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We analyze the interactions of the first and second mode arising in the one-sided and the sym-

metric model of directional solidification of a dilute binary alloy if a planar interface loses stability
and stationary cellular structures are formed. Algebraic bifurcation equations for the coupled am-

plitudes of the two unstable modes are derived from the nonlinear equations of motion with the in-

terface velocity as a control parameter. The transitions from planar to cellular interfaces are de-

scribed in terms of normal forms and bifurcation diagrams. Thereby we predict that each of the
two bifurcating solution branches can show hysteretic behavior and that for suitable values of the
parameters involved there exist tertiary Hopf bifurcations to time-periodic interface shapes. The re-
sults are compared to recent numerical work and the nature of the one-sided limit is discussed.

I. INTRODUCTION

In recent years directional solidification' ' has be-
come a paradigm for the formation and evolution of spa-
tiotemporal structures in nonlinear systems. ' In general,
these structures appear if an externally controllable pa-
rameter passes through a critical value so that a balance
existing between competing forces breaks down. The sys-
tem then restabilizes in a more complex space- and time-
dependent configuration. Mathematically, such a bifurca
tion' occurs if the real part of an eigenvalue of the linear-
ized system passes through zero from negative values. A
zero eigenvalue leads to stationary solutions whereas a
pair of imaginary eigenvalues gives rise to time-periodic
structures. Variation of an extra parameter may change
the eigenvalue structure and thus can lead to multiple bi-
furcations which induce interactions of different modes.
If the spectrum of the linearized system is discrete, then
only a finite number of modes can interact in the vicinity
of a multiple bifurcation point. This is always the case in

systems with finite spatial extension. Typically, the extra
parameter that induces mode interactions is given by
some characteristic length as, e.g. , the aspect ratio in
convection systems.

In the field of directional solidification the role of this
extra parameter is played by the width of the sam-
ple. ' ' If this width is finite, then the appropriate
boundary conditions are those of no solute flux across the
side walls. Then, as we shall see, the wavelength and the
bifurcation behavior of the evolving stationary cellular
interfaces depend on the width of the sample. If the sam-

ple is taken to have an infinite width, then there should
be an other selection mechanism for the wavelength of
the interface structure. However, in numerical simula-
tions of the solidification system the computational
domain always has to be finite. Hence they all deal, in
fact, with a finite sample width and, therefore, yield in-
teractions of a finite number of modes. In recent years
several papers on such numerical work about mode in-
teractions have been published. A systematic analyti-

cal approach to solve a simplified one-sided model with
finite sample width has been made in Ref. 10 by use of
imperfect bifurcation theory '' In . the present paper we
want to extend this analysis to a more realistic model for
the one-sided and the symmetric case. Thereby we re-
strict ourselves to interactions of the first and the second
mode. We begin, in Sec. II, with the equations describing
the two-dimensional system of directional solidification
with nonflux boundary conditions at the side walls and
the interface velocity as control parameter. In Sec. III
we derive a system of evolution equations for the Fourier
amplitudes of the interface which is reduced further to
algebraic bifurcation equations describing the branching
of stationary cellular interfaces. In Sec. IV a linear stabil-
ity analysis is performed. In Sec. V we determine all de-
generate interactions of the first and the second mode for
both the one-sided and the symmetric model, and express
the results in terms of normal forms and bifurcation dia-
grams. In the discussion in Sec. VI we compare our
analysis with other results, comment on the nature of the
one-sided limit, and make some suggestions for future
work.

II. DIRECTIONAL SOLIDIFICATION

Consider a thin, two-dimensional sample of a dilute
binary alloy which is pulled, at a velocity V, through a
fixed constant temperature gradient towards the region of
lower temperature (Fig. 1). Hence the interface separat-
ing the solid and liquid phases moves through the rnateri-
al during the process of solidification. At low pulling ve-
locities this interface is flat, but as V increases beyond
some critical value the planar interface becomes unstable
and evolves into cellular morphologies of definite wave-
length and amplitude. This instability is the result of the
competition between the destabilizing effect of the solute
diffusion and the stabilizing forces of surface tension and
the temperature gradient. '

It is often assumed that the temperature distribution is
given by the imposed gradient alone, ' which implies
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c&=0 for g=O, L,
where L is the width of the sample, and for g~+ oc we
have

lim c =c
fJ~+ oo
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To simplify the model, some further approximations are
widely used in the literature.

First, the concentration jump J is expanded into a Tay-
lor series around the concentration co at the liquid side of
a Aat interface,

J(c )=J(co)+J'(co)(c —co)+ .
FIG. 1. Schematic representation of the two-dimensional sys-

tem of directional solidification.

2)she + Vc —c, =0 for i) &s(g, t),
where g is the coordinate in the direction of increasing
temperature, g is the coordinate perpendicular to il, 2)
and X)s are the diffusion coefficients in the melt and solid,
respectively, and s(g, t) describes the position of the inter-
face. The two-dimensional Laplace operator is denoted
by 6, t is time, and c and c, denote partial derivatives.
At the interface i)=s(g, t) the Gibbs-Thomson relation
has to be satisfied, which reduces here to

—Lc S—m

T I
&(s ),

where c is the solute concentration far away from the
interface, « is the segregation coefficient (0&«& 1), 6 is
the temperature gradient, m (0 is the slope of the
liquidus line in the phase diagram, T is the melting tem-
perature of the pure material (i.e. , for c=0), I is the
capillary length, and finally

&(s)= —s&&/(I+s &)
~

is the curvature of the interface at i)=s(g', t). Conserva-
tion of matter across the interface implies

—( V+r, )J(c )++(Y~c
~
—2 ) —+s(X

for rt=s(g, t), (4)

that the latent heat released at the interface is negligible
and the thermal conductivities of the two phases are
equal. Then the solidification process is primarily
governed by solute diffusion, and so one often speaks of a
solutal model. In the frame of reference moving with the
interface at velocity V, the diffusion of the solute concen-
tration c ' (g, i), t) in the liquid (L) and solid (5) part, re-
spectively, is described by the equations

X)bc + Vc —c, =0 for il)s(g, t),

Taking into account only the constant term, we get
J(c )=(1—«)c„/«. ' ' If we add the linear term
and additionally take the phase diagram of the alloy to be
linear, then the above Taylor series becomes a linear
function given by J(c )=(1—«)c

The second type of approximation concerns the
diffusivities in the two phases. Neglecting solute diffusion
in the solid phase, i.e., assuming Xi+ =0, leads to the so-
called one sided -model, whereas assuming X)=2)s results
in a symmetric model.

The bifurcations of the planar interface to stationary
cellular morphologies in the model with J =(1—«)c /«
and X)z =0 have been analyzed in Ref. 10, but in numeri-
cal approaches usually J =(1—«)c is used. Taking
J =const means in terms of the phase diagram'" that
the solidus and the liquidus lines are parallel locally
around the temperature of the planar interface. But in a
linear phase diagram the solidus and the liquidus lines
can be parallel only if they coincide, but then the segrega-
tion coeKcient ~ equa1s 1. So in this sense, not strictly,
the approximation J =const corresponds to a limit ~~1.

In the following we want to ana1yze the qualitative, lo-
cal bifurcation behavior of the models with J =(1—«}c
in the case where the first and second mode interact non-
linearly.

To minimize the number of parameters invo1ved we be-
gin the analysis with a rescaling of the variables. With
c =c ' /c„, re=ail, /=ad, and r=a 2)t the system
(1)—(6) transforms into

bc +vc„—c, =0 for il )s (g, r),
R b,c +vc —c,=0 for il & s (g, r},
cL= ——s ——&(s} for rj=s (g, r),

K Q

—(v+s, )(1—«)c +s~c~ —c„—R (s~c~ —c„)=0

for ri=s (g', r), (10)

where c and c denote the concentrations on the liquid
and solid sides of the interface, respectively, and
J(c )=c —c is the concentration jump at the inter-
face.

At the side walls of the sample we impose nonAux
boundary conditions for the concentration field

c&=0 for g=O,

lim c =1,
g~+ oo

g=b,

c =«c for i)=s(g, r) .

(12)
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Here, the various new parameters are defined as follows:

)0, v= )0,V
—mc

+SR=, u=
2) '

m c
&0, b=aL .

m

cp =1 for g(0 .

III. DERIVATION OF BIFURCATION EQUATIONS

Following Ref. 10 we begin the analysis of (7)—(13) with
the derivation of a system of evolution equations for the
Fourier modes of the interfacial displacement s (j,r). Be-
cause of the nonflux boundary conditions (11) the inter-
face can be expanded in a cosine series' ' "

s(g, r)= g e (r)cos(m&ukag),
m =0

where e is real and

k =n. /(b&u )=(~ L/)(T I /G)' )0
is the fundamental wave number depending on the width
L of the sample. Using a quasistationary approximation'
the solute concentrations c and c can be expanded into
a formal Taylor series with respect to e=(ea, e„e2, . . . )

around the planar interface solution e =0, where the
Taylor coefficients are uniquely determined by Eqs. (7),
(8), (9), (12), and (13). Substituting this Taylor series into
Eq. (10) we obtain an infinite system of coupled nonlinear
first-order differential equations for the e

In virtue of the boundary conditions (9) and (10) the sys-
tem (7)—(13) is highly nonlinear. It always possesses a
trivial solution with a planar interface s (g, r) =0 which is
given by

1 —K
c =1+ exp( —vi)) for g) 0,

tern (14) go through zero from negative values. Then, the
planar interface loses stability and the system encounters
bifurcation to cellular steady-state interfaces in virtue of
the nonlinear terms M in (14). Because there are no pri-
mary Hopf bifurcations, we confine ourselves to station-
ary solutions with e =0 in (14). As shown in Ref. 10 we
use a Lyapunov-Schmidt reduction to reduce the problem
of finding solutions of (14) near the onset of instability of
the planar interface to the problem of solving a single
equation: Suppose that a„=0 is the first eigenvalue going
through zero for v=v„so that a (0 for mXn. Then
the nth equation in (14) is degenerate because its linear
part vanishes. According to the implicit function
theorem, the nondegenerate equations in (14), those with
m An, can be solved with respect to the e, m Wn, thus
leading to e =e (e„). Substituting these expressions
into the remaining degenerate equation with m =n yields
a single algebraic bifurcation equation for the stationary
amplitude e„,

B (e„,v) =—M„(e(e„)) =0, (15)

with B(O,v)=0 and BB(O,v, )/Be„=O. In virtue of the
symmetry of Eqs. (7)—(13) with respect to reflections at
the axis g=b/2 and the nonflux boundary conditions
(11),Eq. (15) takes, following Ref. 17, the form

B(x,v)=xh (x,v)=0,
where x =e„ is the amplitude of the mode becoming un-
stable first and h (x,v) is some smooth function satisfy-
ing h (O, v, ) =0. The Taylor coefficients of B at x =0 and
v= v, can be calculated explicitly in terms of the
coefficients a,'

In Sec. IV we will see that it is possible that two modes
e„and e„+, become unstable simultaneously at v=v, .
Then we obtain two coupled equations for the amplitudes
E„and e„+,of the form'

B'"(x,y, v) =xa (x,y, v)+x "y "b (x,y, v) =0,
(16)B' '(x,y, v) =yc (x,y, v)+x "+'y" 'd (x,y, v) =0,

c.e.,

r =m
n n

e =a e +M (e), i=0, 1,2, . . .

(14) where x—=e„, y—=e„+„n~1, and a, b, c, and d are
smooth functions. The form of (16) and, therefore, the
resulting bifurcation behavior depends on the wave num-
bers n and n +1 of the two unstable modes. Of course,
B, B"', and B' ' also depend on the system parameters u,
K, R, and kp,

where the a —=a' ' are the (real) eigenvalues of the
linearized system and the M describe the nonlinear
effects.

The coefficients a,' ' „depend on v and the system

parameters u, K, R, and kp and can be calculated explicit-
ly to any desired order using computer algebra systems
such as SMP. A formula for these coefficients is given in
the Appendix. The trivial solution e =0 of (14)
represents the planar interface and is stable if a; (0 for
all i, which is the case for sufficiently small v (cf. Sec. IV).
As v increases and passes through a critical value v„
some of the eigenvalues a of the linearization of the sys-

IV. LINEAR STABILITY ANALYSIS

As we have seen in Sec. III, the planar interface loses
stability as v increases if one or more of the eigenvalues
a go through zero from negative values. The eigenval-
ues are given by

a„=F,(n)q (n) —F, (n)v(1 —a)+RG, (n)p (n)

—v (1—x)

with

1 —KF, (n) =v —1 nk0, —
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G&(n)= —v(1+n ko),
2

q(n)= —+ +un k

1/2 (17)
]g

Dq D2 D)

' i/2

p(n)= — + +un ko2R 4R'

from which we obtain the neutral stability curve
C(u, a.,R) depicted in Fig. 2. This curve is closed and
convex and expands when u is increased. For decreasing
u the curve shrinks and vanishes for u being sufficiently
small. When a increases, then C(u, ~,R) shrinks and for
increasing R the curve shrinks, too. Qualitatively the
neutral stability curve is the same as for the simpler mod-
el analyzed in Ref. 10.

To predict the bifurcation behavior of the system near
the onset of instability we have to know which mode be-
comes unstable first as v increases. For fixed ~ and R we
get in the same way as in Ref. 10 a subdivision of the
(ko, u) plane into disjoint regions R„, such that for (ko, u)
lying in R„ the nth mode is the first one becoming unsta-
ble when v is increased, see Fig. 3. If (ko, u) hes on a
boundary curve D„, above the point P„, the modes n and
n +1 become unstable simultaneously as the first ones.
Outside the regions R„ there is no instability of the pla-
nar interface. Qualitatively this subdivision is the same
as for the model of Ref. 10, being a consequence of the
geometry of the neutral stability curve C(u, x,R). But,
naturally, the positions of these regions R„change with
the values of ~ and R, so R„=R„(~,R).

V. (1,2) INTERACTIONS

In the literature work on the system (7)—(13) usually is
restricted to the special cases R =0 and R = 1, i.e., to the
one-sided and the symmetric models, respectively. Also,
mostly, work is concentrated on the situation, where the
mode number 1, corresponding to cos(&u kog), is the
first one becoming unstable. In virtue of the geometry of
the neutral stability curve the mode number 2, corre-
sponding to cos(2&u kog), becomes unstable next when v
is increased further. In such a situation these two modes
interact nonlinearly, which is called (1,2) interactions.

C(u, r. , R)

b(e

I
1

I

1

I
I
1

I

\

t
I
'I

FIG. 3. Division of the (ko, u) plane indicating the critical
modes. For (ko, u) lying in region R„, the mode number n be-
comes unstable first for increasing interface velocity v and thus
determines the wavelength of the bifurcating cellular interface.
Naturally, the exact position of these regions depends on the
values of ~ and R.

However, one should be aware that, because of the spe-
cial structure of (16), the (1,2) interactions are very
different from all other (n, n +1) interactions with n ~ 2.
For n ~2 we obtain from (16) two pure mode solu-tion
branches with x =0, c(O,y, v)=0 and y =0,
a(x, O, v)=0. They bifurcate from the trivial solution
x =y =0 and never intersect. In the case n =1 there is
no pure-mode solution with y =0, and the solution
branch corresponding to the bifurcation of the first mode
off the trivial solution possibly connects in a secondary
bifurcation with the x =0 pure-mode solution.

In the following, we want to analyze local (1,2) interac-
tions for the system (7)—(13) with R =0 and 1 by applying
imperfect bifurcation theory' ' as outlined in Ref. 10.
Thereby, we concentrate on the search for degeneracies,
i.e., on situations where some of the low-order Taylor
coefficients in (16) vanish in dependence on ko, u, and ~.
In the neighborhood of such degenerate points in parame-
ter space complex interactions of the two unstable modes
can be expected. If we fix a E(0, 1) and R H I0, 1I, then
we obtain local (1,2) interactions if the values of (ko, u)
are close to the line D, of Fig. 3. On D, we have the sit-
uation where the first and the second mode lose stability
simultaneously at the same critical value of v, i.e.,
a, =a2=0.

A. One-sided model (R =0)

The Taylor coefficients of B'" and B' ' at x =y =0
and v=v, which govern the behavior of the (1,2) interac-
tions are, following Ref. 17,

(1) = a (i) (&)B =„a,, B =a
av

B(2)— 6 a' 'a' 'a' ' —a' 'a' 'a' '
yyy (p) (4) ( 0 4 —2, 2, 2 4 0, 2 —2, 2

ap a4

FIG. 2. Neutral stability curve C(u, ~,R) showing the critical
interface velocity v depending on the wave number k.

(p) (2) (4)
0 —24 2, 2)

B(2) a B (2) 2a (2)= a
yv g 2& xx 11

(18)
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mode branch S with A, = —y . For x+0 we get the
mixed-mode solution S with 1,= (y +a+py) /~ p ~

and
x =y(y +A, ). The projections into the (A, ,y) plane of
the six qualitatively different stable diagrams (for
different values of a and p) are shown in Fig. 4. The
+,—signs denote degree of stability: ——means stable,
and all others unstable. We see that the bifurcation of
the second mode, the x =0, A, = —y solution, is locally
subcritical. But a numerical evaluation shows that Byyyyy
is negative on D& for all values of K, so that in all cases
the pure-mode solution will finally bend forward, indicat-
ed in Fig. 4 by the dotted parts of the diagrams. In addi-
tion, we find in Figs. 4(a) and 4(b) at the point TB (stand-
ing for tertiary bifurcation) a tertiary Hopf bifurcation to
time-periodic interface shapes. But our time-independent
analysis does not allow any further statements on these
time-dependent solutions and their stability. However,

where the subscripts x, y, and v denote partial deriva-
tives. If one of these coefFicients vanishes on D, we have
a degeneracy giving rise to a certain type of (1,2) interac-
tion.

The condition a, =a2 =Ra &
/Bv=0 leads to a point Pi

in the (ko, u} plane (see Fig. 3). This point exists for all
values of K and is a consequence of the geometrical struc-
ture of the neutral stability curve. On D& except for the
point P, , we have B„"'& 0 for all a H (0, 1).

The condition a, =a2 =a"',
2
=0 leads to a point

Q=(k, u) with

1 —2a. 81 (1+~)(2—a)(1 —a)a.
2+5ir 4 (2+5')(1—2a. )

Because k has to be positive, this point exists only for
K& —,

' and we see that k~0 and u ~ ~ for K~ —,'. It is
easily calculated that Q coincides with P, for
a =

—,
' (7—3v'5 ) =0.1459. On D, we have B„"'& 0 above

Q and B,'"&0 below.
The expression for Byyy in terms of vy Ky Q, and ko is

rather complicated, so it has not been possible to evaluate
the coIld 1t1ons a ] a 2 Byyy 0 analytical ly. But numer-
ical calculations showed that B

yy
vanishes on D& at a

point T for K&K, =0.0819. On D1 we have B„' '&0
above and Byyy & 0 below the degenerate point T.

As to the remaining coefficients in (18},we got that on
D, we have B' ' &0 and B' '&0 for all a E(0, 1), espe-
cially they never vanish.

In the following we want to analyze the (1,2) interac-
tions generated by the above degeneracies.

TB

sy

(i) At (ko, u)=Q we have a, =a2=B,'"=0. To get the
normal form describing the bifurcation behavior of our
system locally around the point Q we still have to know,
following Ref. 17, the sign of Bxyy where

++
+

r
y

( a (0)a a a a a
xyy (0) (3) iao a3 a —212 —ao a 23a12

ao a3
(c)

(3) (0) (&)
3 —2, 2 O, i

and the value of the model parameter

(19)
++

sy
't

Numerical evaluations show that B'„"&0 and —1 &p &0
for ( ko, u ) = Q. This finally yields the unfolded
codimension-two normal form

(e)

FIG. 4. Diagrams for the unfolded normal form (20) for
(ko, u) near 0, occurring for R =0. The solution curves are
projected onto the (k,y) plane. The +,—signs indicate degree
of stability, where ——means stable and all others unstable.
(a)—t', f) show the six qualitatively different diagrams for various
values of the unfolding parameters a aud P. In (a) and (b) we
have at the point TB a tertiary bifurcation to time-periodic
states. The dotted parts of the curves indicate that the branch
S will finally bend forward because 8~~~» & 0 on D I .

—x (y2 —
~p~ i, +a+Py) =0,

—x +y(y +A, )=0,
(20)

where a and p are the unfolding parameters and
A, =v —v, . The solutions of (20) are curves in the (A, ,x,y)
space. For x =0 we obtain either the trivial solution

y =0, corresponding to the planar interface, or a pure-

MODE INTERACTIONS IN THE ONE-SIDED AND THE. . .
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numerical analyses of Bennett, Brown, and Ungar indi-
cate that these time-periodic solutions bifurcate subcriti-
cally and are unstable.

Now it is possible to identify the different diagrams of
Fig. 4 with values of (ko, u) varying around Q. To this
purpose we consider the curve E, defined by
a, =8'" =0, where

(1) 6 (0) (2) (1) (2) (&) (0)B„„- (o) (zl('o 'z ' —i, i, i '2 ao, i~ —i, &

ao a2

(o) (&) (2)'0 —1,2 1, 1)

The intersection point of K& with D, is, in our case, ex-
actly the point Q. Furthermore, K& decides whether the
bifurcation of the first mode is subcritical or supercriti-
cal. If now (k', u) lies in region a of Fig. 5, then the first
mode bifurcates subcritically, because we are above E&
and to the right of D &, and the first mode bifurcates be-
fore the second mode, because we are to the right of D &.

Hence, the corresponding diagram has to be that of Fig.
4(a), because this is the only one with these two proper-
ties. Similarly we can establish the correspondences be-
tween regions b, c, d, e, and f in Fig. 5 and the diagrams
(b), (c), (d), (e), and (f), in Fig. 4. Unfortunately, the dot-
ted curve in Fig. 5 cannot be calculated explicitly, be-
cause it describes changes of the diagram off the trivial
solution x =y =0.

(ii) For (ko, u) = T, where a& =a& =8' '=0, we get the
unfolded codimension-normal form

(c)

(e}

—x(y —
A, +a)=0,

—x +y( —y +'+Py ) =0, (21)

with the unfolding parameters a and P. The pure-mode
solution S is given by x =0, k=y (y —P), the mixed-
mode solution S by A. =y+a, x =y( —y +A, +Py ).
The projections into the (A, ,y) plane of the six qualitative-
ly different stable diagrams are shown in Fig. 6. With
similar arguments as above we can establish again a
correspondence between the different diagrams and the
values of (ko, u) varying around T. Let us consider the
curve K2, given by a2 =B' „'=0, which intersects D, at
T, see Fig. 7. K2 decides whether the bifurcation of the

FICr. 6. Qualitatively different diagrams of the unfolded nor-
mal form (21) for (ko, u) near T, occurring for R =0, and for
(ko, u) near T& or T„occurring for R =1

~ The curves are pro-
jected onto the (A, ,y) plane.

pure-mode solution, corresponding to the mode number
2, is supercritical [for (ko, u) below K2] or subcritical
(above Ez). So the regions a, b, c, d, e, and f of Fig 7.
correspond to the diagrams (a), (b), (c), (d), (e), and (f) of
Fig. 6. Again, the dotted curve cannot be calculated ex-
plicitly.

FICi. 5. Curves D, and K, near the point Q in the (ko, u)
plane for R =0. On D, we have a& =a2=0, on K, we have
a =B"'=0

1

FIG. 7. Curves D
&

and K2 near the point T in the ( k o, u )

plane for R =0. On K2 we have az Byyy 0.
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(a) (a)

++ —+ l ++ —+ +
++

(c)

-+ —+

(c)

FICx. 8. Qualitatively different diagrams of the unfolded nor-
mal form (22) with c,&=+1 and c,3=+1 for (ko, u) near P&. In
(b) we have at TB a tertiary bifurcation to time-periodic states.

FIG. 9. Same as Fig. 8 for c.2= —1 and c3 + 1.

(iii) If a, =a2=B„"'=0, i.e., if (ko, u)=P, , then the
corresponding normal form is given by

—x(y+A, +a+PA, ) =0,
e2x +y(e3y +A)=0,

with

E2= —sgn(B„'~"B„'„'), e3=sgn(Bll') .

(22)

If we take into account the above results about the zeros
of Bzy and B' ' on D, we get

c2= + 1, c3= + 1 for 1.0 & ~ & 0. 1459,
s2= —1, c3=+ 1 for 0. 1459 & ~ & 0.0819,

s2= —1, c3= —1 for 0.0819 & ~&0.0 .

by (22) with a&=+1 and E3=+1 and Fig. 8. This is ex-
actly the result obtained in Ref. 10, confirming that the
approximation J =const in (4) corresponds in some sense
to a limit of ~—+1. Locally near D, the bifurcations are
described by Fig. 13 of Ref. 10. If ~ is decreased below
the value —,

' the point Q comes down from
(ko, u) =(0, + oo) and finally coalesces with P, at
a. =(7—3~5)/2=0. 1459. The bifurcations near Q are

(a)

+
1

The pure-mode solution S is given by x =0, X= —c.3y,
the mixed-mode branch S by y = —(A, +a+PA, ),
x = —E2y(E3y +A, ). Because B~~~~~ is negative, in all
cases the pure-mode branch will finally bend forward and
form a stable solution. The corresponding diagrams are
depicted in Figs. 8—10, respectively. Again, we have the
possibility of tertiary Hopf bifurcations. The correspon-
dences of the different diagrams with values of (ko, u)
around P, are exactly those described in Ref. 10 for this
degeneracy.

(c)

—+

These are all codimension-two (1,2) interactions occur-
ring in the frame of the system (7)—(13) with R =0. If we
order the above results by values of ~ we get the following
scenario.

If ~ is near the value 1.0, then the only degeneracy on
D

&
is at the point P, and the bifurcations are described FICx. 10. Same as Fig. 8 for c2 = —1 and c,3

= —1.
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those of Fig. 4. For 0. 1459&v&0.0819 again the only
degeneracy is at P I, the bifurcations now being those of
Fig. 9. At ~=0.0819 the point T enters D& through P&

and moves up along D, for ~ decreasing further. But for
~~0 the ko coordinate of T approaches
v 2/4=0. 353 55, so the u coordinate remains finite. The
bifurcations locally around T are shown in Fig. 6. Addi-
tionally, the bifurcations at P& change for K &0.0819 be-
ing described then by Fig. 10.

In the two special cases where Q or T coalesce with P,
we should get codimension-three normal forms, describ-
ing a combination of the two underlying codimension-
two degeneracies. The main effect of these degeneracies
will be that in most cases the mixed-mode branch will
reconnect the trivial solution for some v) v, .

(a}

B. Symmetric model (R = 1)

—x (y —
~p~A, +a+Py) =0,

—x +y( —y +k)=0, (23)

where a and P are again the unfolding parameters. The
resulting diagrams are shown in Fig. 11. The main
difference to the corresponding diagrams in the one-sided
model is that the pure-mode solution now bifurcates su-
percritically and that the tertiary Hopf bifurcation occurs
in a different situation. In the same way as in the one-

For the symmetric model we have to perform analog
considerations as for the one-sided case. The Taylor
coefficients governing the (1,2) interactions are still given
by (18), but now with R =1 in the expressions for the
a„' ' „ instead of R =0 (see Appendix). Considering

7

the zeros of these Taylor coefficients, the situation is
qualitatively nearly the same as for the one-sided model.

The condition a, =a z
=Ba, /Bv =0 again leads to a

point P, in the (ko, u) plane for all values of ic. Above P,
we have again 8„'")0 on D, .

As to a, =a2 =a'",
2 =0, it can be satisfied for

K & K =0.116 19 (this value is the solution of a polynomi-
al of degree 10). Then we obtain two points Q1 and Q„on
D

&
which coalesce for K =K . For sc )k, these points

disappear, for decreasing ic the point Q„, the one with the
large ko value, coalesces with P, for ~=0.051 523, and
for le~0 we have Qt ~(0, + ac ). On D, we have 8„"'&0
between Ql and Q„and 8„"'&0 above Qi and below Q„.

Numerical calculations show that B' ' vanishes on D&

at two points TI and T„ for ~&~, =0.02838. For K~O
we have Tt~(0, + ao ) and T„~(&2/4, )0, especially T„
never coalesces with P, . On D, we have B )0 between
TI and T„and B~~~ &0 above TI and below T„.

The remaining coefficients B' ' and B'„' never van-
ish on D i, we have 8'„' & 0 and 8' ' & 0 for all Ic& (0, 1).

This now leads to the following (1,2) interactions in the
symmetric model.

(i) At the points Qi „, where at =a2=8'~ =0, we have

Bzyy & 0 and —1 &p & 0, where p is the model parameter
given by (19). Together with the above results this yields
the unfolded codimension-two-normal form

(c)

(e)

FIG. 11. Diagrams for the unfolded normal form (23) for
(ko, u) near 0, or 0„occurring for R =1. The solution curves
are projected onto the (k,y) plane. In (c) we have at TB a terti-
ary bifurcation to time-periodic states.

—x (y —
A, +a)=0,

—x +y( —y +A. +Py~) =0, (24)

which is identical with (21), so that the different diagrams
are those of Fig. 6. The correspondences to the neighbor-
hoods of T& „are shown in Fig. 13.

(iii) For at =a2=8',"=0, i.e., for (ko, u)=P, , the un-
folded normal form is given by

—x (y +X +a+PA. ) =0,
szx +y(e3y +A, )=0, (25)

sided model we can establish correspondences between
the different diagrams and regions around the points QI „
in the (ko, u) plane, the result is shown in Fig. 12.

(ii) For (ko, u) = Tt „, where a t =a2 =
8~~~ =0, we get

the unfolded codimension-two normal form



MODE INTERACTIONS IN THE ONE-SIDED AND THE. . . 7261

(a)

FICx. 12. Curves D, and K, near the points Q& and Q„ in the
(kp, u) plane for R = 1.

with {c)

being identical with (22). With the above results about
the signs of B'„"and B' ' on D& we get

Fp + 1 F3= —1 for 1.0 & ~ & 0.051 523

c.2= —1, c.3= —1 for 0.051 523 & sc&0.0 .

The diagrams for the first case are shown in Fig. 14, those
for the second case are the same as in Fig. 10.

These are all local codimension-two (1,2) interactions
occurring in the system (7)—(13) with R = 1. For decreas-
ing values of ~ we have the following picture.

If ~ is near 1.0 the only degeneracy on D& is at P„ the
corresponding diagrams are those of Fig. 14. If ~ is de-
creased below K, =0.11619, then the two points QI and

FICi. 14. Diagrams for the unfolded normal form (25) with
@2=+ 1 and c3= —1 for (kp u) near P&.

Q„appear on D&, for K=K they coalesce. For a decreas-
ing further, QI moves up on D, and Q, moves down. QI
approaches (ko, u) =(0, + oo ) for a~0 and Q„reaches p,
at re=0. 051523. In the latter case we should get a
codimension-three normal form, describing a combina-
tion of the two underlying degeneracies. The diagrams
near Q, and Q„are given in Fig. 11. If x is decreased
below i, =0.02838, then the points TI and T, appear on
D, . For ~~0 the point T& moves up to infinity and T,
approaches some point on D, . The diagrams are shown
in Fig. 6.

FIG. 13. Curves D I and A 2 near the points TI and T„ in the
(kp, u) plane for R =1.

VI. DISCUSSION

In the frame of system (7)—(13) we have analyzed all lo-
cal codimension-two (1,2) interactions for R =0 and
R = 1, describing the bifurcation of a planar interface to
stationary cellular morphologies. We found many more
di6'erent types of bifurcation than in the simpler model of
Ref. 10, which is valid only for values of ~ near 1.0. The
main features of our diagrams are various types of hys-
teresis as, e.g. , in Figs. 4(a), 6(c), and ll(f), and tertiary
Hopf bifurcations as in Figs. 4(b), 11(c), and 14(a). The
way in which the system bifurcates depends on the values
of the system parameters ko, u, and ~.

In numerical simulations one can see in the bifurcation
diagrams folds in the mixed-mode solution. ' This is a
situation where the mixed-mode branch bifurcates super-
critically off the trivial solution, then bends back via a
limit point and finally connects with the pure-mode
branch in a secondary bifurcation point. This sort of dia-
gram occurs in the degeneracy defined by
a, =a2=a &,

' =0 which, as we have seen, does not exist
in the system (7)—(13). So this diagram is not a local one,
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i.e., for (ko, u) near enough to the curve D, it does not
occur. But, if (ko, u) has a certain distance to the curve
D, , such that it is outside the range of validity of the lo-
cal analysis used in this paper, then such a diagram with
a fold indeed can be possible. I tried to verify this by us-
ing a Taylor expansion of (16) up to order 2 in v and 5 in
x and y, such that each equation in (16) had 27 terms.
The coefficients and the diagrams then had been comput-
ed numerically. For values of (ko, u) near D, I obtained
exactly the local diagrams described above, but when the
distance of (ko, u) to D, was increased, the Taylor expan-
sion broke down before the fold showed up. In this sense,
the occurrence of these folds is a nonlocal event.

In a recent paper, Kessler and Levine showed that the
limit R —+0 is not a proper one. The easiest way to see
that is the following: If the interface is not planar, then
the solute concentration along the interface is not con-
stant by virtue of (9) and (13). Therefore the solute con-
centration in the solid just below the interface is inhomo-
geneous in the g direction. For RWO these inhomo-
geneities are equalized by diffusion on the way to
i)= —oo, thus that the condition (12) is fulfilled. If
R =0, then (8) simply becomes a traveling wave equation,
the lateral inhomogeneity in the solid is frozen and (12)
cannot be met. On the other hand, in my calculations R
never acted as some sort of singular perturbation of the
case R =0. The reason for this is that p(n) given in (17)
and its v derivatives have proper limits for R ~0. Thus
all the coefficients a,'"' „and eventually all the Taylor1' ''' m

coefficients of (16) possess proper limits for R ~0. The
reason for this inconsistency is that the mismatch be-
tween the cases R =0 and R & 0 occurs for g~ —~, i.e.,
far away from the interface, so that the latter is not
affected by this problem. So the limit R~0 is not a
proper one for the solute concentration field on the whole

sample, but it is a proper limit if only the interface is con-
sidered.

It would be very desirable to extend the above analysis
to the case of general R E [0,1]. Then it should be possi-
ble to find points in the (ko, u, l~, R) parameter space
where some of the degeneracies found in the cases R =0
and 1 come together, giving rise to (1,2) interactions of
codimension higher than two. Perhaps it would be possi-
ble to find an organizing center, i.e., a point where all the
above degeneracies meet, satisfying the condition
ai=a2=Bai/~3v=a''I z=B' '=0. But at the moment
such an analysis is out of the scope of the computer sys-
tem I have access to, because for R %0, 1 the complexity
of the equations involved increases dramatically. This is
due to the fact that we have in (17)p (n) =0 for R =0 and
p(n)=q(n) —v for R =1, thus p(n) can be eliminated in
these cases. Presently, the only way to find such higher
degeneracies seems to be a numerical search in the
(ko Q K R ) space.

Finally, it should be emphasized again that the (1,2) in-
teractions are only part of the truth. For an arbitrary ex-
perirnental setup it will usually not be the mode number 1

which becomes unstable first. Especially if the width of
the sample is much larger than the wavelength of the
evolving interface structures, then the (1,2) interactions
are not appropriate to describe the corresponding bifur-
cation behavior. Therefore it is necessary to extend the
above analysis to general (n, n +1) interactions as in the
simpler model with J =const in Ref. 10.
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APPENDIX

In this appendix we give explicit formulas for the coefficients a„'"' „ in Eq. (14). We have

[F (ri, . . . , r )[q(n) —v(1 x') J+RG (ri—, . . . , r )p(n)I
1

~rm

m —1
1—X X X „(„ „ )g=0 aEP (N~ ) (n&, n2, . . . , n~ )&A~ Xa a&& ' ' ' a&

m

X ( —1) " 'F„(r, , . . . , r, )q " '(r, +. tr, )
1

1X [q(r, + +r, ) —v(1 —~))q(r, + . +r, )
(m —il)!

1+ ni(r, + +r, )uz
m —i) —1!

—RG (r +. +r )p " '(r +. . tr )a& a a& a

X p(r, + . +r, )+ ni(r, + . +r, )uz
1 2 1

m —
71 ! '~ '~ m —il —1!
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where

m

P„(& ) = [M &&
I IMI =g }, & =

[ 1,2, 3, . . . , m} .
i =1

For b EPz(N ) we set b—:(b&, . . . , b,&) with b; Eb and b& &bz « . b„.
JRb: [ r( b) r( g) )ITJ'ES }

where S„is the group of permutations of g elements. Furthermore, we have

p(r„r~, . . . ) r
rEA(r-, . . . , r- )a&''''' a

7l

lJ(r;r, , . . . , r„)l!,

A(r&, . . . , r„)=[r,, . . . , r„}, lRl &g if r, =r for i'
2

q(m)= —+ +um k
2R

p(m)= — +

J(r;r, , . . . , r„)=Ii EN„lr =r, },
1/2 1/2

+um ko
4R

For the functions F and G the following recursions are valid:

1 —~ 1 —KFo=, F, (m)=v —1 —m ko,
K

1 —~F (r&, r&, . . . , r )= —( —v) —g g F„(r, . . . , r, )[—q(r, + +r )]
g=1 aEP (N )

1

m

——[1+(—1) +]u'~ "~ k +'(r +r + . +r )r, r r
m!!(m —1)!

2

Go=0, G, (m)= —~(1+m ko),
m —1

G (r„rz, . . . , r )=-
g=1 QEP (N )

G„(r, , . . . , r, )p "(r + . +r )

—
—,'[1+(—1) +']Ku' '' ko +'(I )+rp+ . +r )r)r) r m!!(m —1)!

m —1 !2(m —1)/2
2

Especially we have

a„'"'=F,(n)q(n) F&(n)v(1 —v)—+RG&(n)p(n) —v (1 K), —

ao"„' =v(v —q(n)),
a' '„„=2RG,(n)[p (n) —un ko],

a'"'„z„=v —v q(n) —F&(2n)q (2n)+F&(2n)q(n)q(2n)+2un koF&(n)+2un koF&(2n)(n) 3 1 K 2 1 K

K

R+G&(2n) p(2n) —RG&(2n) (pn)p(2n) 2Run k—o[G&(n) +G&(2n)],

a„' „"'=v —v q(2n) —F, (n)q (n)+F, (n)q(n)q(2n) —un koF, (n)+RG, (n)p (n)

RG&(n)p(n)p(2n—)+Run koG&(n),

q1 —K 31—~ 21 ]c 2 21 21 —va'"'„„„=v —v q(n)+v q (2n) —v q(n)q(2n) —v un ko —2v F~(n)q(n)
2K 2K 2K 2K 2K

+2vF~(n)q~(n) F&(n)q(n)q (2n)+F, (n)q (—n)q(2n)+un koF&(n)q(n)+ ', un koq(n—)

—
—,'v(1 x)un ko+R—G&(n)p (n)p(2n) RG&(n)p(n)p (2n)—+Run koG&(n)p(n)

+ 3~Run kop(n) . —
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