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Diffusion theory of electrons in a uniform electric field: Steady-stream analysis
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Diffusion theory of electrons in a drift tube is extended to satisfy approximate energy balance as
the electrons migrate radially and axially in a steady, uniform electric field. Previously, it was as-
sumed that the characteristic energy is independent of position in the drift region, leading to the
well-known linear diffusion equation for the spatial variation of electron density. This assumption is
not made in the present paper. Results for the spatial variation of average energy are close to those
obtained from exact solution to the linearized Boltzmann equation. In addition, it is shown that
diffusion theory with energy balance gives a relation between characteristic energy and drift-tube
geometry which is in close agreement with the empirical relation that has been used for years to an-
alyze steady drift-tube measurements, without invoking the assumption of anisotropic diffusion.

I. INTRODUCTION

Electrons are said to be in equilibrium with the electric
field when the energy imparted to them by a steady, uni-
form electric field is exactly balanced by energy lost in
elastic and inelastic collisions with heavy particles. This
definition of the equilibrium state implies steady, uniform
values of electron density, average velocity, and average
energy, i.e., no temporal or spatial gradients in these
quantities. The steady, uniform motion of electrons un-
der equilibrium conditions is customarily described by
transport coefficients —mobility p and diffusion
coefficient D —which are characterized by E/N, the ra-
tio of electric field to gas density. This paper deals with
the theory of measurement of the transport coefficient D,
based on the diffusion approximation to the Boltzmann
equation governing the energy distribution function of
the electrons. Both average velocity and average energy
of the electrons are allowed to vary in space. Therefore,
the degree to which the equilibrium state defined above
obtains is predicted rather than assumed. The reason for
this distinction is clarified below.

A fundamental assumption of existing diffusion theory
of steady electron migration in a drift tube is that average
velocity and average energy of the electrons are indepen-
dent of position in the region of measurement. This as-
sumption leads to the well-known linear diffusion equa-
tion with constant coefficients, which can be solved by
standard techniques. This equation, however, does not
predict accurately the behavior of electrons in a drift-
tube experiment. Modification is required to account for
the inescapable fact that average velocity and average en-
ergy actually vary in space in a drift-tube experiment. A
modification that has been used rather successfully is
based on the assumption of anisotropic diffusion. A
comprehensive review of anisotropic diffusion theory, in-
cluding that based on the density gradient expansion,
plus an excellent historical summary of electron swarms,
plus a thorough compilation of measurements of electron
transport and rate coefficients is given in Ref. 1.

A different approach to the theoretical description of
electron migration in a drift tube is used in this paper.
Rather than striving to find an extension of simple
diffusion theory with constant average energy, the view is
adopted that average energy must obey a conventional
conservation equation like that obeyed by electron densi-
ty. This approach has the advantage that only two addi-
tional transport coefficients are needed, and these can be
expressed in terms of p and D when the energy depen-
dence of the momentum-transfer collision frequency v
can be expressed as v(el= Ale"+", where s is electron
energy and AI is independent of energy. Furthermore,
these two additional transport coefficients have physical
interpretations, such as thermal conductivity, etc.

This approach does have a disadvantage; new complex-
ity is introduced by the nonlinear nature of the balance
equations which govern the spatial variation of electron
density and average energy. However, an approximate
solution for density n(r) and average energy e(r) can be
obtained in the limit of small departure from the equilib-
rium state, which is defined above as that state with no
gradients of any kind. This approximate solution appears
to be equivalent to the "lowest-mode solution" of the
Boltzmann equation published in 1963.

Based on this approximate solution, it is shown that
diffusion theory with energy balance gives results for the
spatial variation of density and average energy close to
those obtained from exact solution to the Boltzmann
equation. In addition, it is shown that diffusion theory
with energy balance gives a relation between characteris-
tic energy and drift-tube geometry which is in close
agreement with the empirical relation which has been
used for years to analyze steady drift-tube measurements,
without invoking the assumption of anisotropic diffusion.

II. THEORY

It is assumed that a steady stream of electrons from a
point source located at the origin of a cylindrically sym-
metric coordinate system with radial coordinate p and
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axial coordinate z, is collected on a plate of infinite radial
extent placed perpendicular to the z axis at a distance h
cm from the point source. Throughout the region be-
tween the point source and the collector, there exists
parallel to the z axis a steady, uniform electric field which
draws electrons to the collector. The magnitude of this
electric field is denoted by E. It is assumed that the aver-
age energy of the electrons in the stream is not large
enough to cause significant excitation or ionization of the
gas in the drift chamber.

The continuity equation, also called the diffusion equa-
tion, for electrons of density n streaming steadily with
current density I in an electric field E= —Ek is

V I =0, I = —V(nD) —pEn,
where D and p are diffusion and mobility coefficients
given by the expressions

energy c., then B=—,'D, G=BO. When these values are
substituted in the second of Eqs. 4, the result can be writ-
ten

H =—'OI ——'Dn VO2 2

which is the common form of the heat Aow vector H. Just
as Eq. (1) follows from taking the first moment of Eq.
(21), i.e., multiplying by x ' dx and integrating over all x,
the corresponding energy-balance equation follaws from
taking the second moment of Eq. (21), i.e. , multiplying by
x dx and integrating over all x.

In the interest of getting semiquantitative analytic
solutions to Eqs. (1) and (4), it is assumed that the latter
equation can be approximated by the equation

mI .E= —2 v nc .
M

3/2
2e oo 0

d
3m o v(s)

2e I- s'" ~fo
dE

3m o v(e) Bs

(2)

(3)

It is suggested below that solutions based on this pro-
cedure are equivalent to exact solutions of the Boltzmann
equation for the lowest mode found by Parker.

III. CONSTANT COLLISION FREQUENCY

in which m is electronic mass, e is electronic charge, v(e)
is electron-neutral momentum-transfer collision frequen-
cy, e is electron energy, and fo is the isotropic part of the
electron energy distribution. As emphasized by Allis,
the product nD should appear under the gradient opera-
tor in Eq. (1) when average energy is space dependent. In
this way, thermal effects such as thermal diffusion are
accounted for.

The ratio D/p is called characteristic energy c.k.
When the collision frequency v(e)=v is independent of
energy c., then p=e/m v and D =pO, where 0 is elec-
tron temperature expressed in eV. In this special case,
the characteristic energy ck =0=—',E, where c. is average
energy of electrons in the stream.

Whereas previous theoretical analyses are based on the
assumption that c, is independent of position, it is as-
sumed in the present work that E=e(r) in order to satisfy
approximately the energy balance equation for the
streaming electrons. Balance between energy gained by
the electrons from the electric field and the energy lost in
elastic collisions with neutral ions is expressed by the fol-
lowing energy-balance equation for electrons streaming
with heat Bow H:

(4)V H= —I E—2 v ne. , H= —V(nG) BEn, —m

where A I is independent of c,. When l = —1, then
v(e)=v =constant, and the equations of the previous
section take on their simplest form. By the substitutions
p=nO, p =nO =nD /p, r=(W/D )p, s=(W/D )z,
where S'==pE, and the subscript q means equilibrium
value, Eqs. (1) and (7) become, respectively,

'Bp ()pO=V p—,0= — +p —p .
Bs

'
Bs

(9)

Previous diffusion theories of electrons drifting and
diffusing in a uniform electric field are based on the as-
sumption that p=p, which is tantamount to ignoring
the second of Eqs. (9). Then the first of Eqs. (9) becomes
simply

O=V n—2 Bn

Bs

The theory of anisotropic diffusion is based on the as-
sumption that Eq. (10) should be modified to

In general, the momentum-transfer collision frequency
v(s) is a function of electron energy s. For simplicity, it
is customary to express the energy dependence of v by
the power law

&(I+ i )/2
IE,

where I is atomic mass and it is assumed that E))
2 kTg,

where T is gas temperature. The quantities G and B are
additional transport coefficients given by the following
expressions:

5/2G="y-' 'd„
3m o v(s)

2e f - e'" ~fo
dE,

3m o v(s) Bc.

When the collision frequency v(s)=v is independent of

1 0 Bn + L (3 nr
r Br Br D

Bn

Bs

where DL is called the longitudinal diffusion coefficient.
This equation does not appear to be consistent with the
spherical harmonic expansion method of solving the
Boltzmann equation, as shown below [cf. Eq. (12) for con-
stant collision frequency, and Eq. (39) for collision fre-
quency proportional to e"+" ].

The form of the diffusion equation when average ener-
gy is space dependent and the collision frequency is in-
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dependent of electron energy is found by eliminating the
variable p from the first of Eqs. (9) by means of the
second. The result is

1 a ap apr
r ar ar as

(12)

where p is electron partial pressure. There are two not-
able differences between this equation and Eq. (11): (1)
The natural dependent variable is electron partial pres-
sure, not density; (2) there is no term proportional to
a2p /a 2

b
III, =2qre I,(r, sh )p dp

0

rb

=Io exp
0 2SA

2

4sI,

=Io 1 —exp
Wb

4D h
(19)

where sz =(W/D )h. Therefore, the ratio R of current
collected by a disc of finite radius b to the total current
from the point source is

A. Solution
A,bR =1—exp
2h

(20)

The traditional method of measuring the diffusion
coefficient D, or rather the ratio D /p, is based on the
general result that a beam of electrons streaming steadily
from a point source in a uniform electric field spreads in
the direction perpendicular to that of the field by an
amount that depends on D . The theory of this trans-
verse spreading is examined in this section.

The solution of Eq. (12) for an unbounded gaseous sys-
tem with a finite plane source of radius a, such that
p(p, 0) =pp, for p (a, and 0 for p )a, is represented by

p(r, s)=por, f J&(kr, )JO(kr)exp( —k s)dk,
0

where r, —:( W/D )a. By Eq. (7),

(13)

m ~m pEI,(r, a ) =3 p(r, s) = p(r, s )
m E ' 0

q

(14)

so that po can be expressed in terms of electron current
Io from the small disc source by the equation

Io 0q
po=

e~a pE
(15)

I0E
exp

2&eDq 2s

r2

4s
(16)

From Eqs. (9) and (16), the result for spatial variation of
electron density is

In the limit a ~0, Eqs. (13) and (15) can be combined to
give

I0E
p(r, s)= f kJO(kr)exp( —k s)dk

2&eDq 0

where, by custom, A, =pE/2Dq = W/2Dq. According to
Eq. (20), D or D /p, can be measured by measuring the
fraction of current collected by a disc of radius b located
a distance h from the point source.

B. Relation to solution of Boltzmann equation

Exact solution of the steady-state, space-dependent
Boltzmann equation for electrons streaming from a point
source into unbounded space with constant collision fre-
quency was published in 1963. In the dimensionless no-
tation of the present paper, the equation solved in Ref. 2
1s

8 3yp fo fo
a '+a. + a.

a dfo ~fo 1 a ~fo+x'" + + — r
as ax+ as +r ar ar

=0,

(21)

where x—:c/0 . According to Ref. 2, the lowest-mode
solution of Eq. (21), denoted by fp, is given by

fo—
s x

r 2

exp —x+
4(s —x)

(22)

for x less than s and by fp =0 for x greater than s, where
is a constant determined by the condition

x'~'f pd

By substitution, it can be shown that Eq. (22) satisfies
the following subsidiary equations:

f,+ "'+"'=0,
ax as

qpn= 0
ap p r

0 as 0 4S s
p+

q q

(17) 1 a af,'
r

r ar ar
af,'
as

0=—=0 1+p
4s' s

and that for characteristic energy 0 is

(18)

By inspection, it can be seen that the fp which satisfies
these equations also satisfies Eq. (21). Taking the energy
moment of these two equations, i.e., multiplying by
x dx and integrating over all x, and assuming that
fp fp gives0

The current II,& collected on a disc of radius b centered
on and perpendicular to the z axis at z =h is p pq+ =0ap
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1 8 Bp Bp
r Br Br Bs

which are identical to Eqs. (9) above. Therefore, the solu-
tions for p(r, s) and n(r, s) given in Sec. III A correspond
to the lowest-mode solution of the Boltzmann equation
given in Ref. 2.

In the notation of the present paper, results from Ref.
2 for electron density and characteristic energy far from
the source are

1 3
n cc —1+

s 2$

10=0 1+—
q s

2
—3/2

1+
4s

r 2

exp
4s

2

1+
4s

(23)

(24)

Comparison with Eqs. (17) and (18) shows certain similar-
ities, especially between Eqs. (18) and (24) for 0. Howev-
er, Eqs. (17) and (18) satisfy Eq. (1) with D =(u8, whereas
Eqs. (23) and (24) do not.

IV. COLLISION FREQUENCY PROPORTIONAL
TQ ~(l + 1 )/2

n (1+2) e

8 I (3/2(1+2))
(25)

where n =n(p, z), 0=0(p, z), and I (u) is the I function
defined by the equation

r(u)= f x" 'exp( —x)dx .
0

This section deals with the extension of the results of
the previous section to the case of energy-dependent col-
lision frequency expressible as v(E)= A(s"+"/ . For this
purpose, it is assumed that isotropic part of the electron
energy distribution is given by the relation

(I +2)

G, calculated according to Eqs. (5) and (6), are given
below:

2 e I ((6—1)/2(1+2)) 0(3—))/2
3 mA( I (3/2(1+2)) (30)

B =— (1+2) + + })0( )/ . (31)
3 mA I (3/2(l +2) }

Thus, the ratios G/p and B /p are given by the relations

G 8 r((6—1)/2(1 +2))
)M 1+2 I ((1+6)/2(1+2)) (32)

B I ((1+8)/2(1+2))
p I ((1 +6) /2( 1 + 2) )

(33}

When electrons are in equilibrium with the field, i.e.,
when there are no gradients, then the energy-balance
equation becomes

p E2= —2 n ' f s [E3/ v(E)fo]dE
M

m I ((1+6)/2(1+2)) 0()+3)/2
M ' I (3/2(1+2))

(34)

0~
O
—p2

0
—(1+1)/2

where the subscript q refers to the equilibrium state. Ac-
cording to Eq. (26), this equation can be written

E2 —2
m

A
r((1+6}/2(1+2}}0(l +)) /—2

M r(5/2(l +2))
Likewise, 0 is related to the field by the equation

MeE2MeE
3m'A'

I

Based on the relations and definitions given above, Eqs.
(9) can be written

I (5/2(1+2))
r(3/2(l +2)) (26)

Equation (25) is exact in the limit of zero gradients in
density and temperature, provided that the quantity 0 is
defined properly, and is approximately true otherwise.
Equation (25) is normalized so that f 0

s'/ fodc=n.
Evidently, average energy s n=' f o E / fods is related
to 8 by the equation

a 0
Bs q 0p

q

—(I +1)/2

(}

as p

0
+pq

q

—(1+1)/2

0
- —(I+1)/2 (I + 1)/20

P 0

(35)

(36)

2 e I ((4—1)/2(l +2) }0() ()/2
3 mA, I (3/2(l +2))

2 e 1+2 r((l +6)/2(l +2)) 0 ((+))/2
3 mA& I (3/2(1 +2))

Therefore, the ratio of D to p is

D 8 r((4 —1)/2(l +2)) 0
p 1+2 I ((1+6)/2(l +2))

(27)

(28)

(29)

For completeness, corresponding expressions for B and

According to Eqs. (2} and (3), D and p are given by the
equations

where r=(W/D )p, and s=(W/D )z, as before, and
D =P)(u8. Note that these equations are identical to Eqs.
(9) when 1=—1 i.e., for a constant collision frequency.
By making the substitutions Y—=0/0 and
P =pY "+",and noting that p =p Y ', these equa-
tions can be written

O=V P (PY-
Bs

+P(Y ' —Y +')
Bs

(37)

To linearize these equations, it is assumed that
y =1+6,Y, where b, Y «1. Then the second of Eqs. (37)
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can be solved for 5Y to give

1 8 lnP
l+2 Bs

(38)

so that the first of Eqs. (37) becomes

1 a M l+1a'P aP
r Br Br I +2 ps~ Bs

(39)

By Eq. (38), the following relation holds:

PY '=P+
I +2 0s

which is the same as Eq. (12) when I = —l. It is shown in
the Appendix that the approximate solution of this equa-
tion is

s 1 aP(r, s ) = —
—,'Por, exp

r Br

s exp[ —i(s +r )' )

(
—2+ —2 )1/2

(2s„—s )exp( —
—,
' [(2s„s) + r—')]'/

[2s —s)) +r ]'

where
1/2

9. Collision frequency proportional to c"+' '

(+2 l+2
s andr:—(+1 l+1

By Eq. (7) current density is proportional to the quanti-

PY' '=P l +1 BP P BP
I+2 as

so that the ratio of current collected by a finite disc of ra-
dius b located at z =h, to the total current from the point
source is given by the equation

—2(—2+ —2)1/2 2
—2

R =1—
(
—2 +—2 )3/2

X exp I
—

—,
' [(sq + r„)' —s~ ] I . (40)

V. DISCUSSION

A. Constant collision frequency

To the extent that Eq. (7) is valid, the equations de-
rived in Sec. III are exact, and correspond to the lowest-
mode solution of the Boltzmann equation for constant
collision frequency discussed in Ref. 2. There are two
main differences between results derived here and those
derived previously from difFusion theory: (1) The natural
variable is electron partial pressure, not density; (2) there
is no term in the diffusion equation —Eq. (12)—which is
proportional to 0 p/Bs . These two differences change
considerably the form of the solution for the steady-state
situation, as exemplified by the solution for the current
ratio —Eq. (20).

This equation is approximately the same as Eq. (20) when
b /h ((I, as occurs in most experiments. Therefore,
measurement of D by the steady-state current-ratio

q

method is independent of l to a very good approximation.
The temptation to conclude that the coefficient of

r) P /ds in Eq. (39)—namely, the factor
( i + 1 ) /(1 + 2)—represents the ratio of longitudinal
diffusion coefficient to transverse diffusion coefficient
must be avoided, as the case l = —1 for constant collision
frequency would have zero longitudinal diffusion
coefficient.

Due to increased complexity of diffusion theory with
energy balance when the collision frequency depends on
electron energy, simplification is needed in order to ob-
tain analytic solutions. The simplification used here is
based on the assumption that the difference between actu-
al value of average energy of the electrons and the equi-
librium value of average energy is small compared with
the equilibrium value. This simplification leads to a
modified form of the diffusion equation —Eq. (39)—
which is approximately valid for energy-dependent col-
lision frequency v(c) 0- E"+" . This modified form of
the diff'usion equation does not have a term proportional
to a quantity which can be readily identified with a longi-
tudinal diffusion coefficient. This modified form does,
however, lead to steady-state solutions which agree with
observation. The main result —current ratio observed in
steady-state experiments —is discussed further below.

R, =1——exp[ —
A, (d —h )],h

(41)

where d =(h +b )'/ . Because no theory gives this
equation, which fits all measurements rather well, Eq.
(41) is called the empirical result. In words written some
34 years after Huxleys's original paper on the subject
"So successful was the formula that no error in it was
suspected. Vr'ith the discovery of the error, therefore,
came the disconcerting result that the apparently soundly
based formula of equation 11.7 did not lead to a satisfac-
tory interpretation of the experiments, whereas the 'in-
correct' formula of equation 11.8 did. "" In this quote,
equation 11.8 refers to Eq. (41) above, and equation 11.7
refers to the corrected version, which is

R& =1— exp[ —A(d —h )] .h d —b /A,

C. Current ratio theory

An empirical equation similar to Eq. (40) has been used
for years to interpret measurements of D based on the
fraction of current collected on a disc of radius b located
at z =h. ' Huxley deduced an equation for R which is
similar to Eq. (40). Huxley s original equation for the
current ratio R, is
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6.0—

Eo 5.0—

addition, it is shown that diffusion theory with energy
balance gives a relation between characteristic energy
and drift-tube geometry which is in close agreement with
the empirical relation which has been used for years to
analyze steady drift-tube measurements, without invok-
ing the assumption of anisotropic diffusion.

It is concluded that diffusion theory with energy bal-
ance is in accord with Boltzmann theory for electrons
streaming steadily in a uniform electric field.

4.0—

3.0
0.20 0.25 0.30
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APPENDIX

The solution of Eq. (39) for a gaseous system with a
finite plane source of radius a centered at the origin (0,0)
and a plane collector centered at (0,h ), such that
P(p, 0)=Po for p&a and 0 for p&a, and P(p, h)=0, is
represented by

FIG. 1. Comparison of different formulas for the current ra-
tio R, showing that the formula of the present work is very close
to the empirical formula, while the Huxley formula is in error
by a signi6cant amount, in the case h =2 cm, b=0. 5 cm, and
1=0.

In the same notation, Eq. (40) is

hd f b lk, —
exp[ —

A, (dl —h ) If],
1

(43)

VI. SUMMARY AND CONCLUSION

Diffusion theory of electrons streaming steadily in a
drift tube is extended to satisfy approximate energy bal-
ance as the electrons migrate radially and axially in a
steady, uniform electric field. It is shown that diffusion
theory with energy balance gives results for the spatial
variation of density and average energy close to those ob-
tained from exact solution to the Boltzmann equation. In

where di ——V h2+fb and f—=(1+1)l(l+2). Note that
this equation is reduced to Eq. (20) when l = —1, i.e., f'or
constant collision frequency. Note further that this equa-
tion is identical to Eq. (42) when I ~ 00, making Eq. (39)
identical to Eq. (10), which was solved by others to give
Eq. (42).

It has been pointed out that Eqs. (41) and (42) give
significantly different values of k for the same values of h,
b, and R when b/h is not small. "' For comparison,
Eqs. (41), (42), and (43) are shown plotted in Fig. 1 as A,

versus R. In this comparison, values of h and b are taken
to be 2 and 0.5 cm, respectively, as in the measurements
of Refs. 11 and 12, and the value of I is taken to be 0, cor-
responding, for example, to helium. This graph shows
that Eq. (43) is in close agreement with the empirical re-
sults given by Eq. (41), whereas Eq. (42) gives
significantly lower values of A, for small values of R. Ac-
cording to Refs. 11 and 12, the error incurred by using
Eq. (42) is larger than the experimental error due to un-
certainties in the exact determination of h, b, and R.

sP(r, s ) =Por, exp

X J& kr J0 kr
0

sinh[ —
—,
' (s„—s )( 1+4k )

'
]

sinh[ —
—,'sq(1+4k )' ]

where

l+2 I+2s= l+1s and r= I+1
1/2

which becomes

sP(r, s ) = —,'Por, exp
L

X J kJO(kr)
0

sinh[ —
—,
' (si, —s )( 1+4k )

' ]

sinh [ —
—,
'

sq ( 1 +4k )
' ]

in the limit of small r, . The fraction

sinh[ —
—,'(s~ —s )(1+4k')' ']

sinh[ —
—,'s~(1+4k )' ]

Following others, ' only the first two terms in this series
are retained. Then integration by parts gives

can be written

Iexp[ —
—,'s(1+4k )'~ ]—exp[ —,'(s —2sh)(1+4k )' ]j

X Iexp[ —sz(1+4k )' ]

+exp[ —2sq(1+4k )' ]+ .
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s exp[ —
—,'s(1+4k )'~ ]—(2st, —s )exp[( —,'(s —2st, )(1+4k )' ]

P(r, s)=P&r, exp ——J k J1(kr)dk
2 r 0 (1+4k')'"

s exp[ —
—,'s(1+4k )' ]—(2st, —s)exp[ —,'(s —2st, (1+4k )' ]= —Por, exp —— I kjo(kr)dk

2 r Qr 0 (1+4k )'

The integral in this equation can be evaluated to give

P ( r, s ) = —
—,
' Po r, exp

s 1

r 9r

s exp[ —
—,'(s +r )' ]

(
—2+ —2)1/2

(2s„—s)expI —
—,'[(2s„s) +—r ]'

[(2s —s ) + ]'

which is the desired solution of Eq. (39). Others have proposed similar solutions to equations of the same form as Eq.
(39) 9, 13
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