ approximation. Hanggi considers the decou-
pling ansatz

+D'(q )/2 P(q, t )
1 rf'+rg'f Ig—(3,P(q, t }=—8

+8 D(q)P(q, t),
D(q ) =Dg (q ) l(1 rf '+ rg'f Ig )— (3.15)

It is worth mentioning that it is not the smallness of ~
that leads to a Markov approximation. Even in the case
of keeping only terms up to first order in ~ in the La-
grangian the problem will remain to be non-Markovian
due to the presence of the j' contribution. Notwithstand-
ing, if we keep all powers in ~ but neglect the terms in j,
we get independent of the magnitude of v. a Markovian
approximation without increasing the complexity of the
calculation.

Let us now consider the problem discussed at the end
of Sec. II, that is, the inclusion of a white noise in (2.1).
We have seen that the inverse of the correlation function
(2.26) has now all powers in r and 5'"'(s —s'). The La-

valid for small-noise intensity. This approximation is not
restricted by the smallness of the correlation time but it
does not give a closed equation since the calculation of
(5q /$5(t, ) ) needs a prior knowledge of P(q, t ).

A completely different methodology in order to find
approximate Markovian evolution equations for the
probability density is to start from the Lagrangian-like
function (2.7). From the structure of this Lagrangian we
see that the non-Markovian character of the process q(t )

( 5(q —q(t )) — )P(qt),5 (t, ) 5 t, )
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IV. STATIONARY DISTRIBUTION

In this section we address the question of calculating
the stationary distribution P„(q} for the process q(t)
starting from the Lagrangian (2.7) and without relying on
the use of any approximate equation for the time-
dependent probabihty density P(q, t). For simplicity we
restrict ourselves here to the additive noise case g=1.
We anticipate that our result, obtained in the weak noise
limit, is

4(q ) = —lim DlnP„(q ) = —ff(q )dq+ rf (q )/2 .
D~O

(4.1)

It is worth recalling several alternative paths which lead
to this result. Such previous calculations are based on
diff'erent Fokker-Planck approximations. The result (4.1)
has been tested by numerical calculations in several
specific models giving quite accurate results, and ones
certainly better than those obtained by other proposed
approximate stationary distributions. The novelty of our
calculation below is to show that (4.1) can be obtained in
a natural way without invoking Markovian or Fokker-
Planck approximations and without explicit use of ~-
expansions. A first already-known way of obtaining (4.1)
is starting from a Fokker-Planck approximation obtained
in the first order of the ~ expansion scheme. ' ' A sta-
tionary solution of this equation is consistently searched
in the form

P„(q ) =P~(q )[1+rP,(q )], (4.2)

where

P()(q ) =%exp ——ff(q )dq
I

(4.3)

is the stationary solution obtained in the white-noise limit
v=0, with N a normalization constant. One obtains a
normalized P„(q ) with

grangian will contain then arbitrary time derivatives of q.
This identifies the difficulty of the nontrivial extension of
the adiabatic approximation of Ref. 10 to this case. A
Markovian Fokker-Planck approximation can be done in
the same sense as before, that is, neglecting in the La-
grangian terms containing time derivatives q' ' with m
higher than 1, and also all power j"with n higher than 2.
The Lagrangian obtained in this way corresponds to the
Fokker-Planck equation (3.15) with g = 1 and r and D re-
placed, respectively, by

7=r[D/(E+D)]' and D=D+e .

The fact that the stationary distribution of such an equa-
tion is not exact for the linear case f(q) = —aq gives an
idea of the limitations of this approximation. It is worth
remarking that the Fokker-Planck equation of Ref. 10 is
also not exact for a linear model in the original case with
g=0, although it gives the correct stationary distribu-
tion.

Pi(q}= —f'+ 2Df' &—f'+ 2Df'&o
1 2, 1

(4.4)

where ( . )o is the average taken with P~(q). The
problem with (4.2)—(4.4) is that P„(q ) might become neg-
ative for certain range of values of q. This can be avoided
invoking the smallness of r so that (1+rP, ) =exp(rP, ).
In this way one obtains the weak-noise potential given in
(4.1). The ad hoc exponentiation involved in the above
procedure can be better justified as follows. Defining
&b(q) as in (4.1) and substituting we find that @(q) obeys
the equation

(4' —2DB )[2f+(1+sf ')4' —2Drf ")=0, (4.5)

whose solution gives (4.1). Two additional known ways
of obtaining (4.1) are through the formal stationary solu-
tions of the Fokker-Planck approximations of Refs. 23
and 10. Although the two equations describe rather
different dynamics both have the same stationary distri-
bution

P„(q ) =N ~1 rf '(q ) ~—exp[ N(q )/D—], (4.6)

with 4&(q) given by (4.1}. We note that the prefactor in
(4.6) can be also obtained both from the solution of (4.5)
and from (4.2) —(4.4) if one expands the exponential terms
independent of D before taking the limit D —+0 involved
in the definition of N(q ).

The calculation of N that we develop here is based in
the idea of a nonequilibrium potential defined as in
(4.1). It can be calculated by a minimum principle writ-
ten in terms of the path-integral representation of the sto-
chastic process

@(q)=minf dtL~(q(t), q(t), q(t)) . (4.7)
q( —~ )e&

Lz is defined as the singular part of the Lagrangian in the
limit D ~0:

L~ = lim DL(q(t ),q(t ),q(t )) .
D~O

(4.8)

In our case (2.1), Lo =DL. We note that the boundary
terms coming from the initial condition in (2.6) do not
contribute to N(q). In. addition the formula (4.7) is ex-
plicitly written for the case in which the deterministic dy-
namics [Eq. (2.3) with D=0] has a single attractor. In
this ease the action integral is minimized over all the
paths starting from the attractor 3 at t = —oo and reach-
ing the point q at time t =0. In the case of several coex-
isting attractors, which we do not consider explicitly
here, (4.7) has to be generalized by matching the local po-
tentials associated with each attractor and finding the ab-
solute minimum of these local potentials.

The smoothness of the potential N for a general case is
an open question. For Markovian processes eharaeter-
ized by n-variable Fokker-Planck equations it is known
that a potential N twice differentiable only exists if the
Hamiltonian associated with the Lagrangian is complete-
ly integrable. This includes the problems which satisf~
detailed balance. However, it is also generally accept-
ed ' that a weak-noise stationary distribution of the
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form implied by (4.1) remains as a useful ansatz in gen-
eral nonintegrable cases. We follow here this last point of
view for the colored noise problem.

In order to clarify the meaning of (4.7) we first examine
the white-noise limit. In this case the Euler-Lagrange
equations defining the minimizing path and obtained
from (2.1) for r=0 become

q f'(—q)q = —[q —f(q)]f'(q) . (4.9)

Two integrals of (4.9) are q=+f. The path satisfying
q =f corresponds to the deterministic motion and it gives
a vanishing action: JL(q(t), q(t))=0. In fact, for an in-

itial condition in the attractor such path never leaves the
attractor. The appropriate path to be used in (4.7)
satisfies q = f and—with initial condition in the attractor
at t= —oo reaches a point q at time t. The action in-
tegral is now

f dt [q f(q)] —= ——f dt qf(q), (4 10)

dition modifies the boundary condition at the initial time.
It is shown in Appendix C that (4.14) and (4.16) coincide
with the boundary conditions obtained from the equation
for the minimizing path in the phase-space representation
of Ref. 4(a).

A particular enlightening case to understand the con-
tents of (4.7) and (4.12) is the linear problem f(q ) = —aq,
a & 0, g (q ) = 1 for which the exact stationary distribution
is known. ' The solution of (4.12) for this case is

q(t)=A, e' '+A2e ' '+B,e"+B2e (4.17)

f dtL(q, q, q )= f dt [rq+( I +ra )q+ qa]

with four undetermined constants A, , A2, B, , and B2.
The choice of a path starting at the attractor q =0 at
t =T, = —~ requires 32=82=0. This path reaches at
t=T2=0 a point q=A, +B, with velocity q=A, /~
+aB, . Calculating the action integral along this path we
find

which reproduces (4.1) for r=0 and the exact white-noise
stationary distribution (4.3).

In the colored-noise case the path minimizing the ac-
tion integral associated with (2.7) satisfy the Euler-
Lagrange-like equations given by

=—(1+a~)(aq /2+rq /2) .
1

D
(4.18)

We not choose the free final value of q of the path by the
minimum action requirement. This is q =0 in (4.18)
which leads to the exact stationary distribution

d BL d M. BL
d&2 Qq dq Qq Bq

(4.1 1) P„=N exp( —
{[(1+a r) /D ](aq /2) I ) .

The condition q =0 can be in fact obtained from the gen-
eral requirement (4.14) at t =0, while at t = —~ (4.16) is
automatically fulfilled in this case. (See Appendix C.)

The simplicity of the white-noise and the linear
colored-noise cases is associated with the fact that the
Euler-Lagrange equations are in those cases invariant un-
der time reversal, but the Lagrangian is not. The Euler-
Lagrange equations admit as a solution the solution of
the deterministic equation of motion and a second "an-
tideterministic" solution. The first gives a vanishing ac-
tion and the second is the path to be chosen. The
difference between the Lagrangian and its invariant part
under time reversal is what makes the process dissipative.
This difference is a total derivative with respect to time of
a function which turns out to coincide with the potential
N (Ref. 21).

We wish to note that the Euler-Lagrange equation
(4.12) has been also obtained in Ref. 4(d) using a diff'erent
formulation with paths defined on the infinite time inter-
val (

—~, oo ). As a consequence, no boundary terms ap-
pear in the action integral used in Ref. 4(d). This formu-
lation is only valid when the system is in the stationary
state at the initial time, in contrast with our formulation
where any kind of initial conditions can be considered
(see Sec. II).

A solution of (4.12) with (4.14) and (4.16) for a general
case is certainly not trivial. Solutions for each particular
function f (q ) can be attempted. A general solution using
~ as an expansion parameter is not always well defined.
For example, for the linear case above, an expansion in ~
of the minimizing path is at best singular. An alternative
to find the solution of (4.12) in the stationary state which
permits one to obtain general results is to look for the

In our case they explicitly read

~[ q 3f"(q)qq —f"'(q)q ' ——f'(q )'q

f"(q)f'(q—)q] q+f(q)f'—(q)=0 . (4.12)

We are interested in minimizing paths with fixed initial
and final value for q at times —T, and T2, respectively,
and whatever initial and final values of q. Two of the
four boundary conditions required to solve (4.12) are
given by the fixed initial and final values of q. The other
two boundary conditions follow from the variational
problem for the action S in (2.6) with free boundary
values of q,

S=—fLdt — [q —f(q)] (4.13)

5S=O requires in addition of the Euler-Lagrange equa-
tion (4.12) the boundary condition at t = T2

(4.14)

and at t= —T,

BL —
D [q —f(q)],=-T, =o,

3q ,= T D
(4.15)

so that

{rq [I+rf'(q)]q+ f J l,=—, =0 . (4.16)

Note that the boundary term coming from the initial con-

i3L
{rq+ [ I —rf '(q )]q f(q )I, T =0-

Qq t=T 2D ' — 2
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aI.
aq

aL

aq

d aL
dt aq

(4.19)

(4.20)

and the generalized Hamiltonian becomes

H(q, q; H, II') = H q+ H'q L—
=q H +—(H' } ——[( 1 —rf ')q —f]II' .

1

(4.21)

The Hamiltonian-Jacobi-like equation associated with the
variational problem (4.13) is now obtained in the usual
way replacing H by ae/aq and II' by B4/Bq in the
Hamiltonian and equating it to zero. Explicitly we have

'2
a@+ I a4 1[(1 f) f]a@=0
~q T Bq r Bq

(4.22)

Equation (4.22) is for a function @(q,q ). The dependence
on q comes from the fact that (4.22) is associated with a
variational problem in which the final velocity q is fixed.
As explicitly seen in the linear case we are interested in
the @(q,q ) at the value qo, which makes it minimum

equation satisfied by 4 starting from its definition (4.1).
In the white-noise case it is well known that 4 satisfies
the Hamilton-Jacobi equation of the Hamiltonian dynam-
ics associated with the Fokker-Planck Lagrangian. In
our case L in (4.1) is not properly speaking a Lagrangian
function. However, the variational problem solved by the
Hamilton-Jacobi equation can be generalized to
Lagrangian-like functions which depend on time deriva-
tives of q(t) of order higher than one. In this generali-
zation one obtains Hamilton-Jacobi like equations for
variational problems as the one posed by (4.7). The basic
idea is the introduction of generalized conjugate momen-
ta associated with the time derivatives of q. In our case
one introduces momenta II conjugate to q and H' conju-
gate to q as

4,——(1—~f')0, + —fC, =O, (4.26}

n 1
m(n +2—m )4 4„+2 ——(1 rf—')n4„

m =2

+ —f(n+1)@„+,+@'„,=0 .
1

7
(4.27)

14 = —(I ~f')2 2
7 (4.28)

which substituted in (4.25) leads to the desired result
(4.1). The consistency of the quadratic approximation in
(4.24) requires @2(q))0 so that q=0 is a minimum.
Thus it is fulfilled in cases with a single attractor, which
we consider here, with f ' (0.

At this point it is important to remark that the argu-
ment used to obtain the potential N in the scheme fol-
lowed here is the one of weak-noise intensity which leads
to the variational problem (4.7), and no small r or
Fokker-Planck approximations have been invoked. Also,
~ expansions have not been used in the development.
However, the question remains of the validity of the
quadratic approximation to (4.24). This has no general
answer unless we argue using the only free parameter left
in (4.25) —(4.27) which is r. 4(q ) is known both for r~0
and r~ oo. In the white-noise limit 4= —f f(q)dq so
that (4.25) implies that @2=r/2+0(r ). Replacing this
in (4.26) and taking into account (4.27) one can generally
conclude that @3=0(r ), so that (4.28) is valid for small
~ to order r .

In the opposite limit it is known' that 4=sf /2 so
that @i= 2/2f'. Fro—m (4.26) and (4.27) one then con-
cludes that

C,(q)= „, +O(r), r»1 (4.29)

The set of equations (4.25) —(4.27) define the solution of
(4.22) around the interesting point q=0. A natural ap-
proximation seems to be a quadratic approximation in
(4.24) such that 4(q, q ) =@(q ) +q 4z(q ). In this case we
obtain from (4.26)

ai@(q)=N(q, qo), =0 .
aq g —

go

(4 23) and therefore

N(q, q ) =N(q )+ g q "4„(q) .
lf =2

(4.24)

Replacing (4.24) in (4.22) we obtain

d+ 2 f(q )@&(q), —
dq

(4.25)

As an example we note that indeed (4.17) solves Eq.
(4.22). The important point to notice is that the structure
of (4.22) identifies that q =0 is precisely the value qo for
which BC&/Bq =0. This proves that the minimizing path
that leaves an attractor at t = —~ reaches at t =0 the
prescribed point q with velocity q=0. An alternative
proof of this fact based on the phase-space representation
is given in Appendix C. As a consequence of this fact it
seems natural to look for a solution of (4.22) in t?;e form

Ni(q }= — f'+ —+—, ,
— +O(r ) .3 ~ff" 0

2 2 2 f'(6f'+12) (4.30)

The quadratic approximation to (4.24) is therefore valid
in both limits ~&)1, ~&&1 whenever the last term in
(4.30) can be neglected. In general it can be understood
as a useful interpolation between the two limits which is
more justified when the last term in (4.30) is small. Nev-
ertheless, we insist that the above discussion aims to give
a general justification to the quadratic approximation re-
lying on the parameter ~, but the problem can be ana-
lyzed for each particular f(q) without restoring to con-
siderations on the value of r. In any case (4.25) —(4.27)
give an exact interesting formulation of the problem of
calculating the potential @.

Our calculation develops itself in the q-configuration
space of interest following the general line of reasoning of
solving non-Markovian problems without enlarging the
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—& ~+(f+g) ~=0
ag r ag Bq

(4.31)

where P(q, g) is now a function of (q, g). Equation (4.31)
is the starting point of other approaches ' to find the
stationary distribution of the colored noise problem. In
such approaches P„(q ) =f d g exp[ —P( q, g ) /D ] and

(4.31) is solved for g invoking again small r expansions.
Once more, the form (4.1) can be reobtained. The con-
nection with (4.22) is, a posteriori, rather simple. If a
change of variables from g to q=f(q)+g is done in
(4.31) one recovers (4.22) for C&(q, q)=i)'j[q, q f(q)].—In
this context the stationary distribution should be ob-
tained as P„(q ) = f dq exp[ —N(q, q )/D]. The
equivalence of this with our recipe (4.23) comes from the
asymptotic evaluation of the integral over q in the limit
a~0 in which everything has been worked out. It is
then clear that the r-expansion solution of le(q, g) of
Schimansky-Geier is equivalent to a v.-expansion solu-
tion of (4.22).
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APPENDIX A

In this appendix we obtain the inverse R of C [see Eq.
(2.18)] defined according to

f ds'C(s, s')R(s', s")=5(s—s") .
lo

(Al)

We recall here that C(s,s') admits the following formal
expansion ' ' when s )s':

00

C(s, s')= —exp( —
~s

—s'~/r)=2D g r"5'"'(s —s')
7 n=0

(A2)
where 5'"' indicates the nth derivative of the 6 function
with respect to s'. Here the convention f "dt5(t ) = —,

' is
used. Taking into account (2.18) and (A2), it is then nat-
ural to look for an expansion of R in the form

1R(s',s")=, „ga„5'"'(s' —s") . (A3)

When to & s & t, splitting the integral in (Al) for s' & s and
s') s and substituting (A2) and (A3) one finds by simple
coefficient identification that (A3) fulfills (Al) with
a„=0 (n )2) and 3, =1/2D; A~= r /2D. The —re-
markable result is that although C has contributions of
all orders in ~, the series expansion of its inverse is cut at
order r .

When s = t or s = to, the derivation we have made be-
fore does not apply. To take into account these two
cases, we must add to R some "surface terms. " It is easy
to see that the correct result is given by

R(s', s")= I5(s' —s")—r 5"(s'—s")+2&[5(s'—to)5(s" —to)+5(s' —t)5(s"—t)]
2Dg (q(s') )g (q (s" ) )

+2r [5'(s' to)5(s" ——to) —5'(s' —t )5(s"—t )] I . (A4)

Also, at the end of Sec. II we have discussed the situation in which we add a white-noise contribution to (2.1) as shown
in Eq. (2.23). To simplify, we consider the case g =1. It is possible to repeat the above analysis in order to get the in-
verse [in the sense of (Al)] of the new correlation function. In this case the series (A3) is not cut at the second term, and
we will obtain contributions to all orders in ~.

APPENDIX B

In this appendix we obtain the transition probability density P(q, g, t/qo, go, to) using the discretized path integral in
the prepoint discretization. In the continuous limit expression (2.21) is recovered. This result is important, since this
expression has a clear meaning only in this way.

The discretized version of (2.10) is given in the prepoint discretization by

N

P(q, g, t/qo, go, to)=lim J g dq~ e
g~0 ] 2K

X g dgke e4( &k 4 —i 4 —i l &k 5( )5(s- s-)

k =1 2''

where Ne= t, and f,:f (q; ), g;
—=g(q; ). —

We integrate first over Q . This results in the appearance of delta functions

5([(q, —q, -i)« —f, -i —
k, g, -i]e)

(Bl)
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which makes the integration over g immediate, yielding the expression

a~0 .
) 6g~ ) k ) 27T

wher~

(82)

lk t ( qk 'qk I )«— fk
—

1 I /g—k i —k —I ilo Co

The Gaussian integral over gk results in

N
' N/2 e7 l4D y ((gk gk ))Ie+gk (l~)

K=2

Xe

N —1 dq,i'(q 0 r/qo ko to)=lim f Q ' e
g~ i 4mDe

—r /4D&I [~ql qo ~ fo ~@o ~ ~ go I'
fi«qw q~ i—)« —fN i

—kg—N 1) . —

(83)

(84)

In the limit e~O, the last exponential in (84) tends to a 5
function. Therefore we recover (2.21) with

1/2
gO 1V —1 2

D, [q(~ )]= »m
4mB e

L

(85)

APPENDIX C

In this appendix we obtain some properties of the path
minimizing the action integral. We first show that the
path defined by (4.12) with fixed initial and final value for
q and boundary conditions (4.14) and (4.16) coincide with
the one obtained in the phase-space representation of
Ref. 4(a). We also show that when the path starts at an
attractor at t = —~, the final value of q is zero and con-
dition (4.16) is automatically fulfilled.

The minimizing path obtained in Ref. 4(a) satisfies the
following equations:

2

q =f(q) i f —dr' C(r, r')z(r'),
I (Cl)

z = f 'z, —

where C is the noise correlation function, and the initial
and final value for q are fixed, i.e., q( —Ti ) =qo,
q ( Tz ) =q. From (C 1) we have

q=f'q+(i/r) f dt'C(t, t')z(t')
1

The auxiliary variable z can then be expressed as a func-
tion of q. Eliminating this variable we get (4.12). The
boundary conditions (4.14) and (4.16) are obtained from
(C2) by taking t = T2 and t = —Ti, respectively. This
shows the complete equivalence of both approaches.

We consider now the stationary case, when the path
starts at an attractor at t = —T, = —~ and reaches the
point at t=T2=0. Taking into account that z goes to
zero when t~ —~ in an exponential way, " we get
from (Cl), q( —~ ) =f(q( —~ ) ) =0. In the same way we
obtain from (C2), q( —ao )=0. Condition (4.16) is then
automatically fulfilled.

Finally, we show that in the stationary case, the final
value of q is zero. Multiplying Eq. (4.12) by q and in-
tegrating over t in the interval ( —m, O) we get

it~(q q zq
' —

q 'f—" 2q 'f') —
2q '+ 2f'I—

I =0
=0

From (C3) and (4.14) it is easy to see that (C5) can be
written in the form

(C4)

since this expression vanishes at t = —~. Now, using
(4.14) to obtain q we have

ql~(q' q f" f' q)+—r(f'q —ff') q+f ll, =—o=O .—

(C5)

2

(i /r) J—dr' C(r, r')z(r'),
t

(C2) q(2izD)l, o=0 . (C6)

q' =f"
q +f 'q + ( q f ) /2+ 2izD /r— (C3)

where the exponential correlation function (2.2) has been
used. Diff'erentiating (C2) we get

If z(0) =0 we have z(t ) =0 and we get the deterministic
motion. Therefore q(0)=0. This result is in agreement
with that obtained in Sec. IV, where it is shown that
qo =0 makes the action N(q, qo) minimum.
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