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A theoretical and molecular dynamics analysis of hydrogen and oxygen density correlation func-
tions in liquid water is presented with the aim of clarifying the present experimental situation. In
the theoretical study, besides the ordinary sound mode, a high-frequency "optical-like" collective
mode is found to propagate through the hydrogen atoms. The dispersion relation of the two modes
is discussed. Computer-simulation results for the partial intermediate scattering functions are re-
ported and confirm the theoretical predictions. The direct comparison of the theoretical predictions
and the computer-simulation results with the experimental findings suggests an interpretation of the
nature of the two modes. Finally the collective character of the propagating modes is pointed out
by comparing the self-part of the scattering function with the total one.

I. INTRODUCTION

The study of the propagation of collective excitations
of finite wave vectors in simple monatomic liquids has
been the subject of numerous theoretical, molecular dy-
namics, and experimental investigations. In fact the pos-
sible persistency of a sound mode with wavelength as
short as an interatomic distance (i.e., well out of the hy-
drodynamic regime) is still a challenging open problem,
underlying the correct physical interpretation of the
coherent-neutron-scattering results. The connection be-
tween the experimental results and the microscopic quan-
tities has been established in Van Hove's fundamental pa-
per, where it is shown how the coherent inelastic neu-
tron scattering spectrum S (k, co) is related to the density
correlation functions of the system. A commonly adopt-
ed method to examine the data is to report the frequency
of the peaks of co S(k, co) as a function of the wave vector
k (dispersion relation) and to compare it with the extra-
polation of the hydrodynamic sound dispersion. Broadly
speaking the behavior of the dispersion relation is charac-
terized by a possible positive deviation from the short-
wave-vector linear dispersion, always followed by a max-
imum and a subsequent minimum, occurring at a k value
corresponding to the first peak of the structure factor
S(k).1

Computer simulations on well-defined model systems
have widely been used as a valuable test of the theoretical
approaches; in particular, they have been proved to be of
overwhelming importance to understand the efFect of the
atomic interaction potential on the sound wave propaga-

tion in the same wave-vector range accessible to neutron
scattering. Typical examples are the studies of hard
spheres, Lennard-Jones (LJ), and metal-like systems.

Instead much less attention has been devoted until now
to the collective dynamical properties of molecular
liquids. To our knowledge only two systems have been
experimentally investigated, namely liquid parahydrogen,
for which the coherent neutron scattering spectrum has
been measured by Carneiro et al'. , and liquid water. The
latter is, in any case, the system for which relatively more
data have been reported both from the experimental '

and computational' ' points of view. In this system a
linear dispersion relation has been observed in the wave-

0
vector range 0.3 & k & 1.5 A ' both experimentally and
by computer simulation. ' Because of the resulting high
sound velocity (=3200 m/s), the interpretation of the na-
ture of this collective excitation is still matter of some
controversy. The high sound velocity is explained by
Teixeira et al. as a manifestation of a new collective ex-
citation ("fast sound") propagating in the small patches
of highly bonded water molecules. On the contrary
Wojcik and Clementi' claim a positive dispersion of the
ordinary hydrodynamic mode to be the origin of such a
behavior, thus extending to molecular systems the physi-
cal concepts invoked to account for similar (but less evi-
dent) results in monatomic liquids.

Recently we have presented the results of a theoretical
analysis' of the dispersion relation in liquid water.
While in previous papers only the center-of-mass density
fluctuations were taken into account, in our analysis the
density fluctuations of both the oxygen and hydrogen
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atoms are considered in order to have a direct compar-
ison with the neutron-scattering measurements. The
analysis through a two-dimensional dynamical variable
leads naturally to an additional mode, the nature of
which has to be clarified.

In this paper we present the details of the theoretical
analysis and deeply discuss the results for the dispersion
relation. Moreover computer simulation data for the
partial intermediate scattering functions are separately
reported for the first time. The direct comparison of the
theoretical predictions and the computer simulation re-
sults with the experimental findings suggests an interpre-
tation of the nature of the two modes. This is also
achieved by looking at the self-contribution to the
scattering functions and its comparison with the total
S(k, co). The role of the interaction potential in deter-
mining the collective dynamical properties is also pointed
out by stressing the differences between previous comput-
er simulation and our results.

II. OUTLINE OF THE THEORY

i.e.,

pk"(t)= g exp[ik R'; '(t)] —(2m) 5(k)N/V )/N

(Sa)

pk '(t)= QIexp[ik. R'; ""(t)]+exp[ik R,'. ' "(t)]I

—2(2m. ) 5(k)N/V ')/N (Sb)

At t =0 the correlation matrix in Eq. (3) reduces to

S„(k) 2S,2(k)

2S,~(k) 4S~2(k)

S»(k)=1+—J drexp(ik r)[goo(r) —1],N
(7a)

S,2(k) =[sin(kr, 2)/(kr)q)]

where S t)(k) are the partial structure factors, which can
be written as'

In this section we present a theoretical analysis of the
density fluctuations which leads to the prediction of two
branches in the co(k) dispersion relation, starting from
the knowledge of the static properties of the system.

A. The projection operator formalism

+—I drexp(ik r)[go H(r) —1],N

Szz(k) = [1+sin(kr22)/(kr22)]/2

+— drexp ik. r gH H r —1
N

(7b)

(7c)

p'"(r, t)= +5(r R;''(—t)) N/V—
l

p' '(r, t)= +[5(r—R,'""(t))

&N, (2a)

Our analysis is based on the projection operator for-
malism developed by Mori and Zwanzig, ' applied to a
dynamical variable

p())(r t)
p( )= (2)

p (r, t)

whose components p"'(r, t) and p' '(r, t) represent the
density fluctuations of the oxygen and hydrogen atoms
respectively; i.e.,

The three g t)(r) represent the intermolecular atom-atom
distribution functions; r, 2 is the distance between an oxy-
gen and hydrogen atom and r22 is the separation between
the two hydrogen atoms belonging to the same molecule.
A schematic representation of the water molecule is given
in Fig. 1, in which the definition of all the used parame-
ters is given. In the following we will deal with a rigid
molecule, neglecting therefore the internal degrees of
freedom.

The correlation function matrix C(k, t) turns out to
obey the generalized Langevin equation

+5(r —R'; ' "(t))] 2N!V—')/N (2b)

0
where N is the total number of molecules in the volume
V; R', '(t), R,'''')(t), and R( ' "(t) represent the posi-
tions of the oxygen and the two hydrogen atoms of the
molecule i respectively.

We are interested in the correlation function matrix
C(k, t)

C(k, t)=&p„(t) p„(0))
& pk"(t)p" k(0) & & pk"(t)p" k (o) )

& p"'(t)p" k (0) ) & p"'(t)p"' (0) )
(3)

H(q) 22

() Xp

H (2)

where the angular brackets indicate an ensemble average
and the spatial Fourier transform of p(r, t) is introduced

(1)(t) '

pk(t) =
(2)

pk (t) (4)

FICx. 1. Schematic representation of the water molecule. X&

and X2 are the in-plane principal axes. P indicates the site
where the negative charge of the TIP4P potential model is
placed. The values of the parameters are: r» = 1.51 A,
A ]2

=0.586 A r &2
=0.957 A r

& p =0. 1 5 A
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C(k, t)=iQ C(k, t) f—drC(k, t —r) M(k, r) . (8)
0

In our case the matrix elements of 0, which are propor-
tional to the cross correlation between the variable p&(t)
and its time derivative p& ( t), are identically zero as
demonstrated in Appendix A. The memory function ma-
trix M(k, t) is written as

only for the eigenmodes of the system, in a first approxi-
mation the damping can be neglected [i.e., M'(k, z)=0]
and Eq. (13) becomes

C(k, z) =[zI+M(k, O)/z] ' C(k, O) . (14)

The eigenfrequencies are then found by solving the sec-
ular equation

M(k, r) = ( P(k, t).9(k, r') ) (p~(0) pt„(0) ) (9) det[Ico —M(k, 0)]=0 (15)

where the fiuctuating force 9'(k, t) is

V(k, t)=exp(iQXt}Qp&(t) . (10)

X is the Liouville operator and Q =1 P, P b—eing the
projection operator over the dynamical variable pj, (t). In
turn M(k, t) satisfies the equation

M(k, r)= —f de(k, r —r) M'(k, r),
0

where M'(k, t) is the second-order memory function.
The solution of Eq. (8) is written for the Laplace trans-

form of the correlation function matrix

with z =ice B.y using Eqs. (9) and (10) one has

M(k, O) = ( [Qp„(0)][Qp„(0)]+) (p„(0).p„(0))

= (p„(0) p (0))(p (0) p, (0)) (16)

a (k)cu b(k)c—o +c(k}=0,
where

(17)

A detailed calculation of the matrix elements which ap-
pear in Eq. (16) is reported in Appendix A. After
straightforward algebra the secular Eq. (15) can be cast in
the form

C'(k, z) = f dt exp( zt)C(k, t)—
0

and reads

(12)

C(k, z) = [zI+[zI+M'(k, z)] ' M(k, O) j
'.C(k, O),

(13)

where I is the unit tensor. If one is interested in looking
I

a (k) =$()(k)$22(k) —S )2(k),

b (k) =k [d „(k)$~2(k)+d2(k)S„(k)
—2d, ~(k)$,~(k)],

c(k)=k [d„(k)d2q(k) —d, 2(k)],
with S &(k) given in Eqs. (7a) —(7c) and

(18a)

(18b)

(18c)

d, 2(k) =

+Mr&2 /(24I')[1 —jo(krz2 ) —j2(kr2& )1 Mh zc/(2I3) j2(kr22) j .

k~Td„(k)= [1+[MR,c/(3I)]j,

k, T
2 2

M [jo(kr, z )+ [MR &chzc/(3I)][jo(kr, z )+jz(kr&2 }1 (MR &c/I3)(2h2c/R ic+ 1)jz(kr, 2 )sin yj,
k~T
M [[1+jo(kr22 )]/2+Mb 2c /(6I)[1+j o(kr2z )+j2(krzz )]

(19a)

(19b)

(19c)

In Eqs. (19a)—(19c)I ' =I
&

' +I3 ' and I ' =I2 ' +I3 '

are combinations of the principal momenta of inertia of
the molecule, I„I2, and X3.

The theoretical analysis presented here naturally leads
to the possible existence of two eigenmodes. The general
k dependence of the eigenfrequencies of the two modes is
obtained by finding the roots of the secular equation (17),
which requires only the knowledge of static quantities,
namely the partial structure factors and the d & which
are expressed in terms of geometrical parameters of the
molecule. Before studying the co(k) relation in the k re-
gion where the $ &(k) are known, it is important to label
the two solutions by recognition of their k ~0 limit.

B. Solutions of the secular equation in the k ~0 limit

In the k —+0 limit the coefficients of the secular equa-
tion (17), reported in Eqs. (18a)—(18c), can be written as

a (k ~0)=S(0)S"(0)k /2,
b (k ~0)=ks T/(3I)h f~S(0)k

c(k~O)=(ksT) /(3IM)h, 2k

(20a)

(20b)

(20c)

S (0}=S„(0)=$2'(0) =S,2(0)

in Eq. (20a):

S"(0)=Si'i (0)+Sq'2(0) —2S",2(0)

being

S"&(0)=lim[d S &(k)/dk ] .
k~O

(21a)

(21b)

(22)

By substitution of Eqs. (20a) —(20c) into Eq. (17), the solu-
tions for cu are

where, since at k =0 all the partial structure factors coin-
cide, ' we have defined
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co, 2(k~0)=kiiTh, ~/[3IS"(0)]t 1+[1 —6S"(0)Ik /S(0)Mh ]'~
I . (23)

Therefore in this limit one of the two eigenfrequencies of
the system is

co,(k~0) =kii T/[MS(0)]k (24)

i.e., the ordinary sound mode with propagation velocity
U =[k&T/MS(0)]' (isothermal sound velocity), con-
sistent with the fact that we have neglected the energy
fluctuations in our analysis.

The second solution is

co~(k ~0)=2k' Th i2/[3IS "(0)] . (25)

III. COMPUTER SIMULATION RESULTS

A. Dispersion curves and intensities
of the two eigenmodes

Due to the finite value of the co2(k =0) this mode is not
associated with a conserved variable and reminds one of
an "optical" mode. The k dependence of its contribution
to the oxygen and hydrogen density correlation functions
will confirm these preliminary observations and will be
discussed in the following section.

S p(k)=S(0)+S"p(0)k /2+Sip(0)k"/24, (27)

allows the determination of S(0) and S"p(0). In particu-
lar we find S (0)=0.065+0.001, which leads to a value of
the adiabatic sound velocity U, =[yk~ T/MS (0)]'~
=1490 m/s, in good agreement with the experimental
value. ' The estimate of S"p(0) is much more critical, in
view of the fact that the value of co2 at k =0 is deter-

is finally performed; the minimum accessible wave vector
is k;„=0.4251 A '. The results for S»(k), S22(k), and
S&z(k) are reported in Fig. 2, for selected wave vectors.
They turn out to be in good agreement with those ob-
tained in previous MD runs by Fourier transforming the
corresponding pair distribution functions calculated over
10000 time steps with a system of N =256 molecules at
the same state point, and used for the evaluation of the
dispersion curves in Ref. 13. We wish to point out, how-
ever, that in the low-k region differences appear due to
the truncation and/or extrapolation of g p(r) at long dis-
tances.

A least-squares fitting of the data in Fig. 2 with a func-
tional form

In order to obtain the general k dependence of the
eigenfrequencies of the two modes we have evaluated the
partial structure factors S p(k) by performing a comput-
er simulation of liquid water at T=310 K and p=1.0
g/cm . The adopted potential model (TIP4P) has been
implemented by Jorgensen et al. ' and consists of a
Lennard-Jones interaction between the oxygen atoms

0
(with Lennard-Jones potential parameters o =3.154 A
and E=1.077 X 10 ' erg), plus Coulomb interactions be-
tween two positive charges (q =0.52e) sitting on the hy-
drogen atoms and a negative one (q = —1.04e) on the
site P indicated in Fig. 1. As is well known the TIP4P
model gives a realistic description of most thermodynam-
ical, structural and spectroscopic properties of liquid wa-
ter in a wide range of temperature and pressure. ' The
molecular dynamics (MD) simulation is carried out with
a standard program which makes use of generalized coor-
dinates' (quaternions) and accounts for the long-range
coulombic interactions through the Ewald summation
method. In order to perform long runs which assure a
higher statistical accuracy we have chosen to use a sys-
tern of 108 molecules, which turns out to be confined in a
cubic box of length I =14.78 A at the chosen thermo-
dynamic point. The integration time step is
6t =1.0X10 ' s, which guarantees a satisfactory con-
servation of the total energy. The partial structure fac-
tors have been obtained by performing an average over
five runs of 40000 time steps of the quantities

1~ 2—
1.0-
0.8-
0.6-
0.4-
0.2-

0.6-
0.4-
0.2-
0.0—

0.4-

0.2-
-- we+

I

O-O

0-H

~ 0

~ ~

H-H

S.p(k) = (p'j,'(0)p'P j', (0) & . (26)

The wave vector k is chosen to be of the form
k—:2m(n, m, l)/L with 'n, m, I =0, 1, . . . , 10 and the aver-
age over the independent components with the same ~k~

FICs. 2. The partial structure factors of water, as evaluated
from Eq. (26). The error bars have been evaluated from the
dispersion of the data in five independent MD runs of 40000
time steps. The dashed lines represent the result of a fitting pro-
cedure at low k values performed following Eq. (27).
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mined by the difference between close quantities [see Eq.
21(b)] and therefore the result is highly uncertain. On the
other hand, to our knowledge, no relation exists between
the second derivative of the partial structure factors at
k =0 and any thermodynamic quantity, so that no check
over the values obtained by the fitting procedure is possi-
ble. Even with the present more accurate results for
S &(k}, the uncertainty over S"&(0) leads to a value of
co2(k =0) which is in the range (20—300)X10' s ', so
that a definitive extrapolation at k~0 of the high-
frequency dispersion relation is not feasible.

In Fig. 3 we report the dispersion curves for the two
solutions co,(k} and co2(k) evaluated by using the S &(k)
reported in Fig. 2, in the range of accessible wave vectors.

As far as the "acoustical" branch is concerned, its
dispersion behavior turns out to be very close to that of a
monatomic system composed of particles of mass M
equal to the total mass of a water molecule and a struc-
ture factor coincident with the oxygen-oxygen one,
S»(k). In fact the lower branch behavior is found to
agree within a few %%uo with [k&T/MS&&(k)]'

The upper branch appears to be well separated from
the lower one both at small and large wave vectors. This
result turns out to be in contrast with our previous data
reported in Ref. 13; however, we believe that the better

tb)

120

+I22(k)cos[co2(k)t] ), (28b)

where co&(k) and co2(k) are the roots of the secular equa-
tion (17) and the "amplitudes" I &(k) can be found from
Eq. (14) by inserting the solutions z = ice &( k ) and
z =it@2(k). Details of this calculation are reported in Ap-
pendix B. By definition,

I„(k)+I,~(k) =I2) (k)+I~~(k) = 1,
and the k dependence of I»(k) and Izz(k) is reported in
Fig. 4. The relevant physical features of their behavior,
already stressed in Ref. 13, are the following. At k =0
I» (0)=I2, (0)= 1 [and consequently I,z (0)=I&2 (0)=0],
which points out that only the "acoustic" mode contrib-
utes to the oxygen and hydrogen density fluctuations.
This result is consistent with the fact that, in exploring
the behavior of the system at long wavelengths, the posi-
tion of the reference point over the molecule used to ac-
count essentially for the numerical density Auctuations
becomes irrelevant. At increasing k, I»(k) remains very
close to 1, whereas I22(k) increases and reaches 1 at k = 3

accuracy of the present simulation data gives more relia-
bility on the result reported here.

It is interesting to examine how the two modes contrib-
ute to the oxygen and hydrogen density correlation func-
tions C»(k, t) and C22(k, t}, that is, the diagonal elements
of the correlation matrix in Eq. (3). Within the approxi-
mation used to derive Eq. (14) they read

C„(k,t) =S» (k) I I» (k)cos[co, (k)t]

+I,2(k)cos[co2(k)t] I,
C22(k, t) = Sz2(k) II2, (k)cos[co, (k)t ]

I
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FIG. 3. The dispersion relation of the (a) low and (b) high en-
ergy modes of water as evaluated solving the secular equation
{17) (open circles) and from the peak positions in co S(k, co)
(solid circles) ~

FIG. 4. The "amplitude" I»(k) of the low-frequency mode
in the oxygen density correlation function defined in Eq. (28a)
(circles), and that of the high-frequency mode in the hydrogen
density correlation function I»(k) in Eq. (28b) (squares), as a
function of the wave vector.
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0
A '. This result points out that the oxygen density fluc-
tuations are governed only by the lower-frequency mode,
whereas the hydrogen ones are progressively dominated
by the higher-frequency solution.

On the basis of these observations, some conclusions
can be drawn which clarify the nature of the high-
frequency mode. Namely, (a) the k dependence of co2(k),
which shows a marked dispersion, points out the collec-
tive character of this mode; (b) three different results give
a clear evidence that the rotational degrees of freedom
are involved in the dynamics of this collective mode, i.e.,
(i) co2(k~0) has a finite value, (ii) this value depends on
the momenta of inertia of the molecule, and (iii) only the
hydrogen density fluctuations are affected by this high-
frequency mode.

B. The density-density correlation functions

In order to have a direct check of the reliability of our
analysis in terms of the two-component dynamical vari-
able of Eq. (1), we have evaluated the correlation function
matrix in Eq. (3), making use of the configurations gen-
erated by the MD simulation. The correlation functions
have been sampled with a time interval At =10 ' s and
evaluated up to T=2 X 10 " s, for k =2n~/L
(n = 1, . . . , 10). The results are reported in terms of nor-
malized density autocorrelation functions

1.0

0.5

0.0

0.5

0.0
LL

0.5

0.0

0.5

0.0

L5 '

0.0—
0.0

I

0.5

n=10

1.5 2.0

t (ps)

F p(k, t)=C g(k, t)IS p(k) . (30)

1.0
The F»(k, t) are reported in Fig. 5; we note the well-

known de Gennes slowing-down effect at wave vectors
corresponding to the maximum of S»(k), namely n =4,
followed by a decrease of the decay time approaching the
free-particle regime at highest n values. The hydrogen
density autocorrelation functions Fz2(k, t) are found to
present the same overall behavior as FII(k, t), any re-
markable difference being restricted in the short-time re-
gion. The comparison between F»(k, t) and F22(k, t), at
the investigated k values and in the time range 0 & t (0.2
ps is shown in Fig. 6. One can note that Fzz(k, t) has a
faster initial decay, which becomes progressively much
more pronounced at increasing wave vectors.

By Eq. (Al la) the second derivative of F»(k, r) at t =0
can be written as

0.5

0.0

0.5

0.0
U

0.5

0-0

0.5

n=5

0=2

F",, (k, t =0)=k~ T/[MS „(k)][1+MRIC /(3I)]k (31) 0.0

which indicates that, with respect to the center-of-mass
value, a correction is present which accounts for the rota-
tional degrees of freedom contribution to the dynamics of
the oxygen atoms. It is worth noticing that this correc-
tion turns out to be independent of k and quite small in
the specific case of a water molecule, amounting only to
=5% of the total. The result for the second derivative of
F (k2, 2t) [see Eq. (Allc)] can explain on a quantitative
basis its short-time behavior. Indeed in this case the ro-
tational correction turns out to be much greater and
moreover k dependent. In the two extreme cases of k ~0
and k~ 00 one obtains

0.5

0.0
0.0

I

1.0
I

1.5 2.0

(ps)

FICx. 5. MD-calculated intermediate scattering function of
the oxygen atoms, for k =2mn/L (n =1,2, . . . , 10).
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FIG. 7. MD results for co S&](k ct)) as a function of co at the
investigated k values, in arbitrary units.

FIG. 8. MD results for co S»(k, co) as a function of co at the
investigated k values, in arbitrary units.

well as with the experimental data of Teixeira et al.
As already stressed, the k dispersion of the high-

frequency mode co2(k), derived both from the theoretical
analysis and the computer simulation results, points out

I

the collective character of this mode. To confirm this
conclusion we have separately evaluated the single-
particle contribution to the hydrogen density correlation
function, i.e.,

F22'(k, t)= —g( Iexp[ik r', ""(0)]+exp[ik r'; ' "(0)]IIexp[ik r', ""(t)]+exp[ik.r'; ' "(t)]]) .
1

l

(33)

10

p~2(co)= Q k S~2(k, co),
k=1

(34)

which is a rough estimate of the hydrogen projected den-
sity of states: its shape is found to be in good agreement
with that of Sz'z'(k, co), in the high-frequency region. As
expected at low frequencies the two functions are

The corresponding co Sz'z'( k, co ), where Sz'z'( k, co)
represents the Fourier transform of F22'(k, t), show a
broad band centered at a frequency cuM =100X10' s
which remains unchanged at increasing wave vector. At
small wave vectors Fzz(k, t) and F2'z'(k, t) are markedly
different, whereas, as expected, at large k values they be-
come closer and closer. In fact we note that AM almost
coincides with the values of co2(k) at high wave vectors
(see Fig. 3). Moreover the general behavior of the
co Szz(k, co) and co Sz'z'(k, co) is the same in this k region.
Examples of these spectra are reported in Fig. 9. In the
same figure we present also the quantity

different, because the diffusive motions appear only in the
self-contribution to the dynamic structure factor.

These results unambiguously point out that in the
small-k region the hydrogen density fluctuations are
governed by collective excitations and not by the single-
molecule motion which instead, as is well known, is the
relevant one in the dynamics of these fluctuations at large
wave vectors.

IV. DISCUSSION AND CONCLUSIONS

Our theoretical analysis and MD study of the density
fluctuations in water stresses the following general re-
sults:

(i) The analysis of the experimental data in terms of
center-of-mass-density fluctuations, overlooking the
orientational dynamics of the molecules, can lead to in-
correct conclusions for molecular fluids.

(ii) When the orientational dynamics is taken into ac-
count, for example, through the density fluctuations of
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FIG. 9. (a) ~'S,",'(k, co) vs ~ at k =0.85 A ' as evaluated
from the MD trajectories. (b) p»(co) defined in Eq. (34). (c)
co S»(k, co) vs co at k =0.85 A '. The intensity units are arbi-
trary.

the individual atomic species, both MD simulations and a
first-order memory function approach predict the pres-
ence of two collective excitations in the liquid, at wave-
lengths comparable with the intermolecular distances.

(iii) The co-vs-k dispersion relation for these excitations,
as evaluated from the peak positions of co S &(k, co) ob-
tained by computer simulation, are only in qualitative
agreement with the predictions of the theoretical model.
As a matter of fact this discrepancy is evidence of the
well-known limit of the second-moment approximation
already emphasized in the case of liquid argon, ' and
stresses the relevance of the MD simulation for an unam-
biguous comparison with the experimental data.

I.et us now separately discuss the physical origin of the
low- and high-frequency modes, on the basis of the com-
parison with the experimental findings.

A. Low-frequency mode

A collective excitation at frequencies well above those
expected by extrapolating from the hydrodynamic limit,
as found in the present investigation, has already been ob-
served in a coherent neutron scattering experiment on
D20 by Teixeira et al. and widely investigated by a re-
cent MD simulation of MCY water by Wojcik and
Clementi. ' The observed dispersion relation can in prin-
ciple originate either from a positive dispersion of the or-
dinary sound waves at finite wave vectors, or from the

propagation of an additional "fast sound" mode, quite
peculiar of liquid water. Under the latter hypothesis two
peaks should appear in the low-frequency region of the
density fluctuation spectra: although the frequency reso-
lution of our simulation is high enough to allow the
detection of both peaks, unless highly broadened, only
one peak appears in the explored k region. This peak is
common to both the hydrogen and oxygen dynamical
structure factors and can therefore be associated with a
translational excitation. By comparison with the theoret-
ical results, this mode can be identified with the ordinary
sound mode, which shows a linear dispersion relation
with velocity U, = 1490 m/s in the hydrodynamic regime.

Although the above arguments against the interpreta-
tion of the experimental data in terms of "fast" sound
could not appear very strong, much evidence can be put
forward in favor of the interpretation in terms of a posi-
tive sound dispersion.

Indeed an anomalous positive sound dispersion has al-
ready been observed in monoatomic fluids, ' and it can
also be argued, as suggested in Ref. 12, that the attractive
part of the interaction potential plays some role in deter-
mining the relevance of this anomalous behavior. From
this point of view it is not surprising that in water the
anomalous sound dispersion is particularly enhanced, ow-
ing to the presence and cooperativity of the hydrogen
bond interaction. Moreover, in other hydrogen-bonded
liquids, such as water-alcohol mixtures, a positive disper-
sion larger than that found in "simple" liquids has al-
ready been observed.

Two possible mechanisms can be envisaged as the ori-
gin of the anomalous sound dispersion in water. The first
one is dynamical in character and lies on the existence of
a relaxing variable which couples with the density fluc-
tuations, thus inducing a relaxation in the frequency-
dependent transport coeKcients of the fluid and a conse-
quent decrease of the sound absorption. This argument
was excluded by Teixeira et aI. since the dielectric relax-
ation time corresponds to frequencies typical of the light
scattering experiments and therefore one would expect a
variation of the sound velocity in the frequency range ex-
plored by the Brillouin scattering. On the contrary both
ultrasonic and light scattering measurements, in the
whole k range explored, give the same value of the sound
velocity.

However, we want to note that other relaxation mecha-
nisms can be invoked. In particular low frequency depo-
larized Raman spectra of water show evidence for a re-
laxation mechanism with characteristic time ~R, ,„, of
the order of a few picoseconds, corresponding to a fre-
quency much greater than that of the Brillouin doublet,
but still lower than those investigated by neutron scatter-
ing and MD simulation. A recent MD simulation of the
low-frequency Raman spectra has identified the dynam-
ical variables which generate this spectral contribution to
be mainly the relative displacements of the molecules.
One can reasonably expect that these dynamical variables
couple strongly to the density fluctuations at high k
values. At T =30 C, being vR, ,„=5 X 10 s, the posi-
tive sound dispersion would take place at k of the order
of(u, r„, ,„) '=10 ' A
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Another possible contribution to the positive sound
dispersion can be found in the peculiar shape of the static
structure factor of water at very long wavelengths.
Indeed small-angle x-ray diffraction ' indicate that
even at room temperature the measured S(k) shows a
negative derivative up to k values (say k ') of the order of
at least a few hundredths of A '. In this case a simple
first-order memory function theory which predicts

80

60-

(h
40-

(a)

U, (k) =
I yktt T/[MS(k)]I '~ (35) 20 "

can qualitatively suggest an increase of the sound velocity
at wave vectors intermediate between those probed by
light scattering and neutron measurements. In this pic-
ture the density fluctuations with wavelength larger than
A =2m /k' see the fiuid as a continuum and propagate
with the ordinary sound velocity. On the contrary the
fluctuations with wavelengths lower than A propagate in-
side the icelike structures which generate the anomaly in
the structure factor, following a dispersion law similar to
that of the longitudinal acoustic phonons in hexagonal
ice (Ih). These icelike structures are nothing but the
"strong bonded patches of water molecules" invoked by
Teixeira et al. in order to explain both the anomaly of
the static structure factor and the coherent neutron
scattering data.

Assuming that the above described mechanisms are the
correct ones to explain the observed sound dispersion,
one can also envisage the reason why this phenomenon in
water is stronger than in simple fluids. Indeed on one
side anomalies at low k in the static structure factor have
been found only in water and aqueous solutions; on the
other hand the coupling between the relaxation mecha-
nisms and the density fluctuations occurs at wavelengths
much greater in water than in simple liquids.

In conclusion we believe that the peaks observed in
both the sitnulated and experimental co S &(k, co) are a
manifestation of the ordinary sound waves which suffer a
dispersion of the velocity and a decrease of the damping
factor.

B. High-frequency mode

The high-frequency mode is a new feature predicted by
the present theoretical analysis. It is found to propagate
through the hydrogen atoms and is observed by computer
simulation of the appropriate density fluctuations, report-
ed in this paper for the first time.

The contribution of these density fluctuations to an ex-
perimental neutron scattering spectrum is nevertheless
very low due to the weak intensity of this high-frequency
mode. By using the computer simulation results for the
partial dynamical structure factors combined with the
appropriate coherent scattering length, we have recon-
structed the "experimental" S(k, co) which is reported in
Fig. 10 for two particular wave vectors. As is evident the
presence of this mode manifests only as an enhancement
of the high-frequency part of the spectrum so small that
it can hardly be observable experimentally.

Two main features allow one to conclude that the
high-frequency mode has a collective character; namely,
the wave-vector-dependent dispersion relation (see Fig.

CO (10 s ')

FICx. 10. The "experimental" S (k, co) evaluated from the MD
trajectories, combining the partial spectra with scattering length
appropriate for a D20 molecule, i.e., S(k,co)=7.63S»(k, co)
+2.11S»(k,co)+8.03S»(k, co). (a) k=1.28 A '; (b) k =1.7
A ', the intensity units are arbitrary.
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APPENDIX A

In this appendix we report a detailed evaluation of the
matrix elements of M(k, t =0), as defined in Eq. (16). Let
us start from the calculation of

(Al)

where from the definitions (4), 5(a), and 5(b)

Pk(0) ~ (2)(0)Pk

with

p'k"(0)=(1/N' )g(ik. rI ')exp[ik r',. '(0)],

(A2)

(A3a)

3), and the comparison between the spectra of the total
intermediate hydrogen scattering function F2&(k, t) and
its single-particle contribution F2'2'(k, t).

The rotational degrees of freedom are unambiguously
involved in the dynamics of this mode, in view of the fact
that its eigenfrequency is dependent upon the momenta
of inertia of the molecule and only the dynamics of the
hydrogen atoms is affected by this mode. As a final re-
mark we note that the frequency values of the mode (in
the small- and high-wavevector regions) appear to be in
the range proper to the librational motions of the mole-
cule, i.e., 10' Hz.
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pk '(0)=(1/N' )g([ik r'H""exp[ik r' ''' (0)]

+(ik. i. i ' ' )exp[ik. r z' (())I )

and r,' ' represents the vector joining the center of mass
and the point a over the molecule.

The Hamiltonian of the system can be written as

&=+M(r' '; ') /2++ T; co; oz; ./2+ V(r,',0, ) (A5)

Having assumed the molecule to be a rigid body one has

r (a) r (c)+~ ~ r(ca)
l l l (A4)

where a stands for 0, H(1), or H(2); r ,
'I is the velocity of

the center of mass of molecule i, co; its angular velocity

M being the total mass of the molecule, T; the inertia
tensor referred to a laboratory fixed frame, and
V(r ', II, ) the total potential energy. In general the
evaluation of the matrix element of (A 1) requires one to
perform the ensemble average of

(p k
'p'

k ) =((1/N' )g[ik. (r',. '+r0, Xr', ')exp(ik r' ')](1/N' z)g[ —&k.(rI '+oz. XrIci ')exp(ik. rIPi)]) (A6)

The Hamiltonian being a quadratic form in r ';
' and co, , all the terms of Eq. (A6) in which i Wj vanish because they con-

tain either ( r'
I

') or (oz, ) which can be assumed to be zero. For the same reason (p II,
I.pI~& ) =0, which proves that

the matrix Q(k), which appears in Eq. (S), is identically zero. Therefore Eq. (A6) turns out to be the sum of N identical
terms, each one being the average of a single molecule quantity, and can be written as

(p& '.p'~&)=([ik. (r', '+co, Xr', ')]exp(ik. r', ')[ —ik. (r', +co, Xr', ~')]e px(ik rP )) . (A6a)

The average is then more easily performed in a molecular reference frame with the axes coincident with the inertial
principal ones, in which the tensor T is diagonal; in such a reference frame (which is specified in Fig. 1), the rotational
kinetic energy reads

E~ —[I,ozi+Izozz+I3 3]' (A7)

Out of the four terms present in equation (A6a) only two survive, being

((ik r'i ')exp(ik. r'i ')[ ik (ro—i Xr. i ~')]exp( ik ri~')—) =(.ik i i 'exp(ik. ri '))( —ik-(hei Xr, ~')exp(ik r'P')) =0.
(AS)

One is left with the calculation of the quantities

((k r ' ') exp[ik (r' ' —r' ~') )

([k (c0, Xr' ')][k (oz, Xr' ')exp[ik (r', ' —r' ')])
(A9a)

(A9b)

which involve an average over the distribution of center of mass and angular velocity as well as an angular average over
the possible orientation of the molecule. The latter is accomplished after having expressed the exponential in a Ray-
leigh expansion,

exp[ik. (r' ' —r' ~')]=4m+(i)'j (k~r', ' —r', ~'~) Y& (Qk)Y&* (fl„'),
1, m

(A 10)

in which j&(x) is the 1th spherical Bessel function and Y& (0) are the normalized spherical harmonics, whose argument
is the direction cosine either of k or r', ' —r'i ~'. By writing the dot products in Eq. (A9b) in terms of spherical har-
monics (of argument f11, ) and finally observing that only those terms which contain oz will survive, all the contributions
to the matrix elements of Eq. (Al) can be evaluated. The result is

(pIi"p I, ) =[k~T/M+(1/I, +1/I3)kz, TR, c/3]k

(P I,."P '
k ) = (P I, 'P ''I, ) =2I kzi T/MJo(kr, z) —

kzi T/3(1/Ii +1/I3)R ichzc[jo(kriz )+j z(kr)z )]
—ks T/I3(2hzc/R ic+ )R ic 'n Xjz(«iz) )k

(P k
'P'

~ ) =2(ksT/M[1+Jo(k"22)]+kzi T/3[hzc/I, +(rzz/2) /Iz+[hzc+(r /z2z)]/I, I

kB T/I3h zcJ2(«22 )+kzi T/(3I3 )[h zc (rzz /2) l[Jo(k"22 )+Jz(krzz )l

kB T/(3Iz )(rzz/2) [jo(«—zz )+jz(«zz )]+kzi T/(3I, )h zc[jo(krzz )+jz(krzz )])k

(A 1 la)

(A11b)

(A11c)

The definition of all the symbols can be found in Fig. (1). Equations (Alla) —(Allc) illustrate the differences in the
second moment of the oxygen and hydrogen density correlation functions. For the molecular center of mass one would
obtain
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&p'„'p' „'&=(k T/M)k (A12)

The correction to this result for the oxygen second moment (Eq. (Alla) turns out to be quite simple and small in the
case of a water molecule in view of the fact that R,c =0, but more involved (and wave-vector dependent) for the other
two moments [see Eqs. (Al lb) and (Al lc). The results (Al la) —(Al lc) along with Eq. (16) allow the evaluation of the
coefficients of the secular equation (15), reported in Eqs. (18a)—(18c).

APPENDIX B

In this appendix we report the details of the calculation of the oxygen-oxygen density correlation function, evaluated
under the assumption that the damping of the two contributing modes can be neglected. We derive the expression for
the amplitudes of the two modes whose frequencies are found by solving the secular Eq. (15). We start from Eq. (14)
which can be written as

C'(k, z) =z [z I+M(k, O)] 'C(k, O), (B1)

where the matrices M(k, O) and C(k, O) are defined in Eqs. (16) and (6), respectively. The solution for the Laplace trans-
form of the oxygen density correlation function 0»(k, z) can be written as

C'ii(k, z) =z [Cii(0)z + Cii(0)Mzz(0) —Ciz(0)Miz(0)]/[(z —z i )(z —zz )], (B2)

where z, and zz are the solutions of the secular equation and z =ice Equ. ation (B2) can be easily split into the sum of
two terms, namely

C'„(k,z) =z (z, —zz ) 'I [Ci, (0)z i
—C,z(0)M, z(0)+ C„(0)Mzz(0)](z —z i )

—[C&i(0)zz C&z(0)Miz(0)+Czz(0)Mzz(0)](z —zz )

By inserting into Eq. (B3) the identity

(z —z, ) '=[(z —z, )
' —(z+z, ) ']/(2z, )

and after having performed the inverse Laplace transform, one finds

C»(k, t)=(coz —co&) I[—Cii(0)co, —C&z(0)M&z(0)+Cii(0)Mzz(0)]cost@it

+ [—C» (0)coz —C,z(0)M, z(0) +C» (0)Mzz(0) ]coscozt I

which can be written as

C» (k, t) =C» (0)[I» (k)cos(co, t)+I,z(k)cos(cozt )]

with an obvious definition of I»(k) and Izz(k). From Eq. (B5) it is immediately shown that

I„(k)+I,z(k)=1 .

(B3)

(B4)

(B5)

be
Similar calculations can be performed to derive the hydrogen density correlation function Czz(t) which turns out to

Czz(k, t) —Czz(0) [Iz, (k)cos(co, t)+Izz(k)cos(cozt) . (B8)

By making use of the expression for (p Ik
I

p I~I, ) derived in Appendix A [see Eqs. (Al la) —(Al lc)] and performing the
limit of k ~0 one obtains

I„(k~O)=Iz, (k~O)=1 . (B9)
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