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A Laplacian growth model with the third boundary condition, (1—P)d®/dn — PP =0, is con-
sidered in order to study the effect of the sticking probability of the diffusion-limited aggregation
(DLA), where ® is the harmonic function satisfying the Laplace equation and 3¢ /dn the derivative
normal to the interface. The crossover from the dense structure to the DLA fractal is investigated
by using a two-parameter position-space renormalization-group method. A global flow diagram in
two-parameter space is obtained. It is found that there are two nontrivial fixed points, the Eden
point and the DLA point. The DLA point corresponding to the DLA fractal is stable in all direc-
tions, while the Eden point is a saddle point. When the sticking probability P is not 1, the aggregate
must eventually cross over to the DLA fractal. The crossover exponent ¢ and crossover radius r x

are calculated.

I. INTRODUCTION
Fractal growth phenomena in pattern formation'~!!
have recently attracted considerable attention. Examples
of pattern formation in diffusive systems include viscous
fingering, electrochemical deposition, crystal growth, and
dielectric breakdown. There has been increasing interest
in the physical mechanisms governing the geometrical
structure in the diffusion-limited aggregation (DLA).
The fractal nature of the aggregate has been analyzed by
computational, experimental, and analytical methods.
Several analytical attempts, including mean-field
theories'>"!> and renormalization-group methods!®~?!
have been made to calculate the fractal dimension and
the multifractal structure’>?* of the growth probability
distribution. Several approaches to simple generaliza-
tions of the DLA model have been carried out to take
into account sticking probability,'~3 surface tension,?*~2¢
particle drift,>’=2° multiparticle effects,>3® and lifetime
effects.’! The crossover phenomena from DLA fractal to
the nonfractal structure were found by computational
and experimental methods. The effect of the sticking
probability P on the fractal nature of DLA has been stud-
ied by the computer simulation.?>3? When the diffusive
particle reaches a site that is nearest to the aggregate, it
now has the probability P of sticking. It has been found
that when P is small, the aggregate is apparently more
compact for intermediate sizes; above a characteristic
size the fractal character emerges. However, one can
easily be convinced that in the limit P—0 one must re-
cover the Eden model. In this limit, the Brownian parti-
cle visits all the surface sites many times before sticking.
Then the sticking probability becomes uniform over the
whole surface as in the Eden model. Thus an open ques-
tion concerns the asymptotic behavior of DLA in which
the sticking probability P is not one. A similar question
is also shown in the viscous fingering at the finite viscosi-
ty ratio. Very recently, Lee, Coniglio, and Stanley*3 suc-
ceeded in analyzing the crossover from the DLA fractal
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to the dense structure in viscous fingering at the finite
viscosity ratio by using the two-parameter position-space
renormalization-group method. The position-space
renormalization-group approach for DLA devised by
Nagatani'® was extended to the crossover phenomena.

In this paper, we consider the effect of the sticking
probability on the fractal nature of the DLA. The ex-
tended version of DLA introducing the sticking probabil-
ity P is equivalent to the Laplacian growth model with
the third boundary condition, since the DLA is iso-
morphic to the Laplacian growth.>* The third boundary
condition on the surface of the aggregate is given by

(1—P)a£—P<I>=O , (1)
an

where @ is the scalar potential satisfying the Laplace
equation, and 0® /dn the derivative normal to the inter-
face. The limiting case of P=1 represents the ordinary
DLA model with the perfectly absorbing boundary. In
the limit of P —0, it gives the perfectly reflecting bound-
ary and the Eden model is reproduced since the probabil-
ity visiting the surface becomes uniform over all the sur-
face site. We consider the crossover phenomena from the
nonfractal structure to the DLA fractal. By using the
two-parameter  position-space renormalization-group
method, the crossover from the dense structure to the
DLA fractal is analyzed. With the sticking probability
P <1, the system crosses eventually over to the DLA
fractal.

The organization of the paper is as follows. In Sec. II
we present the dielectric breakdown model on the dia-
mond hierarchical lattice for DLA with the sticking
probability. In Sec. III we apply the two-parameter
position-space renormalization-group method to the
dielectric breakdown model. In Sec. IV we present a glo-
bal flow diagram in two-parameter space. The crossover
from the dense structure to the DLA fractal is shown. In
Sec. V we present the summary.
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II. MODEL

We use an electrostatic analogy to transform the DLA
problem into a specific type of resistor network problem.
We describe DLA in the dielectric breakdown language.
The dielectric breakdown model is isomorphic to the
DLA, since both systems are governed by the Laplace
equation. For simplicity, we consider the problem on the
diamond hierarchical lattice. = The position-space
renormalization-group approach applied to the hierarchi-
cal lattice is comparatively accurate to derive the critical
behavior of the system. The diamond hierarchical lattice
is constructed by an iterative generation of the base set
(Fig. 1). Each bond is occupied by a resistor of unit con-
ductance. A constant voltage is applied between the bot-
tom and the top on the diamond hierarchical lattice. The
dielectric breakdown proceeds from the bottom to the
top. Figure 2 shows the illustration of the breakdown
model on the diamond lattice. The thick lines indicate
breakdown bonds: superconducting bonds that construct
the breakdown pattern. The bonds on the perimeter of
the breakdown pattern are represented by the wavy lines.
The thin lines indicate unbroken bonds, which are resis-
tors of unit conductance. So the resistor network prob-
lem is solved under a discrete version of the boundary
condition (1). On the perimeter bond, the boundary con-
dition is given by

(1—P)(®,, —®,)—PD, =0, 2)

where @, is the potential of a site on the surface of the
aggregate, and &, the potential of a nearest-neighbor
site of the aggregate. The potential &, is interpreted as
the voltage drop which occurs from the contact resis-
tance between the aggregate and the bulk. A growth
probability proportional to the current is then assigned to
the perimeter bond. The interface proceeds to the top ac-
cording to the growth probability. The breakdown pro-
cess of bonds is assumed to occur one by one. The
growth probability p; at the growing-perimeter bond i is
given by

pi~1;, (3)

where I; is the local current at the growth bond i. Thus
we can describe DLA with the sticking probability in
terms of the breakdown model on the resistor network
with a contact resistance.

(a) (b)

FIG. 1. Generation of the diamond hierarchical lattice. (a)
Base set. (b) Second stage.
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FIG. 2. Illustration of the dielectric breakdown model with
the contact resistance. A constant voltage is applied between
the bottom and the top. The thick, wavy, and thin lines indi-
cate, respectively, breakdown, growth, and unbroken bonds.

III. RENORMALIZATION-GROUP APPROACH

We consider the renormalization procedure for deriv-
ing the two-parameter position-space renormalization-
group equations.!® We derive the renormalization trans-
formations for the sticking probability P and the surface
conductance o, of the perimeter bond. We will show
that the two-parameter renormalization-group equations
are given by

P'=Rp(P,0,), 4)
o.=R,(P,o,) . 5y

We distinguish between three types of bonds on the lat-
tice before and after a renormalization procedure: (a) in-
terior bonds which are occupied by superconducting
bonds and construct the aggregate, (b) growth bonds
which are on the surface of the aggregate and can be suc-
cessively grown, and (c) exterior bonds which construct
the electric field in the exterior of the aggregate. The in-
terior, growth, and exterior bonds are, respectively, indi-
cated by the thick, wavy, and thin lines in the figures.
We partition all the space of the diamond hierarchical
lattice into cells of size b =2 (b is the scale factor), each
containing a single generator. After a renormalization
transformation these cells play the role of ‘‘renormalized”
bonds. The nth generation of the hierarchical lattice is
transformed to the (n —1)th generation. The renormal-
ized bonds are then classified into the three types of
bonds, similarly to bonds before the renormalization. If
the cell is spanned with the bonds occupied by the interi-
or bond, then the cell is renormalized as the interior
bond. If the cell is not spanned with the interior bond
and is nearest neighbor to the aggregate, then the cell is
renormalized as the growth bond on the surface. When
the cell is constructed only by the exterior bonds and not
nearest neighbor with the aggregate, then the cell is re-
normalized as the exterior bond. The conductance of the
interior bond remains an infinite value after renormaliza-
tion. The conductance of the exterior bond after renor-
malization also remains a unit value. The conductance of
the renormalized bond as the growth bond is transformed
to a different value after renormalization. We call the
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conductance of the growth bond as the surface conduc-
tance. The sticking probability P is transformed to a
different value P’ after renormalization of the cell to be
possible to renormalize as the growth bond on the perim-
eter.

We assume that DLA process occurs stepwise: the
breakdown proceeds one by one, and only one bond
breaks at a time (there is no simultaneous bond breaking).
We derive the renormalization-group equations for the
sticking probability P and the surface conductance o;.
Figure 3 shows all the configurations of the cell for which
it is possible to renormalize as the growth bond. Let us
consider the configurational probability C, with which a
particular configuration a appears. The distinct con-
figurations are labeled by a (a¢=0,1,2) in Fig.3. The
configuration (1) is constructed by adding a breakdown
bond onto the growth bonds 1 or 2 in the configuration
(0). The probability with which a breakdown bond adds
onto the growth bonds 1 or 2 in the configuration (0) is
given by the growth probabilities p,; or py, of the
growth bonds 1 or 2 in the configuration (0). In addition,
by adding a breakdown bond to the configuration (1), the
configuration (2) occurs. We here assume that the break-
down proceeds one by one. The configurational probabil-
ities C,, are given by

C1=Colpo1tPo2), C,=Cipy,, (6)

where po ; =pg,=+. The configurational probability C,
is determined from the normalization condition

3C,=Cy+C,+C,=1. @)
a

Consider the resistor network problem for cells that can
be renormalized as a growth bond pattern. The electric
fields within the cell are determined by the surface con-
ductance o, and the sticking probability P. We solve the
resistor network problem for deriving the renormaliza-
tion functions (4) and (5) of the sticking probability P and
the surface conductance o,. We apply the unit voltage
between the top and the bottom for each cell (see Figs.
4-6 below). Figure 4 shows the resistor network problem
for the configuration (0). The resistor network consisting
of the four bonds on the left-hand side is transformed to
the single resistor with the equivalent electric property.
By using the boundary condition (2), the voltages and the
currents within the cell are determined. The total
current and the total conductance of the cell are given by

(0) (1) (2)

FIG. 3. All distinct configurations of the cell that it is possi-
ble to renormalize as the growth bond.
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FIG. 4. The resistor network problem for the configuration
(0). The circuit on the left-hand side is renormalized to that on
the right-hand side. Both circuits are electrically equivalent.

I,=2Pc,/(1+Po,), o4=20,/(1+0,). (8)

The voltage ¥, on the surface of the renormalized bond is
determined from

(1—P))(1—V!)—PLV!=0, )

where P’ is the renormalized sticking probability. The
total current flowing in the cell equals to the current
flowing through the renormalized bond:

Iy=0i(1—V!). (10)

By using Egs. (8)-(10), the renormalized sticking proba-
bility P is obtained:

Py=(1+0o,)P/(1+Poy) . (11)

Similarly to the configuration (0), we solve the resistor
network problem for the configuration (1) (see Fig. 5).
The total current flowing within the cell is given by

I,=o,P(2+0o,P)/(1+0P) . (12)
The total conductance of the cell is given by
oi=o0,2+0,)/(1+0) . (13)

By using the condition that the total current flowing
within the cell equals to that carrying through the renor-
malized bond, the renormalized sticking probability P is
given by

Pi=P2+o,P)1+0,)/(1+0,P)2+0,) . (14)

The growth probabilities p, ; and p, , within the cell are
given by

pi1=(0+o,P)/2+0P),
p1,=1/2+0,P).

(15)

FIG. 5. The resistor network problem for the configuration
(1). The circuit on the left-hand side is renormalized to that on
the right-hand side.
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Similarly, the conductance o5 of the cell with the
configuration (2) is obtained:

oy=20, . (16)

Figure 6 shows the resistor network problem for the
configuration (2). The renormalized sticking probability
P}, of the cell is given by

P,=P. (17)
The growth probabilities p, ; and p, , are given by
2= . (18)

When the sticking probability P equals to one, the con-
ductances o, and the growth probabilities p, ; are con-
sistent with those of the ordinary DLA. The renormal-
ized conductance o of the growth bond will be assumed
to be given by the most probable value

o, =exp zcalna;} . (19)
a

The relationship (19) with (8), (13), and (16) presents the
renormalization-group equation o;=R (P,o,) for the
surface conductance. The renormalized sticking proba-
bility P’ will be assumed to be given by the mean value

P'=3C.P, . (20)
a

The relationship (20) with (11), (14), and (17) presents the
renormalization-group equation P'=R,(P,o,) for the
sticking probability. Equations (6)-(8), (11), (13)-(20)
are simultaneously solved. We find the two nontrivial
fixed points (0,0%) and (1,00 ,) where 05 =2.611 and
obLa=2.123, respectively. At the fixed point (0,0%),
the growth probabilities p,; give + for all the growth
bonds in the configurations (0), (1), and (2). The growth
probability on the growth bonds over the whole system is
represented by the multiplicative process of the cell’s
growth probabilities.!® The growth probability over the
whole system becomes uniform over all the surface bond.
The fixed point (0,0%) corresponds to the Eden model.
It is called the Eden point. On the other hand, the fixed
point (1,005, o) gives the ordinary DLA. It is called the
DLA point. In the following section, we study the stabil-
ity of the fixed points in the two-parameter space (P,0,).
The global flow in the two-parameter space (P,o) will
be obtained. The crossover phenomena are investigated.

FIG. 6. The resistor network problem for the configuration
(2). The circuit on the left-hand side is renormalized to that on
the right-hand side.
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IV. CROSSOVER FROM NONFRACTAL
TO DLA FRACTAL

We consider the crossover phenomena from the Eden
model to the DLA fractal. To find the global flow dia-
gram in the two-parameter space (P,o), we randomly
choose a point in the parameter space (P,o0 ), and calcu-
late the renormalized sticking probability and the renor-
malized surface conductance using (19) and (20), to find a
new point (P’,0;). We repeat this process to find next
point (P",0,"), and continue until we approach a stable
fixed point. We use 50 initial points and plot the renor-
malization flow in the phase space for representative ini-
tial points. Figure 7 shows the renormalization flow, ob-
tained by using (19) and (20). From the renormalization
flow, we can determine the stabilities of the two fixed
points: the Eden and the DLA points. The Eden point is
a saddle point: it is stable in the y direction, and unstable
in other directions. The DLA point is stable in every
direction. All the renormalization flows eventually merge
into the DLA point. It is found from the flow diagram
that there exists a crossover from the dense cluster (the
Eden fixed point) to the DLA fractal (the DLA fixed
point). The crossover line can be determined by follow-
ing the renormalization flow which starts from an initial
point very close to the Eden fixed point. It is indicated
by the thick line in Fig. 7. In order to quantify this cross-
over behavior, we define a crossover exponent ¢ and a
crossover radius r,. We propose the scaling ansatz
along the crossover line,

M(r,P)=rF(Pr?) , (21a)

where M is the mass of the cluster, » the radius of gyra-
tion, d the embedding dimension, and P the sticking
probability. The similar scaling form was already pro-
posed by Meakin.’® We assume

1 if x<1,

F(x)~ 1 4

x% ifx>1. (21b)

As r increases, M (r, P) scales as r¢ % With increase of

r, the aggregate becomes DLA fractal, implying
d+¢a=d,, (22)

Eden -

DLA

O .

! | L
0 0.5 1
FIG. 7. Global flow diagram in two-parameter space (P,o).
There are two fixed points: the Eden and the DLA points. All
the renormalization flows eventually merge into the DLA point.
The crossover line from the Eden to the DLA is indicated by
the thick line.



7290

where df is the fractal dimension of DLA. Furthermore,
we can estimate 7. From (21b), r, should be the value
of the radius which corresponds to x =1, that is
r« ~P 1% The crossover exponent ¢ shall be found by
linearizing the renormalization equations and calculating
the eigenvalues. The linearized relation of the renormal-
ization equations is given by

5P | _ JoP  do, 5P -
5o, OR; OR; So |

ap aO'S Eden

where the matrix is evaluated at the Eden fixed point.
The values of the matrix elements are numerically calcu-
lated from the renormalization functions. The eigenval-
ues of the matrix are obtained

A,=2.27 and A,=0.649 . (24)
The crossover exponent ¢ is given by
¢=InA,/Inb=1.18 . (25)

Meakin® found the following scaling form from the com-
puter simulation

M(r,P)=r>11f(pro%8) (26)

This should be compared to the result (21a) with (25).
Consequently, the theoretical result and the computer
simulation result appear to be consistent with each other.

There are already some simulations?*3>% indicating
that the crossover from the dense structure to the DLA
fractal shown by our approach may be correct; e.g., the
simulated patterns are thicker near the starting point
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than near the periphery and above a characteristic radius
the fractal structure shows up. The comparison of this
crossover with that in the viscous fingering is very in-
teresting. By using the position-space renormalization-
group method, Lee, Coniglio, and Stanley* found that in
viscous fingering at a finite viscosity ratio, the crossover
occurred from the DLA fractal to the compact cluster.
The crossover from the DLA fractal to the compact clus-
ter is in contrast to that found above: the crossover from
the dense structure to the DLA fractal.

V. SUMMARY

We propose a Laplacian growth model with the third
boundary condition (a linear combination of Dirichlet
and Neumann boundary conditions) to study the effect of
the sticking probability on the diffusion-limited aggrega-
tion. We develop a set of the position-space
renormalization-group equations for DLA with the stick-
ing probability. By using the two-parameter position
space renormalization-group method, we find that the
crossover occurs from the dense structure to the DLA
fractal when the sticking probability is small. The two
nontrivial fixed points: the Eden point and the DLA
point are found. It is found that when the sticking proba-
bility is less than one, the aggregate crosses eventually
over to the DLA fractal. We calculate the crossover ex-
ponent and the crossover radius.
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