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Dynamics of a lamellar system with diffusion and reaction: Scaling analysis and global kinetics
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The evolution of a one-dimensional array of reactive lamellae with distributed striation thickness
is studied by means of simulations, scaling analysis, and space-averaged kinetics. An infinitely fast,
diffusion-controlled reaction A +B~2P occurs at the interfaces between striations. As time in-

creases, thin striations are eaten by thicker neighbors resulting in a modification of the striation
thickness distribution (STD). Scaling analysis suggests that the STD evolves into a universal form
and that the behavior of the system at short and long times is characterized by two different kinetic
regimes. These predictions are confirmed by means of a novel numerical algorithm.

INTRODUCTION

Mixing of Quids with similar properties generates
dynamically evolving structUres consisting of stretched
and folded striations (see Fig. I).' In many cases of in-
terest, ranging from very viscous liquids (e.g. , polymeri-
zations ), to nearly inviscid Iluids (e.g., combustion ), the
striations interdiffuse and undergo complex chemical re-
actions; the central question is to predict the value of the
overall rate of reaction. The simplest type of situation
occurs when the mixing rate is very fast as compared
with the rate of chemical reaction; in such a case
diffusion is able to homogenize the system before
significant reaction takes place and kinetics dominates
the picture. At the other extreme, if the reactions are
very fast, diffusion controls and it becomes necessary to
account for Auid-mechanical mixing and diffusion in an
explicit way. One possibility is to use a lameIIar model: '

at time t =0 the reactants are arranged in a one-
dimensional lamellar structure that is generated by the
Iluid mechanics (see bottom of Fig. 2, which corresponds,
roughly, to the cut shown in Fig. I). Fluid motions
stretch the striations, reducing the diffusional distances
and increasing the contact area for interdiffusion, ' in the
case of infinitely fast reactions, the reaction occurs at the
interfaces between striations.

Until now the analysis of this sort of problems con-
sidered striations with the same thickness. In fact, the
problem involving a distribution of striation thicknesses
was considered nearly intractable. However, this need
not be so. Simple scaling analysis yields considerable in-
sight into the problem. In this paper we study systems
with a distribution of thicknesses by means of a novel nu-
merical procedure capable of simulating efhciently sys-
tems composed of a large number of striations. We inves-
tigate the effects of different initial striation thickness dis-
tributions on the evolution of the system, and explore the
effects of the scaling behavior that occurs at moderate to
long times, produced by a critical transition in the sys-
tem. We found that at short times, the system is charac-
terized by two length scales, one for the diffusion process,
and the other for the spatial distribution of reactants. At
long times, these characteristic lengths fuse into a single

independent length scale, producing the onset of scaling
behavior. Because of this, the system obeys different ki-
netic regimes at short and long times, and these regimes
can be used to predict the evolution of the system for
different initial conditions.

Systems involving diffusion and reaction have attracted
considerable attention in recent years. " In many
cases, spatial inhomogeneities of reactants develop as a
result of the diffusion-reaction process and produce reac-
tant decay laws different from those predicted by classical
chemical kinetics. This phenomenon is central to the
evolution of many reactive systems and might occur with
or without diffusion (via long-range interactions' ) and
for finite or infinite intrinsic rates of reaction. ' The most
common methods to attack these types of problems are (i)
simulations in terms of discrete particles undergoing
prescribed types of motion and reaction and (ii) theoreti-
cal studies in terms of correlation functions. In particu-
lar, for the type of reaction considered in this paper,
A +8~2P, it has been established that the system has a

FIG. 1. Mixing process in a chaotic flow produced by a cavi-
ty flow apparatus operated under creeping flow conditions (Ref.
1). Two fluids of about the same viscosity and zero surface ten-
sion are stirred together by periodically moving the walls of the
cavity. A lamellar structure is generated, composed of
thousands of striations of distributed thickness. The line
represents a cut across the striations, such as the one represent-
ed at the bottom of Fig. 2.
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ds =dn /f (s, O)=1/f (s,O),

10—

-2

-4

where we take dn:—1. We obtain a set of thicknesses
[sJ HR+ by recursive application of Eq. (1). Since we
measure the thickness of a lamella as the number of
equally spaced nodes used to represent it in a finite
differences discretization, only integer thicknesses are al-
lowed. We substitute each value of s in the set js J by its
nearest integer value s', creating a new set of values
(s'j EZ . The initial STD f (s, O) is therefore approxi-
mated by a discrete function n (s', 0) obtained by count-
ing the number of lamellae of thickness s' that are
present in [s'). In all the simulations presented in this
paper we place two additional requirements on the initial
distribution:

FIG. 2. Evolution of a lamellar system as time (and the con-
version X) increases. The bottom of the figure corresponds to
the initial condition t =X =0. The time t increases exponential-
ly along the vertical axes, thin horizontal cuts of this figure cor-
respond to states of the system at different times and conver-
sions. As t increases, thin lamellae are eaten by larger neigh-
bors, the total number of lamellae decreases, and the mean
thickness increases. At the top of the figure t =10, X=0.83,
only 10 form the original 200 lamellae survive.

s, 0 ds — n s', 0 =600 lamellae,
0 0

(2a)

f sf (s, O)ds —ps'n(s', 0)=150000 nodes .
0 0

(2b)

The initial value of the mean striation thickness S(0) is
therefore given by

S(0)= g s'n(s', 0)
0

g n(s', 0) =250 nodes .
0

critical point characterized by a power-law decay of the
average concentration of reactants of the form t
t —+~, where e is the critical exponent. ' Our results
confirm these findings; however, we believe that ours is
the first study that starts from a condition generated by
imperfect macroscopic mixing. A detailed characteriza-
tion of the structure of the system (the striation thickness
distribution) demonstrates the scaling behavior that
occurs at large times. The link between this critical scal-
ing and the power-law decay of the average concentration
of reactants is also apparent in our results.

THE SYSTEM AND THE INITIAL CONDITIONS

We concentrate on the simplest model that can accom-
modate a distribution in the thickness of the lamellae (a
brief account of this model has been published else-
where' ). The system consists of two reactants A and B
dissolved in a common solvent, and placed in alternate
striations in a lamellar structure (bottom of Fig. 2). The
thicknesses of the lamellae are distributed; the striation
thickness distribution (STD) is given by f (s, t), the fre-
quency of occurrence of lamellae of thickness s at time t.
Both reactants diffuse to the interfaces separating the
lamellae, where they undergo an infinitely fast reaction
A+B~2P. The diffusion coefticient D is constant and
identical for all species; D = 1 (unit length) I (unit time).

The initial STD f (s, O) =dn /ds, where dn is the num-
ber of lamellae of thickness between s and s+ds, is the
main parameter in the system. From the prescribed ini-
tial striation thickness distribution f (s, O) the thicknesses
of the lamellae are generated as follows. If each lamella
is identified in increasing thickness, the thickness incre-
ment between two adjacent size lamellae is given by

NUMERICAL PROCEDURE

As the reaction is infinitely fast, A and B cannot coex-
ist, and the reaction takes place only at the interfaces be-
tween striations. The simulation consists of solving the
diffusion equation

Bc,- 8 c,=D, i =A, B
at az2 ' (4)

within each lamella, where c,.(z, t) is the concentration of
either A or B at a given position and time, and z is the
spatial coordinate in the direction transverse to the inter-
faces of the lamellae. The reaction is incorporated as a

We generate two identical sets of initial thicknesses
[s'J, one for lamellae of A and the other for lamellae of
B, thus making the initial number of lamellae N(0) equal
to 1200 and the total size of the system M equal to
300000 nodes. Each list is randomly reordered. After
that, we build a master list by taking the first lamella
from the A list, then the first lamella from the B list, then
the second lamella from the A list, and so on. In this
way, the thicknesses of the lamellae are distributed as
f (s, O), but the thicknesses of neighbors are uncorrelated.
At time t =0, all nodes in A lamellae are assigned the
values of concentration c~ =1, c~ =0, and all nodes in B
lamellae are assigned c~ =0, cz =1. In this way, we en-
sure that the amounts of A and B are identical in the ini-
tial distribution; moreover, due to the stoichiometry of
the reaction, they remain identical for all times. We re-
strict ourselves to the case where A and 8 are in
stoichiometric ratio, the nonstoichiometric case is left for
future work.
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boundary condition, ' specifically, at each interface,

Cg —CB —0 (sa)

Bcg BCB

az B side
(Sb)

The main difficulty is that as the interfaces between
lamellae move, the thicknesses of the lamellae change,
and an efficient discretization of the system is very in-
volved. In order to overcome this problem we use the
following approach, based on the fractional-step
method given the concentration field c;(z, t) at time t,
in the first step we solve the diffusion equation for the en-
tire domain for t'=t+At without considering the reac-
tion, obtaining c (z, t'). We use an explicit, constant in-
crement, finite difference scheme with a coefficient
a = (Ddt ) /(b, z ) = —,

' (the specific value of —,
' is chosen be-

cause for this value the error terms are fourth order in Az
and the explicit scheme becomes exact up to the same or-
der as an implicit scheme). ' In the second step, we ac-
count for the reaction by simple bookkeeping: because 3
and B do not coexist, if at any position at time t we have
c„') c&%0, we assign c~ —=c~ —cz and cs =—0. Converse-
ly, if c~ )c„'%0,we assign c„=—0 and cs =cs —c„'.The
time increase per iteration is given by At =a(hz) /D.
We define S(0) to be one unit length. As S(0)=250
nodes, the distance between two nodes is given by
Az =0.004 unit length, and ht, the time increase per
iteration, is ht =2.666X10 unit time. For such a
small At, the violation of the simultaneity of the diffusion
and the reaction processes is relatively unimportant; the
total size of the system M is 300000 nodes, and this large
nuynber of nodes contributes to keeping numerical errors
small. Note that with this approach, it is relatively easy
to follow the motion of the interfaces: interfaces are the
locations where c~ =cB=0 and those positions are au-
tomatically generated by the algorithm.

For systems of this large size, explicit schemes are ac-
tually more efficient than implicit ones because in the im-
plicit case it is necessary to invert huge matrices (rank
equals M) and this is very time consuming. The usual ad-
vantage of implicit schemes, the possibility of using a
larger At per iteration, is not an advantage in our case:
we need to have a small At in order to prevent the errors
produced by the uncoupling of the diffusion and the reac-
tion from becoming large. The overwhelming advantage
of the explicit scheme is that the code admits vectoriza-
tion, increasing the efficiency of the numerics by a factor
of several hundred.

In order to be able to achieve high conversion within
reasonable computer time, we monitor the number of
lamellae of thickness s' ~ 30 nodes. Whenever this num-
ber becomes small (we take this number to be 5), we con-
tract the thickness of each lamella by half and multiply
At by 4. After the contraction, only those five lamellae
are represented by less than 15 nodes, which can be re-
garded as a reasonable number of nodal points. Because
those are only a few small lamellae, the loss in accuracy
due to the contraction is negligible; however, as the total
number of nodes is cut by half, the speed of operation

Bc; Bc;=D +r, i =A, B
at az2

(7a)

where r, the rate of the reaction 2 +B~2P, is given by

r = —k, C~CB . (7b)

In such a case we proceed as follows: given the con-

doubles each time a contraction is executed, and this, to-
gether with the increase in At, allows the system to
achieve conversions of 95% and times t = 10 after rough-
ly 30000 iterations. This operation does not affect the
accuracy of the calculations: nearly identical results are
obtained when no spatial contractions are carried out.
Vectorization of the code and optimization of the data
handling procedures allow the code to complete each
simulation in about 1 h of CPU time in a Convex C210.
The entire set of calculations reported in this paper was
completed in about 100 h of CPU time.

We use three different tests to check the performance
of the numerical code. In the first test, we compare the
values of the concentration gradients of A and B at oppo-
site sides of each interface. Boundary condition (5b) is
closely verified; relative errors between the magnitudes of
~)c„/Bz „„d,and Bcs/Bz s „d,are smaller than 0.01 for
all lamellae with thicknesses larger than 20 nodes. These
discrepancies occur because the interfaces are assumed to
be located at the middle point between two subsequent
nodes, while they are actually located at some unknown
position between the nodes. In the second test, we simu-
late a system where all the lamellae have the same thick-
ness. In this case the interfaces between lamellae do not
move and a series solution for the conversion as a func-
tion of time is available. ' The agreement between the
exact solution and the results from the simulation is ex-
cellent; the relative errors are smaller than 0.001 for all
values of conversion in the interval 0&X ~0.95, where
the conversion X is given by

X(t)= I —f c(z, t)dz f c (z, 0)dz . (6)
0 0

The third test consists of computing the evolution of
the thicknesses of a lamellae surrounded by much larger
neighbors. This case can be made mathematically identi-
cal to the diffusion of a passive scalar and it can be solved
analytica11y for a finite lamella with infinite neighbors'
(this point is discussed further in the section dealing with
the time evolution of the STD). A comparison between
the results from the simulations with the analytical solu-
tion for s(t) shows that the relative errors in the thick-
ness of the lamellae are smaller than 0.01 for all times for
lamellae with initial thicknesses larger than 20 nodes (we
note here that the average initial thickness is 250 nodes).

We should point out that we do not expect this method
to be limited to the infinitely fast reactions. In fact, we
believe that the method should perform even better with
slower reactions: as the relative increments in concentra-
tion between the diffusion step and the reaction step at
any position became smaller, the magnitude of the errors
due to the violation of the simultaneity of both processes
should decrease. Consider the analog of Eq. (4) for a
finite rate of reaction
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centration fields cz =c„(z,t) and cs =cz(z t) at time r,cz z, t
we solve the diffusion equation for t'=t+At for the en-
tire domain without considering the reaction [Eq. (4)],
obtaining cz (z, t +ht) and c s(z, t +b, t). After that we7

compute the effects of the reaction by integratin E (7 )ing q. a
thout considering the diffusion term, obtaining

30

(a)

and

c„(z,t +b t) =(c„'—cs )/(1 —yes/c„' ) (8a) l0

cs(z, t + ht) =(yes /c„' )(c„'—c~ )/(1 —
yes /c„' ), (8b) 250 500 750 1000

where

y=exp[k„b,t(c~ —c„')]. (8c) 60

s (striation thickness)

Equations (4) and (8a) —(8c) allow us to simulate the
system with a second-order, finite speed reaction in the
same manner as we simulate the system with an infinitely
fast reaction. We have already simulated a system con-
sisting of 20 lamellae with $(0)=70 nodes, k„=1000by
this method and alalso by a classic predictor-corrector
scheme. The results from both methods are nearly identi-

smaller
ca, the re ative errors in average concentrati b

'
a ion eing

sma er than 0.0001 for all times. However, while the
timepredictor-corrector scheme consumed 15 h of CPU

in a VAX 8600 to achieve r = 10 (300000 iterations), the
new scheme proposed here consumed only 20 min in a
Convex C210 ~x ~even though the computations were done
without contracting the striations).

40

20

30

250 500

s (striation thickness)

750

(b)

1000

(c)

SIMULATIONS

The dispersion in striation thickness has a deep impact
on the dynamics of the system ' Large lamellae eat
smaller neighboring lamellae, merging into even larger
lamellae, and generating domain growth, coupled with

wing process is il-t e i usion-reaction process. This growi
ustrated in Fig. 2. We sample each node in the system; if
c„&0, we assign it to an A lamella and color it white; if
c~ )0, we assign it to a B lamella and color it black. We
take snapshots of the system at different times, cut a thin
strip from each snapshot, and pile the strips up in in-
creasing conversion order. The bottom of the figure cor-
responds to the initial condition X(0)=0. Thin hin onzon-
a cu s o ig. 2 correspond to states of the system t
i erent times. The time t increase exponentially along

t e vertical axis; as t increases, thin lamellae are eaten by
arger neighbors, the total number of lamellae decreases,

and the mean striation thickness increases. At the top of
the figure, corresponding to t =10 (Z=0. 83), only 10
from the original 200 lamellae survive.

The results presented in this paper correspond to three
extreme cases of initial conditions: a random initial STD
[Fig. 3(a)] in which all thicknesses occur with the same
frequency, a normal initial STD [Fig. 3(b)] with standard
deviation of 125 nododes, and a linearly decreasing initial
STD [Fig. 3(c)]. We run 10 simulations for the random
and normal cases, and 40 for the linear case. Different
simulations corresponding to the same initial STD have
the same list of thicknesses ordered in a different random
sequence. We measure the conversion X th e mean stria-

20

10

250 500 750 1000

s (striation thickness)

FIG. 3. &a& Evolution of a system with a random initial stria-
tion thickness distribution (STD) Th te system is initially com-
posed of 1200 lamellae and their thicknesses are randomly dis-
tributed; all thicknesses in the range of 5 to 500 have the same
probability of occurrence. As time increas thases, e conversion in-
creases and the STD changes. The STD is shown for S(t)=0,
0.1 0.30.1, 0. , 0.5, and 0.7, and we observe that as X '

increases, a inear
region of positive slope develops for small values of s, and the
widt o this linear region increases with X. A '1 di . tai evelops in
t e arge-s region, and the STD evolves into a mildl k dmi y pea e

pe. (, volution of a system with a normal initial STD.
This system is initially composed of 1200 lamellae with
thicknesses in the range of 5 to 500 dan a standard deviation
equal to 125. The figure shows the STD for X=0, 0.5, 0.6, 0. ,
and 0.8. The same peaked shape as in the previous case occurs
at large conversions (X =0.8) ~ (c) Evolution of a system with a
linearly decreasing initial STD. This system is initially com-
posed of 1200 lamellae with thicknesses following a distribution
f (s,0)=a —bs, with a =3.2386, b =0.004266. The figure
shows the STD for X =0, 0.05, 0.2, 0.35, 0.45, 0.55, and 0.65.
The same caked sha e
X ~ 0.45.

p as in the previous cases appears ta
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tion thickness S, the total number of lamellae N, and up
to the sixth moment of the STD as a function of time.
The results we present in this paper are the average of all
the simulations for each initial STD.

TIME EVOLUTION OF THE STD

Figures 3(a)—3(c) show that, as X increases (and t in-
creases), the STD suffers deep changes. Thin lamellae are
eaten by thick lamellae, their frequency diminishes, and a
linear frequency region develops for small values of s.
Large lamellae are generated in the process, and the dis-
tributions develop a tail in the large-s region. In spite of
the differences in initial conditions, the shape of the STD
in Fig. 3(a) (random initial STD), corresponding to
X=0.7, is very similar to the shape of the STD in Fig.
3(b) (normal initial STD), for X =0.8, and to the shape of
the STD in Fig. 3(c) (linear initial STD), for X =0.55.
Similar calculations with other initial STD's show that
the same shape occurs at moderate to large conversions.
We will not report those other calculations in detail; the
results presented here should be considered a representa-
tive subset of more extensive calculations.

Since systems with different initial conditions seem to
achieve a universal distribution at different values of con-
version, time, and average striation thickness, we make
the hypothesis of the existence of a universal, time invari-
ant scaling solution for the STD at moderate to large
conversions. This hypothesis can be tested by using scal-
ing techniques that have been extensively used to describe
critical phenomena, ' ' and aggregation processes.
We postulate that

s f(s, t)=g(s/S(t)),
where g(y) is the scaling solution, and y = /sS(t) is the
scaling argument.

When a lamella grows, it does that at the expense of its
neighbors; it follows that the total size of the system
M[ =Io sf (s, t)ds] is constant and

10'

1P4
II

102

10
103

10'

104

og)
1 P2

10'
103

106

10
II

10'

10'

10-2

102

10-'

y = s/S(t)

1P-I

y = s/S(t)

10'

1PO

10'

(b)
pQ],

10'

c)

M= s stds= s' g yds
0 0

=[S(t)] f y' g(y)dy . (10)

Since the last integral is independent of time, we have
that 0=2.

Figures 4(a) —4(c) show the scaled distribution s f (s, t)
corresponding to three different STD's for different
values of X in the interval X =0 to X =0.85, and 9=2
[(a) random, (b) normal, (c) linear]. As the conversion X
increases, the scaled STD indeed converges toward a
master curve, becoming time invariant. The collapse of
the data is good, being better in the linear STD case
(average of 40 simulations) than in the other two cases
(average of 10 simulations). For X&0.35, any individual
curve is indistinguishable from the master curve except in
a narrow region at y = 1, and for X)0.5, all curves lie on
top of each other. The scattering, which is due to the
finite number of lamellae considered, is large at high con-
versions and also at large values of y, due to the progres-
sive thinning of the data that occurs at larger values of X

103 102 10-'

y = s/S(t)

10' 10'

FIG. 4. (a) Scaling behavior is present in the evolution of the
STD. The distributions in Fig. 3(a) are plotted as
g(y) =s'f(s, t) as a function of y =s/S(t), where S(t) is the
mean thickness at time t. A11 curves collapse into a master
curve, except those corresponding to very low conversions
(X &0.35). The master curve is the scaling solution for the
STD. The large amount of scattering that occurs at large con-
versions and at large values of s/S(t) is due to the small values
off (s, t) under those conditions. The data correspond to an ini-
tially Oat STD. The results are the average of 10 simulations.
(b) Similar to (a); curves in Fig. 3(b) collapse when plotted in
scaled form. The data correspond to the evolution of an initial-
ly normal STD, averaged through 10 simulations. (c) The col-
lapse of the curves in Fig. 3(c) when plotted in scaled form. The
data correspond to an initial linear STD. Better data collapse is
observed in this case because the data are averaged through 40
simulations instead of 10 as in (a) and (b).
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and s. As conversion increases, the number of surviving
lamellae decays very fast; even with 40 simulations, at
X =0.85 we have only a few hundred surviving lamellae.
Similarly, as the total size of the system is constant, the
frequency must decay as s increases; for large values of s
the frequency f (s, t) is very small, and the relative level
of noise is very high.

We need to verify whether the scaling solution is the
same for difFerent initial STD s. In Fig. 5(a) we show a
scaled STD corresponding to each of the initial distribu-
tions; the agreement between the curves is very good,
demonstrating the universality of the scaling solution.
Different behaviors for small and large y are apparent in
Fig. 5(b); g(y) exhibits power-law behavior for small
values ofy:

g(y)=y for y &1 or s &S(t),
and exponential decay, faster than any power of y, in the
large-y region:

g(y)=y exp[s)(1 —y)] for y) 1 or s)S(t) . (12)

As it is shown in Fig. 5(b), Eq. (12) with 5=3.3 and

g =2.2 gives a good representation for g (y) in the range
0.02&y &5.

Let us consider in more detail the thinning and disap-
pearance of a lamella. The time td at which a thin lamel-
la of initial thickness s; is consumed by thicker neighbors
can be calculated by expressing the problem in terms of
P=c„—cz. From Eq. (4) we obtain that (() evolves as
BQIBt =DO PIBz, and that both P and BQIBz are con-
tinuous everywhere. Moreover, since A and 8 do not
coexist, wherever P) 0, we have c„=P,c~=0; while if
/&0, we have c~= —P, c„=O;and if /=0, we have
c~ =cz =0, corresponding to the interfaces. The evolu-
tion of P can be calculated exactly for a finite lamella in
an infinite medium' (the results hold with little error for
a thin lamella with reasonably thicker neighbors, e.g. , five
times thicker). The distance between the interfaces con-
tinuously decreases as time increases, until a time t =td
at which the interfaces meet and the lamella disappears;
from both the analytic solution and the simulations we
find that td is given by

/L (13)

106

104

10

10'

104
II

103 10 10-'

y = s/S(t)

10

(a)

10'

where C, =0.2747 and L is the characteristic length used
to define the time scale in the system. In simulations
where we consider only one finite lamella with much
larger neighbors, L is the initial thickness of the lamella
s,-; in systems where we simulate a set of striations, I is
taken to be S(0), the initial average striation thickness,
and Eq. (13) gives the time of disappearance of lamellae
with much thicker neighbors as a function of their initial
thicknesses.

Figure 6 shows the evolution of the thickness of a thin
lamella with much thicker neighbors. This evolution can
be summarized as follows: for t &td/3 the thickness of
the lamella is almost constant. At t=tdl3 the lamella
begins to shrink, but this shrinking is very slow at the be-
ginning; at t =td l2, the thickness of the lamella has de-
creased only 10%%uo. However, the rate of shrinking ac-
celerates, becoming infinite at t =td, s =0. For striations
in the range 0 &s &0.8s; (see Fig. 6) the time evolution of
s is approximately given by

&0' td t =—Cis /L

implying that

(14)

10
10-3 102 10'

y = s/S(t)

10 10' ds = —1/s
dt

(15)

FIG. 5. (a) Scaled STD for a system with a random initial
STD, X =0.7, a system with a normal initial STD, X =0.8, and
a system with a linear initial STD, X =0.55. The curves are al-
most indistinguishable, demonstrating that the scaling solution
g(y) =s f (s, t) is independent of the initial conditions. (b) The
scaled STD for a system with a linear initial STD, X =0.55. A
line of slope equal to 3 is shown, demonstrating that g (y) =y in
the small s -region. A curve g(y)=y 3exp[2. 2(l —y)] is also
shown, giving a good approximation to g (y) in the range
0.02&y &5, demonstrating the exponential decay of g(y) at
large values of s.

Several important consequences follow from these sim-
ple observations.

(a) Consider two lamellae with initial thickness s;(0)
and s.(0)=&2s, (0) surrounded by infinite neighbors.
The times of disappearance differ by a factor of 2,
td =2td [see Eq. (13)]. However, at t =td, while lamella

J f t

i has nearly vanished, the thickness of lamella j has de-
creased by only 10'', sz(td ) =0.9s (0)=0.9V2s, (0); and

t

all other lamellae thicker than s.(0) are nearly unaff'ected.
At any time t, all lamellae that have shrunk more than
10% of their initial values are in the interval
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FIG. 6. Time evolution of the thickness of a lamella that is
being eaten by much larger neighbors. The lamella disappears
at a time td =0.2747, where s;, the initial thickness of the lamel-
la, is used as characteristic length of the system. The lamella
shrinks slowly at the beginning; for 0 & t & t„/3,the thickness is
almost constant, and at t =td /2 it has shrunk only 10% of the
initl thickness. The rate of shrinking accelerates monotonically,
becoming infinite at t =td. The figure shows the results from
the simulations (dots) and the exact solution (solid curve) for a
finite thickness lamella with much thicker neighbors; the agree-
ment between both sets of data is very good. The figure also
shows that a parabola [see Eq. (14)] (dotted curve) gives a good
approximation for the evolution of s ( t) in the interval
0.8s; & s & 0, corresponding to a shrinking regime ds/dt = 1/s.

0 & s ( r) & 0.9S (0)[2r /C, ]' (16a)

and were originated from a narrow region of initial
thicknesses given by

S (0)[r /C, ]'~' & s (0) & S (0)[2r /C, ]'~' (16b)

The interval of s (t) defined by Eq. (16a) is denoted "the
small-s region, " and the interval of s(0) defined by Eq.
(16b) is called "initial thicknesses corresponding to the
small-s region. "

(b) Consider two thin lamellae in the small-s region
having initial thicknesses s; and s;+As. As they shrink,
those thicknesses become s and s+ds, and are approxi-
mately given by

—,'C, s =C,s; —[S(0)]t,
—,'C, (s+ds) =C, (s, +As) —[S(0)] t .

(17a)

(17b)

where 1/As is the frequency in the narrow region of ini-
tial thicknesses corresponding to the small-s region (be-

Since we can make As arbitrarily small, after neglecting
second-order terms we obtain that the difference between
their thicknesses ds (r), evolves with time as

ds (t) =2s; bs Is (t) .

Recalling that f (s, t) —1/ds, the frequency of thicknesses
in the small-s region is given by

(19)

S(r) r 1/2 (20)

in order to keep the corresponding value of y constant.
As a consequence, the average striation thickness in the
scaling regime increases at the same rate as the
diffusional length scale 5(t)[=(Dt)' ]. Also, since both
length scales differ only by a multiplicative constant, they
are no longer independent, and the system is character-
ized by only one characteristic length. This critical tran-
sition from a system with two length scales to a system
with only one characteristic length produces the onset of
scaling behavior.

OVERALL DYNAMICS:
A KINETIC DESCRIPTION

The system behaves very differently for short and long
times. For short times, the diffusional length scale 5(t) is
much smaller than the average striation thickness S(t),
and most lamellae satisfy s))5(t). For those lamellae,
the fluxes at their interfaces are the same as if the lamel-
lae were semi-in6nite. For each particular lamella, this
flux rate is sustained until the concentration of reactant
at the center of the lamella becomes considerably smaller
than the initial concentration. Because of the
stoichiometry of the reaction, and the concentrations at
the interface are zero, the fluxes at both sides of the inter-
face must be identical. As a consequence of this, a lamel-
la with fat neighbors begins to shrink when the concen-
tration of reactant at its center become smaller than the
initial concentration. The evolution of the thickness of
lamellae with much larger neighbors is shown in Fig. 6.

The average concentration C(t) decreases as material is
transferred to the interfaces

fore the lamellae begin to shrink). As this region of ini-
tial thicknesses is narrow, we can assume that the fre-
quency 1/As is approximately constant, and the frequen-
cy of small lamellae must be linear with s. A quick in-
spection of Fig. 3 should convince the reader that this is
the case. Furthermore, the corresponding small-y region
of the scaling solution exhibits power-law behavior
g (y) =y as it is shown in Fig. 5(b).

(c) The processes affecting the frequency of lamellae in
the small-s region are different from those that occur at
larger thicknesses. In the small-s region, all surviving
lamellae are shrinking and the slope of f (s, t) is positive.
At larger thicknesses, lamellae are growing, merging with
other lamellae, or being produced from smaller lamellae.
As the total size of the system M is constant, the frequen-
cy of large lamellae must decrease as s increases, and the
slope of f (s, t) becomes negative. At some intermediate
value of s in the neighborhood of the upper limit of the
small-s region, there is a region where the slope of f (s, t)
is equal to zero. As g(y) is time invariant in the scaling
regime, the small-s region is a fixed region of g(y) for
long times, and the upper limit of the small-s region
should correspond to a constant value of y =sIS(t) Be-.
cause the value of s corresponding to the upper limit of
the small-s region increases as t' [Eq. (16)), S(t) should
increase at the same rate with time
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=Dg =DN(t)dt= a ...=
Bc
az int av

(21)

where N(t), the number of surviving lamellae, is equal to
the number of interfaces, and (~Bc/Bz~;„,),

„

is the abso-
lute value of the concentration gradient at the interfaces,
averaged through all interfaces. For short times, most
lamellae have concentration gradients at their interfaces
identical to those of a semi-infinite domain, and those
gradients decay with time as

]0-3

V0
o 10

10

%I %E Rg Q g 'g g
I8

R y0

I

g ~ ~ I I t I g ~

=C(0)t
a

(22)

0.25 0.5

X (conversion)

0.75 1.0

Let us consider the relationship between the average
rate of conversion and the average concentration. Imag-
ine a process by which we select those lamellae satisfying
s))5(t) (most lamellae at short times), cut the central
portions of the lamellae, take those portions away from
the system, and join the ends left by the cutting. This
process obviously decreases the average concentration of
reactants. However, the rate of transfer of material to
the interfaces does not change because the cruxes at the
interfaces of thick lamellae are insensitive to what occurs
at their centers. Therefore the rate of conversion
dX(t)ldt does not depend on the average concentration
C(t) for short times, and we have

dCldt = —kIC(0)N(t)t (23)

where k, is a "short-time kinetic coefficient. "
For long times things are very different: the system

evolves asymptotically into the spatial distribution de-
scribed by the scaling solution. The magnitude of the
diffusional length scale is similar to the magnitude of
S(t); both increase at the same rate with time. The con-
centration gradients at the interfaces of most lamellae are
no longer given by the value of the gradient for a semi-
infinite domain. It seems reasonable to assume that
(~Bc/Bz ~;„,),„

is directly proportional to the average con-
centration of reactants and inversely proportional to the
diffusional length scale, or equivalently,

FICJ. 7. Values of k, = [t '~'/N(t)]dC/dt (open symbols) and
k2 =[1/CN(t)'jdC/dt (closed symbols) for systems with ran-
dom (circles), normal (squares), and linear (triangles) initial
STD's. The short-time kinetic coefficient k& is approximately
constant for X~0.5 and its value is kl 9.17X10 . The
long-time kinetic coefficient k2 is also approximately constant
for X~0.4 and its value is k&=7.05X10 . Horizontal lines
for these values of k& and k2 are shown for- comparison. The
agreement between the values of k, and k2 for different initial
STD's demonstrates the universality of the dynamics of the sys-
tem.

from simulations corresponding to different initial STD's
demonstrating the universality of the kinetic regimes
with respect to the initial conditions.

The only unknown left in Eqs. (23) and (25) is N(t).
We need to predict N(t) for a given initial STD in order
to compute X(t) and to obtain a complete prediction.
The evolution of N(t) depends on the initial STD; the
larger the number of thin lamellae in the system, the fas-
ter the decay in the total number of lamellae. However,
the universality observed in the value of k, and kz
demonstrates that the different initial STD's affect only
N (t). In next section we develop predictions for N (t) for
short and long times that enable us to compute X ( t).

TIME EVOLUTION OF THE NUMBER
OF LAMELLAE N(t)

Bc
az int av

= C(t)/5(t) = C(t)/S(t)

=N(t)C(t) . (24)

Equation (20) constitutes a prediction for the time evo-
lution of N(t) for long times. Since N(t)=M/S(t), as
S(t)=t '/, we have

Substitution of Eq. (24) into Eq. (21) yields an expression
for the rate of conversion for long times,

= —k, C(t)N(t)',
dt

(25)

where k2 is a "long-time kinetic coefficient. "
Figure 7 shows the computed values of k, and k2 as a

function of X(t) for the three initial STD's. Several
things are apparent: k, is very nearly constant,
k& =9X 10 for conversions up to 0.5; and k2 is also al-
most constant, kz--7X10 for X(t)) 0.4. There is a
region at X(t)=0.45 at which both representations seem
to be equally good. More surprising, however, is the re-
markable agreement of the values of k, and k2 obtained

N(t) =k, t "z (26)

This power-law decay of N(t) is a direct consequence of
the scaling behavior present in the system [illustrated in
Fig. 8(a)]. Even though the initial conditions determine
the evolution of N(t) for short times, at long times N(t)
becomes independent of the details of the initial STD,
and k3 =216 gives an equally good prediction of N(t) for
all three initial STD's.

Let us now consider the evolution of N(t) for short
times. This evolution is determined by the initial STD
f (s, 0). The total number of lamellae N(t) decreases as
thin lamellae are eaten by thicker neighbors; each time a
lamella is eaten, its two neighbors merge into a single,
larger lamella, and N(t) decreases by 2. The rate of de-
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(b)

dN(t) = —2[f (s, , O}N ( t) /N (0)]
dS;

dt di
(27)

t =0, JVLL is the number of lamellae of initial thickness s,
that merged into larger lamellae, and JVsL is the number
of lamellae of thickness s; produced by mergers of smaller
lamellae.

At times smaller than t, no lamellae of initial size s,
have been eaten, but some have merged into larger lamel-
lae. At short times, s, is small, and the last term in the
balance is negligible (very few lamellae of this small
thickness have been produced from mergers of smaller
lamellae). We assume that the fraction of lamellae of ini-
tial thickness s; that merged into larger lamellae is equal
to the total fraction of lamellae that have merged into
larger ones, b,N(t)/N(0). According to this, the fraction
of lamellae of initial thickness s; that survive at time t is
given by 1 —KN(t)/N(0)=N(t)/N(0). The number of
surviving lamellae of initial thickness s, is then given by
f (s, , O)N(t)/N(0), where f (s;,0) is the number of lamel-
lae of thickness s; at t =0, and N(t)/N(0) is the fraction
of them that survives at time t. All the surviving lamellae
of initial thickness s; are eaten during the interval from t
to t +dt, and the decrease in N(t) during that interval is
twice the number of lamellae that are eaten,

0
10-4 10-2 10 10

Equation (27) can be readily integrated to give
s,-( t)

ln[N(t)]=ln[N(0)] —[2/N(0)] f f(s, O)ds .
0

(28)

FIG. 8. (a) N(t) decays as N(t)=k3t ' for long times. The
data correspond to systems with a random (circles), normal
(squares), and linear (triangles) initial STD's. A line corre-
sponding to k3=216 is also included for comparison. The
values of N(t) for all initial STD's seem to enter the same curve
at long times, the value k 3

=216 represents the decay of N ( t )

equally we11 for all three initial STD's. (b) Short-time prediction

for N(t), given by ln[N(t)]=ln[N(0)] —[2/N(0)] f 'f(s, O)ds,

and the observed N(t) for all three initial STD's [symbols as in

(a)]. The agreement is very good in the interval
N(0) N(t) N(0)/4. A curve corresponding to the long-time
prediction is also shown, illustrating how the short-and long-
time predictions overlap at intermediate times, enabling us to
make a complete prediction of N(t).

crease of N(t) is therefore equal to twice the rate at
which lamellae are eaten, and the total decrease in the
number of lamellae EN(t) =N(0)-N(t) is equal to the to-
tal number of lamellae that have merged into larger ones.
In the interval between t and t'=t+bt, all surviving
lamellae of initial thicknesses between s, and s;+ds are
eaten by their neighbors, where s; is related to t by Eq.
(13). The number of surviving lamellae of initial thick-
ness s; at time t, JV„canbe expressed as a balance

JV, =JV, o
—JV„„+JVsL,

where A; o is the number of lamellae of thickness s, at

Figure 8(b) shows the excellent agreement between the
prediction of Eq. (28) and the observed evolution of N(t)
in the interval N(0) &N(t) &N(0)/4 for different initial
STD's f (s, O). As can be observed in the figure, the long
time prediction for N(t) [Eq. (26)] catches up with the
data well before the prediction of Eq. (28) diverges; the
combination of Eqs. (26) and (28) provides a complete
prediction for the time evolution of N(t)

PREDICl'ION OF THE AVERAGE
CONCENTRATION C ( t)

Equations (23), (25), (26), and (28) constitute a com-
plete set for the prediction of the conversion X as a func-
tion of time. We proceed as follows: for X ~ 0.4,
C(t) &0.6, we compute dC/dt from Eq. (23) (short-time
regime). For 0.4(X(0.5, 0.6&C &0.5, we calculate
dC/dt as the average of the predictions from Eqs. (23}
and (25) (crossover region). For X 0.5, C 0.5, we ob-
tain dC/dt from Eq. (25) (long-time regime). For N(t),
we use Eq. (28) for values of N(t) & 300 and Eq. (26) when
the prediction of Eq. (28) is stnaller than 300. We use the
values k, =9.17X10 and k&=7.05X10 for all three
initial STD's, leaving no adjustable parameters in the
scheme. A comparison between the observed evolution
of C(t) and the prediction of the method is shown in Fig.
9. The agreement between the results from the simula-
tions and the predictions of the method for all initial con-
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in time). From Eq. (30), we obtain
1+1/k4dC(t) Idt kit kq 1 k4C(t)

a fractal kinetic expression.

o 0 0 0 0' o.

(a)

(31)

0
1O-4 10 1O' 10

FIG. 9. Observed average concentration C for all three initial
STD's: random (circles), normal (squares) and linear (triangles),
as well as the predicted values (curves). The same values
k& =9.17X10 and k2=7. 05X10 are used for all the initial
conditions, leaving no adjustable parameters in the system. The
errors between both sets of data are in all cases smaller than 2%
in C.

0.1

1O-4 lo 1O' 10

ditions is very good; errors in C are smaller than 0.02 for
all values of t. In all cases, the differences between the
predicted and observed vales of C(t) are smaller than the
average scattering between different simulations belong-
ing to the same initial STD. We consider the method as
rather general and able to provide a good estimate of
C ( t) for any initial STD.
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(b)

POWER LAWS

There is a remarkable consequence of X(t) decaying as
t ' . Substituting Eq. (26) into Eq. (25), one gets

1O-4 10 1O' 10

dC(t) ,kX(t)'C(t) = k, k', C(t)t—

and therefore

d 1n[C(t)] z

d ln(t) 2 3 4'

(29)

(30)

1O'-

P) 10' t

0
0

0
0

O. .
0.'

0
0

D
Q

(c)

or

C(t)=t
This power-law decay of C(t) has been observed before
for the reaction A +8~C in systems composed of ran-
domly walking particles. The exponent k4 is usually
denoted the "critical exponent, "' the theoretical value
of k4 is —,'. Figure 10(a) shows that the prediction of Eq.
(30) is verified by the computational results; a power-law
decay for C(t) is apparent in the figure. Our calculations
give k4 =0.3 and we attribute the discrepancy with the
theoretical value to the limited nature of our simulations;
systems composed of a larger number of lamellae pro-
duce values of k4 much closer to —,'. It is interesting to
observe that this power-law decay of C(t) seems to be
closely connected to the scaling S (t) = t '~ (fractal nature

103

10' 102

N(t)

10
I

1O4

—k
FIG. 10. (a) Power-law decay of C(t)=t for a system

with a linear initial STD. The predicted value for the slope is
k4=k3k2=0. 3; a line corresponding to a slope = —0.3 is
shown for comparison. (b) The crossover between
dC/dt =1/t' for short times and dC/dt = t ' for long times
for a system with a linear initial STD. Lines of slope 0.5 and 1.3
are shown as visual aids. (c) The power-law dependency of

2+2k4dC/dt=N(t) once the system enters the scaling behavior
regime. A line of slope 2+2k4 =2.6 is shown for comparison.
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The power law exhibited by C(t) can be used to illus-
trate the crossover between long-and short-time regimes.
At short times, the relative change in N(t) is small, and
we observe dCIdt=t '; at long times N(t) decays—k4
as t '~, C (t) decays as t, and we observe—(1+k4)dC/dt = t ' . Figure 10(b) shows this crossover for
a linear initial STD. Similarly, one could use Eqs. (26)
and (30) to express C(t) as a function of N(t); since—1/k4 2k4t=N(t) =C ', it follows that C=N ' and

(2+ 2k4 )
dC /dt =X ' for long times. This additional
confirmation of the power-law relationship of N(t), C(t),
and t is shown in Fig. 10(c), also for a linear initial STD.

CONCLUSION

We have shown how a lamellar system with a distribut-
ed striation thickness can be efficiently simulated using a
numerical procedure that uncouples the diffusion and the
reaction and computes their effect sequentially. Scaling
reveals a tendency toward self-ordering when the thick-
ness of neighboring lamellae are uncorrelated; a univer-
sal, time invariant distribution emerges as the conversion
X(t) increases. We obtained an average kinetic descrip-
tion representing the behavior of the system at short and

long times, and used it to predict the evolution of the
concentration C(t). Many important questions remain,
concerning the applicability of the results presented here
to more realistic systems, such as the effects of
stoichiometric imbalances, the possibility of incorporat-
ing fluid mechanical effects via stretching functions and
warped times, and whether or not the scaling behavior
persists when the speed of the reaction is finite (we have
strong indications that it does). Work in all these direc-
tions is in progress. Nevertheless, the results presented
here should facilitate the understanding of numerous
problems involving mixing with difFusion and reaction
and might be incorporated in more elaborate models able
to account for the effects of fluid flow as well as tempera-
ture gradients.
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