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k-photon Jaynes-Cummings model with coherent atomic preparation: Squeezing and coherence
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The k-photon Jaynes-Cummings model is studied with respect to the properties of the radiation
mode. In particular, the generation of coherence and squeezing in the one- and two-photon model
is examined for the case that the field is initially in the vacuum state and the atom is prepared in a
coherent superposition of states. Coherence is found in the one-photon model, and squeezing ap-
pears in both the one- and the two-photon model, the maximum noise reduction being 25% and
45%, respectively. In the one-photon model coherent squeezed radiation is generated, whereas the
two-photon model yields a squeezed vacuum. For an initial atomic preparation close to the ground
state, this squeezed vacuum may be interpreted as the result of two-photon interaction between the
quantized cavity field and a classical atomic current.

I. INTRODUCTION

The feasibility of performing experiments with highly
excited Rydberg atoms in a high-Q cavity (for example,
cf. Refs. l —3) has rendered it possible to observe a variety
of interesting and fundamental quantum-optical effects
predicted theoretically (for example, cf. Refs. 4 and 5). In
particular, the practical relevance of the (one-photon)
Jaynes-Cummings model has been established. Besides
effects such as the atomic decay and revival behavior, the
question has been raised as to what kinds of states of the
radiation field may be generated within a high-Q cavity
resonantly interacting with single atoms.

Based on the Jaynes-Cummings model, it was shown
that the generation of coherent light is a nontrivial prob-
lem since the density matrices of both the field and the
atom remain diagonal for a11 times if they are initially di-
agonal. Thus it seems more natural that a sub-
Poissonian field can be generated. ' The problems are
similar in the case of squeezed-light generation. For pro-
ducing a squeezed field in the cavity there are two possi-
bilities. When the field has initially off-diagonal elements
of the photon density matrix (e.g. , in the case of a
coherent state) squeezing may occur by injecting into the
cavity an atom incoherently prepared in the ground or
excited state. Provided that the cavity field has initially
no off-diagonal elements, which seems to be more natu-
ral, squeezing may be generated if the atom is initially in
a coherent superposition of the ground and excited state.
It should be emphasized that, not only the generation of
coherent, sub-Poissonian or squeezed cavity fields is com-
plicated, but also the experimental proof of these proper-
ties is nontrivial since standard methods of photodetec-
tion cannot be applied within the cavity. An alternative
way is to determine the photon statistics of the field by
injecting into the cavity test atoms, which are initially
prepared in the ground or excited state, and studying

their ionization behavior when they leave the cavity. '

Moreover, for probing coherence properties of the field,
ionization measurements must be performed by using test
atoms which are initially prepared in a coherent superpo-
sition of the excited and ground state. ' In order to test
the cavity field with respect to squeezing, additional mea-
surements with coherently prepared two-photon resonant
atoms are necessary. ' It is worth noting that the dynam-
ics of an atom interacting with the cavity mode may
drastically be changed when the atom is initially prepared
in a coherent superposition of states, as it can be seen
from the results given in Ref. 10 for the general case of
the k-photon Jaynes-Cummings model and recent results
for the one-photon model. "

Stimulated by the progress in experimentally proving
fundamental results of the one-photon Jaynes-Cummings
model, the k-photon model has become of increasing in-
terest. ' '' ' For example, it has been found that in the
two-photon model the revivals may be more complete
than in the one-photon case. ' Furthermore, the genera-
tion of squeezed light in the k-photon model has been
predicted for the case when the field starts from a
coherent state' ' or (in the two-photon model) from a
binomial state. '

Since the probe of coherence and squeezing of the cavi-
ty field is closely related to the dynamics of one- and
two-photon resonant test atoms prepared coherently, ' it
is, vice versa, of interest whether such kinds of atoms
may produce a coherent and/or squeezed cavity field,
which, for its part, starts from an incoherent state
(thermal or vacuum field). It should be emphasized that
this assumption about the initial field preparation seems
to be more realistic than the assumption of a coherent in-
itial state.

In the present paper we study the problem of resonant
interaction between a single atom and a single-mode cavi-
ty field on the basis of the k-photon Jaynes-Cummings
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model. Clearly, this problem is far from describing a
maser regime, which requires the successive injection of
many atoms inside the cavity during the lifetime of the
cavity field in order to generate a macroscopic-type field.
Nevertheless, both kinds of problems are related to each
other because the interaction of each injected atom with
the cavity field follows the Jaynes-Cummings model. '

At each stage, the initial field is given by the field gen-
erated by a11 the preceding atoms. In particular, it is
reasonable to assume that in the case of the first atom the
cavity field is initially a thermal one.

Our paper is subdivided as follows. The general solu-
tion of the k-photon Jaynes-Cummings model with arbi-
trary initial conditions is presented in Sec. II. In Sec. III
general results for squeezing and coherence in the k-
photon model are given. Special emphasis on the cases
with k=1,2 is put in Secs. IV and V. In Sec. IV it is
shown that coherence as well as squeezing can be gen-
erated in the one-photon case when the field is initially in
the vacuum state and the atom is initially coherently
prepared. Section V is devoted to the field properties in
the case of a two-photon resonant atom. It is shown that
under the same initial conditions as in the one-photon
case, the two-photon model cannot give rise to coher-
ence, but it yields squeezing in the sense of a squeezed
vacuum. The attainable noise reduction of 45% is sub-
stantially larger than that of 25% in the one-photon mod-
el. A summary and some conclusions are given in Sec.
VI.

II. GENERAL SOLUTION OF THE k-PHOTON
JAYNES-CUMMINGS MODEL

The effective Hamiltonian in the k-photon Jaynes-
Cummings model may be written as follows:

l

dt
+i(a))+ma)) U',"';„(t,t')= O—'")U~(' k);„(t,t'),1

(2.7)

dt
+i[co2+(m —ic)co] U'p(' k),„(t,t')

t f1(k)U(k) (t t~) (2.&)

(2.9)

(k)
U2(m —k),in(t ) t ) ~2i ~(m —k)n (2.10)

X cos[ ) b, '„")(t—t')]

g(k)+i,„,sin[ —,'5'„"'(t —t')] (2.12)

U~~"„'2„(t, t ') =exp[ i (co~+ n—co —,
'5("))(t——t') ]

where the Rabi frequencies Q'"' are defined by the rela-
tion

0'"'=2k'"'I m(m —1) [m —(k —1)]]' . (2.11)

Equations (2.7)—(2.10) may be solved by standard
methods. Straightforward calculation yields the follow-
ing expressions for the nonvanishing matrix elements of
the time evolution operator:

U', "„',„(t,t') =exp[ —i (cu) + neo+ —,
'5("))(t —t')]

H(k) ~ +H(k)

Ho —/~i g i I + /~2 g p2 +/~a a

H'"'= —))lX'"'[(a )"3 + A a "]

(2.1)

(2.2)

(2.3)

x cos[—2b, '„"+k ( t t ')]—
g(k)

i (k)
—sin[-,'.b, („"+)k(t—t')], (2.13)

~+k
UI"„'z(„k)(t,t') =exp[ i(~)+nc—o+ ) 5("))(t t')]—

where 3;~ = li ) (j l, i,j =1,2 are the atomic Rip operators
for the (effective) two-level system of transition frequency
co&& =m2 —cu, , and a and a, respectively, are the photon
destruction and creation operators of the cavity field
mode of frequency co. The k-photon coupling constant is
denoted by A,

' '. The temporal evolution of the density
operator p' ' may be represented as

(k)(t) U(k)(t ti) (k)(t )[ U(k)(t ti)] (2.4)

where the time evolution operator U satisfies the equation
of motion

U2"„',(„+k) ( t, t') =exp[ i (co2+ n a) ,'5'"')(t ——t ')]——

where

5' '=co~, —kco

(2.14)

(2.15)

(2.16)

i' U'"'(t t')=H'"'U'"'(t t') U' '(t' t')=1
dt 7 (2.5)

is the detuning of the atomic transition frequency from
the k-photon resonance, and

Holi, n & =r(~, +n~)li, n ),
from Eqs. (2.1)—(2.3), and (2.5), we derive

(2.6)

Performing the calculations in the representation defined
by means of the eigenkets of Ho, viz. „

g(k) [(g(k))2+(g(k))2]1/2 (2.17)

Now, the density-matrix elements at time t may be ex-
pressed in terms of the matrix elements of the time evolu-
tion operator and the density-matrix elements at time t'.
Making use of Eq. (2.4) we may write
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p', „"',. (t)=g g U,-'„"', „.(t, t')[U,'"', .(t, t')]*

(2.18)

the only nonvanishing matrix elements U„'; „(t,t') being
given in Eqs. (2.12)—(2.15).

In what follows we are mainly interested in the proper-
I

XP, ( ) Pl, 1 (t)+P2, 2 (2.19)

Combining Eqs. (2.18), (2.12)—(2.15), and (2.19) yields

ties of the cavity mode at time t. For this reason we cal-
culate the (reduced) photon density matrix

Pnm ) ln ln( & [ lm lm & )] Pln lm( ) 2n 1(n+k)( &t )[ 2m 1(m +k) & ] Pl(n+k) 1(m+k)

+U2„2„(t,t )[U2m 2m(t, t )] P2n 2m(t )+U', „2(„k)(t,t )[U', m 2(m k)(t, t )] P2(n k) 2(m——k)( )

+Uln ln( ~ }[ lm 2(m —k)( ~ )] Pin 2(m —k)( )+ U2n 1(n+k)( ~t [U2m 2m ~ ] Pl(n+k)2m(

U2n2n( ~t }[U2m, l(m+k)(t~ t }] P2n, 1(m+k)(t }+Uln, 2(n —k)(t~t }[Ulm, lm( ~ t )1 P2(n —k), lm( (2.20)

Identifying the time t with the initial time to when the
atom enters the cavity and the interaction process
starts, ' we may factor the density matrix at time to as
follows:

p, „z (t')=p„(t )o';i(t ), t'=to, (2.21)

where p„(to) and o; (to), respectively, are the density
matrix elements of the free-cavity field and the free atom.

Before proceeding to study some field properties in de-
tail we note that in a way analogous to that leading to Eq.
(2.20) the (reduced) atomic density matrix at time t may
be derived. Explicit formulas are given in Ref. 10.

III. SQUEEZING AND A COHERENCE
OF THK CAUITY MODE

Squeezing is a phase-dependent reduction of the noise
of the electric field strength (or, equivalently, of one of
the field quadratures) below the vacuum level (for exam-
ple, see the reviews on squeezing in Refs. 15 and 16). In
the case under consideration the operator of the electric
field strength of the high-Q cavity mode may be defined
as

F. =ig(a —a ), (3.1)

where g =g(r) describes the spatial structure of the cavi-
ty mode.

The quantitative condition for squeezing may be for-
mulated by means of the normally ordered variance
(:(hE):). The cavity field shows squeezing if the condi-
tion

(:(AE)2:)&0 (3.2)

is fulfilled for appropriately chosen phase of the field. It
is readily seen that the inferior limit is equal to —g .
Clearly, in this case the vacuum noise (given by g ) is
completely suppressed. It should be noted that the stan-
dard observation method for squeezing, which is based on
homodyne detection (cf. Refs. 17—21},cannot be applied
inside the cavity. As shown in Ref. 10, squeezing of the
cavity field may be probed by means of coherently
prepared test atoms which are in one- and two-photon
resonance with the cavity mode.

Expressing the normally ordered variance (:(b.E):)in
terms of the photon density-matrix elements of the cavity
mode, we derive

(:[t))&(t)]2:)=2g2(N(t)) —4g g Re[i(n+ I)' p„(„+,)(t)] —2g g Re[[(n+1)(n+2)]' p„(„+2)(t)), (3.3)
n=0 n=0

where

(N(t)) = g np„„(t) (3.4)
n=0

is the mean photon number. In the k-photon Jaynes-
Cummings model under study the photon density-matrix
elements ar given in Eq. (2.20} [together with Eq. (2.21)].
For producing a squeezed-cavity mode, from Eq. (3.3) it
is seen that the photon density matrix must exhibit non-
vanishing oft'-diagonal elements p„[„+,] and/or p„[„+z].
An inspection of Eq. (2.20) shows that there are different
possibilities of generating them.

For example, if one starts with an atom initially
prepared in the ground (or excited) state, the initial field

must be prepared in such a way that it already exhibits
off-diagonal matrix elements of the type required. This
way of generating squeezing was studied in several works
on the basis of a coherent initial state ' ' or a binomial
state. '4

However, it seems to be more natural to assume that
the cavity field starts from a thermal field. In particular,
by sufficiently cooling, the field may (approximately) be
assumed to be in the vacuum state. In these cases
squeezing may be obtained in the one- and two-photon
Jaynes-Cummings model provided that the atom is ini-
tially (that is, before it enters the cavity) prepared in a
coherent superposition of its states, so that o(t)2)%o0 is
valid.
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Another problem of interest concerns the generation of
coherence of the cavity field. Expressing the mean value
of the electric field strength in terms of the photon
density-matrix elements, we obtain

and the atom starts from a coherent superposition of
states. From Eqs. (3.4)—(3.6), together with Eqs.
(3.12)—(3.15) and (3.7)—(3.10), we derive

(E(t) &
= —g sin2y sin[ —) fII"(t —to)]cos[cp(t —to) —)i()],

(E(t) &
= —2g g Re[i(n+1)' p„(„+,)(t)] .

n=o
(3.5) (4.1)

A quantitative measure for the coherence may be defined
by the fraction of the number of coherent photon s

(»,.„,

( N(t) &
= sin y sin [—(

II I
"(t —t0 ) J,

&N(t) &,.h Ia„(t,)I'

(N(t) & (722(tp)

(4.2)

(4.3)

o.22( t() ) =sin y,
O' ()t))0= 1 O'

2(2t )0

o 12(t0 ) = —,
' exp( —i(p)sin2y,

21(tp) &12(to)

(3.7)

(3.8)

(3.9)

(3.10)

(0 ~ g ~ It/2, 0 ~ @~ 2vr). The simplest case of an initial
cavity field with diagonal photon density matrix is the
(low-temperature) vacuum limit; viz. ,

(N &„..„=I(a &I'=
I y (n+1)'"p„,„+„(t)I', (3.6)
n=0

to the total photon number (N & defined in Eq. (3.4).
From Eq. (3.5), together with Eq. (2.20), it is clearly

seen that, similar to the problem of generating squeezing,
in the case when the photon density-matrix elements are
initially diagonal, coherence can only be produced by ini-
tially preparing the atom, which is in one-photon reso-
nance with the cavity mode, in a coherent superposition
of states.

An experimental scheme that allows an initial prepara-
tion of the atomic off-diagonal density-matrix elements is
proposed in Ref. 23. It can readily be proved that in the
case of coherent preparation the atomic density matrix
may be written in the following form:

Combining Eqs. (4.1) and (4.2) we see that the coherent
field amplitude as a function on time attains its maximum
values when the mean photon number also attains its
maximum values:

I & E(t ) & I'=4g2cos'y(N(t) & . (4.4)

p~(t ) =1—(N(t) &,

p»(t) = (N(t) &,

(4.5)

(4.6)

p01(t)= iaexp—[i[c.p(t —t()) —(p]]cosy[(N(t) &]'~

(4.7)

Further, from Eq. (4.1) we find that, dependent on the
atomic preparation, the maximum coherent field ampli-
tude can be obtained in the case g =~/4, which
corresponds to the coherent atomic initial preparation

I

0' 12( tp ) I

= (722( tp ) = (711(tp ) =—[cf. Eqs. (3 ~ 7)—(3.10)]. On
the other hand, Eq. (4.3) shows that the smaller the value
of g, the larger the fraction of the number of coherent
photons to the total photon number becomes. In particu-
lar, this fraction tends to unity as the value of cosy goes
to unity, that is, as the coherent atomic initial prepara-
tion becomes close to the ground-state preparation.

Making use of Eqs. (3.7)—(3.15) and Eq. (4.2), we may
rewrite Eqs. (3.12)—(3.15) as follows:

p (to)=6 5 o (3.1 1)
Plp(t ) =Ppl(t) (4.8)

p~k'( ) =a22(to)»n'[-, ' II'k"'(t —to)]

(k)(t ) I (k)(t)

(3.12)

(3.13)

p()k'(t) = —i(T12(t() )exp[ikcp(t —
t() )]sin[ —,'II'k"'(t —

t() )],
(3.14)

(k)(t) —
[ (Ic)(t )]4 (3.15)

IV. ONE-PHOTON RESONANCE: COHERENCE
AND SQUEEZING

We now turn to the problem of coherence and squeez-
ing in the one-photon Jaynes-Cummings model (k =1)
for the case when the cavity field starts from the vacuum

Moreover, assuming that the detuning of the atomic tran-
sition frequency from the k-photon resonance may be
neglected (6(")=0), from Eqs. (2.20), (2.21), and
(3.7)—(3.11), together with Eqs. (2.12)—(2.17), we obtain
for the nonvanishing density-matrix elements of the pho-
ton density matrix at time t the following simple result:

p'„'"=(n!m!) ' a"(a') exp( —IaI ) . (4.10)

In the case when the field is suSciently weak so that we
may confine ourselves to diagonal and off-diagonal
density-matrix elements up to terms of the order IaI and

I
a I, respectively, from Eq. (4.10) we derive

coh
1 IaI2

coh
I

I2

p,-,"=a*=IaIexp( —iq ),
coh —

( coh)»
Pio Po]

(4. 11)

(4.12)

(4.13)

(4.14)

Comparing Eqs. (4.11)—(4.14) with Eqs. (4.5)—(4.8) and
remembering Eq. (4.2) we see that in the case IcosyI =1,

where

K=sgnI sin[ —)QI "(t tp)] J . —

As known, the density matrix of a coherent state may be
written as
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C4

UJa

2.0

(N(t) ) =2sin csin [—,'AIi '(t —to)] (5.3)

=2g I (N(t) —lr[(N(t) ) ]' cosy sin(2$+&p) I

(5.2)

where the mean photon number (N(t) ) is given by the
relation

0.5
lJl

Ch

and

a. =sgn I sin[ —,'0'i '(t to—)] I . (5.4)

-05
0 'lT'/4 Vr/2

and hence ( N( t ) ) ((1, the cavity field tends to a
coherent state. Clearly, in this case the coherent field
amplitude is far from its maximum value.

Let us now briefly turn to the problem of squeezing.
Combining Eq. (3.3) and Eqs. (3.12)—(3.15) for the case
k =1 yields

(:[bE(t)]:)=2g (N(t) )(1—2 cos P cos y), (4.15)

where the mean photon number (N(t)) is given in Eq.
(4.2). Note that in Eq. (4.15) the phase P defined by
P = co( t to ) —y incl—udes the rapid time dependence,
which, of course, is meaningless when slowly varying
quantities are of interest. From an inspection of Eq.
(4.15) we see that squeezing requires the condition
cos icos y) —,

' to be fulfilled. Moreover, we find that in

dependence on time the effect of squeezing behaves like
the mean photon number. The inAuence of the coherent
atomic initial preparation on the noise of the electric field
strength of the cavity mode is shown in Fig. 1, from
which the maximum noise reduction is seen to be 259o.
This result was also found in Ref. 9. Note that the choice
of cos /=0, 1 in Fig. 1 corresponds to the consideration
of the two field quadratures.

FIG. 1. The field noise (:(b,E)'. ) is shown as a function of
the atomic preparation angle g. The field quadratures with

/=2am (curve 1) and $=2irn+ 'rr (curve —2) are given. Max-

imum squeezing with (:(bE):) = —0.25g occurs when the
photon number attains its maximum value for 0'&"(t—to ) =m.

rr l4 '7r/2

From an inspection of Eq. (5.2) it is seen that as long as
~= + 1 is valid, the optimum condition for squeezing is
sin(2$+y)=1. In the opposite case, when the relation
sin(2$+q&)= —1 is valid, the strongest increase of noise
is expected. Note that these two cases correspond to the
two field quadratures, the phases of which just differ in
bP=rr/2. Since for fixed value of the phase 2$+&p the
change of the sign of the second term in the brackets in
Eq. (5.2) can also be induced by a., we may restrict our-
selves to the case sin(2$+y) =1,
(:[bE(t)]:)=2g [(N(t)) —a[(N(t))]'~ cosyI . (5.5)

Equation (5.5) shows that, in general, the maximum noise
reduction of the electric field strength does not coincide
in point of time with the maximum photon number of the
field, which is in contrast to the case of one-photon reso-
nance.

In Fig. 2(a) the maximum squeezing effect is shown as a
function of the coherent atomic initial preparation g.
For comparison, the corresponding photon number is
shown in Fig. 2(b) [from which, together with Eq. (5.3),
the interaction time needed may be determined]. We see
that for small values of g satisfying the inequality g(go
(yo=arccot&8=0. 34), maximum squeezing is observed
at the time —,'Qz '(t —to) =ir/2 for which the mean num-

ber of cavity photons becomes equal to the maximum

V. TWO-PHOTON RESONANCE: SQUEEZED
VACUUM

As it is readily seen from Eqs. (3.5) and (3.14), in the
case of two-photon resonance (k =2), the coherent ampli-
tude of the electric field strength of the cavity mode van-
ishes:

(5.1)

X
O
E

0.5—

0
0 rr /4

(b)

li/2

By combining Eqs. (3.3), (3.4), (3.12)—(3.15), and
(3.7) —(3.10), the normally ordered variance of the electric
field strength may be represented in the following form:

FIG. 2. {a) Maximum squeezing eA'ect is given as a function
of the atomic preparation. (b) The corresponding mean photon
number.
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photon number (N(t) ) = (N ),„=2sin y. In other
words, the atom completely delivers its energy to the cav-
ity field. The situation is changed when the value of g be-
comes larger than the value of yo (g) yo). Now, with in-
creasing value of g we observe a decrease of the mean
number of cavity photons for which maximum squeezing
appears. In these cases the energy of the atom is partly
left in the cavity. Figure 2(a) reveals that, dependent on

the attainable maximum squeezing effect is
(:(bE):) = —0.45 g . It is worth noting that this noise
reduction of about 45% is obtained for the small mean
photon number ( N( t) ) = ( N ),„=2o zz( to ) =0.174 [cf.
Eqs. (3.4), (3.12) and (5.13)]. Thus a substantial squeezing
effect may be obtained in cases when the atom is
coherently prepared close to its ground state.

In Figs. 3 and 4 the mean photon number and the noise
behavior of the electric field strength of the cavity field
are shown to be dependent on the interaction time for a
coherent atomic initial preparation with g & go and
y) yo, respectively (y=0. 3 in Fig. 3 and y=m. /4 in Fig.
4). In addition to the results discussed above, we see that
in the case when the inequality y (yo is valid, the noise
reduction observed on the time scale 0 &

—,'Qz(t —to ) & vr is

followed by a noise enhancement on the time scale
m. &

—,'Az '(t —to) & 2m (the maximum noise reduction and
enhancement are observed when maximum photon num-
bers are built up). Note that the temporal evolution of
the noise of the electric field strength is periodic (period
r=4m/Qz '). In the case when the inequality y) yo is
valid, the situation becomes more complicated. As seen,

I

Poo(t ) =1—
—,
' (N(r) ),

pzz(r) =
—,
' (N(r) ),

poz( t ) = i ir exp—
[ i [2'( t —t 0 )

—
q) ] ] cosy [—,

' ( N ( t ) ) ] ' ~

(5.6)

(5.7)

(5.8)

P20( t ) =Poz( t), (5.9)

x being given in Eq. (5.4). Let us now compare this densi-

ty matrix with the density matrix

on the time scale 0 —,'Az '(t —to) m. there are now two
ranges of noise reduction which are symmetric to a
center range of noise enhancement. In this case, max-
imum noise enhancement corresponds to maximum mean
photon number, whereas (maximum) noise reduction cor-
responds to smaller photon numbers. On the time scale
m. &

—,'QzI '(t —to) & 2m, again noise enhancement is ob-
served. As mentioned above, the cases 0 &

—,
' Qz' '( t

—to) &m and vr & ,'fez '—(t—to) &2m (K=+ I and s.= —1,
respectively) also describe the noise behavior of the two
field quadratures [cf. Eqs. (5.2) and (5.4)].

Comparing the results found for the case of one-photon
resonance with those for the case of two-photon reso-
nance, we find that in the latter case the range of g values
giving rise to squeezing is wider and the strength of
squeezing is more substantial than in the first case.

Combining Eq. (5.3) and Eqs. (3.7) —(3.10), and
(3.12)—(3.15) for the case k =2, we may represent the
photon density matrix in the following way:

1)(n+mj/z (n m. ) 1 v1 I 1/2

p„= (n /2)!(m /2)! Ipl 2p

0, otherwise

n/2 m/2
V

for n and m even
(5.10)

of a squeezed vacuum state of the type

I»sv = exp I
—

—,
' M(~')' —k*~'I I I», (5.1 1) 3.0

where the relations p=coshIg'I and v=(g/Ig'I) sinhlg'I
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FICi. 3. Noise of the electric field strength (solid line) and the
mean photon number (dashed line) are given as functions of
time for the coherent atomic initial preparation y=O. 3 (yo.

~ Q (t- to)

FIG. 4. Noise of the electric field strength (solid line) and the
mean photon number (dashed line) are given as functions of
time for the coherent atomic initial preparation y= n./4) go.
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are valid, IvI being the mean photon number (cf. Refs.
15, 16, and 25). Considering a sufficiently weak field

( IvI « 1) enables us to restrict ourselves (approximately)
to the diagonal density matrix elements proportional to
IvI and to the off-diagonal elements proportional to IvI.
In this case, from Eq. (5.10) we obtain

with Eqs. (2.12)—(2.15) (note that co2, =2co is valid) and
the initial conditions given in Eqs. (3.7)—(3.11) we derive

—i co2&{t —t0)
cr2, (t)=e " ' sinycosye'icos[ —,'Qi2 '(t to—)] .

(5.19)

psv

p =—'
I
V

I

(5.12)

(5.13)

Hence Eq. (5.18) may be rewritten as

U(t, t, ) = exp I ,' [—g(—t t,—)(a ")' g*—(t t, )a'—]I,
(5.20)

svp,', ———
I vI exp( —i g.),

2
(5.14)

where
sv

( sv)»
P20 P02 (5.15} g( t }= —i v'2siny cosye ' "sin [—,

' 0z
'( t —to ) ] . (5.21)

Comparing Eqs. (5.12)—(5.15) with Eqs. (5.6}—(5.9) re-
veals that the state of the field in the two-photon Jaynes-
Cummings model with coherent atomic initial prepara-
tion and initial vacuum field tends to the squeezed vacu-
um state given in Eq. (5.11) if IcosyI =1, or in other
words, if the atomic initial preparation is sufficiently
close to the ground-state preparation. In particular, in
the case of maximum squeezing (cf. Fig. 2) we have
cosy =0.955 and according to the interaction time,
(N(t) ) = (N ),„=0.175, so that the field state produced
somewhat differs from the squeezed vacuum state given
in Eq. (5.11). Clearly, with increasing mean number of
photons the photon density matrix in the two-photon
Jaynes-Cummings model significantly deviates from the
density matrix according to Eq. (5.10), which in general,
cannot be reduced to the few elements considered in Eqs.
(5.12)—(5 15).

The agreement of the squeezed vacuum as given in
Eqs. (5.12)—(5.15) (for IvI «1) with the field in the two-
photon Jaynes-Cummings model with a coherent atomic
initial preparation close to the ground state (IcosyI =1)
and initial vacuum cavity field suggests that under these
conditions, the interaction between cavity field and atom
may be described semiclassically by treating the atom as
a classical time-dependent polarization current. In such
a picture, in the Hamiltonian given in Eq. (2.1) together
with Eqs. (2.2) and (2.3) (for k=2) we must omit the un-

perturbed atomic Hamiltonian and substitute in the in-
teraction term for the atomic operators A &2 and A 2, ap-
propriately chosen time-dependent density-matrix ele-
ments o 2, (t) and o,2(t}, respectively,

H' '=A'boa a fiA''[(a —
) o . (t)+a o,2(t)] . (5.16}

Starting from the photon vacuum we may represent the
state vector of the cavity field at time t as follows:

I g( t) ) =exp[ i era a ( t ——to )]U(t, to ) IO ),
where

U(t, to)=T exp iA, ' ' I dr[(a ) e ' 'o'»(~)
0

+a2e ' 'o, ~(r)] . (5.18)

Now, o 2, (t) and o,z(t) are chosen to be the correct solu-
tions of the two-photon Jaynes-Cummings model
o,j(t)=g„pI„'.„(t). Making use of Eq. (2.18) together

Thus the initial vacuum state evolves (in the semiclassical
approximation) into a squeezed vacuum state of the type
defined in Eq. (5.11). For sufficiently weak field (g=v,
IvI ((1) we therefore obtain for the relevant photon
density-matrix elements [cf. Eqs. (5.12)—(5.15)]

poo ( t }= 1 —sin y cos y sin [—,
' Qz '( t —t0 )],

p zz ( t ) =sin y cos y sin [—,
'

Q~& '( t —t0 )),
(5.22)

(5.23}

sv i[2m{t —t0) P] I {2)p02(t)= i sin—ycosye sin[ —,'Q2 (t to)], —

(5.24)

p20 (t) = [pa~ (t)] (5.25)

VI. SUMMARY AND CONCLUSIONS

We have studied the field generated in the k-photon
Jaynes-Cummings model under the (realistic) assumption
that the initial field state is the vacuum. To produce
coherence and squeezing we have assumed that the atom
is initially prepared in a coherent superposition of states.
An experimental setup for observing effects of coherent

Comparing the semiclassical result given in Eqs.
(5.22) —(5.2S) with the exact result [cf. Eqs. (5.6)—(5.9) to-
gether with Eq. (5.3)] we find agreement if (provided the
field starts from the vacuum) the coherent atomic initial
preparation is close to the ground-state preparation
IcosyI = 1. This result may be understood from the argu-
ment that in this case (over the whole time range) the in-
teraction between cavity field and atom is mainly deter-
mined by the polarization of the atom proportional to
o 2i(t) and cr, 2(t), whereas (over the whole time range) the
upper atomic quantum state is hardly excited by quan-
tum transitions. Its population probability therefore
remains small compared with the polarization
o22(t) « Io,2(t)I (&1, the relation o2z(t)=Io, 2(t)I is ap-
proximately valid. This situation is similar to the case of
a classical treatment of the field mode, where the condi-
tion (a (t)a(t)) = I( (at))

I
must be fulfilled. In the

present case, such a classical treatment of the field is im-
possible, which is rejected by the squeezing effect. An
approximate classical description of the atom (for
IcosyI=1) yields {a (t)a(t)) =I((t)I and (a(t)) =0,
supporting the impossibility of a classical treatment of
the field.
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atomic superposition was proposed by Krause, Scully,
and Walther.

Under the conditions mentioned, a coherent field am-
plitude can be generated in the case of one-photon reso-
nance (k =1). In order to obtain a coherent state the ini-
tial coherent atomic preparation must be close to the
ground state. A squeezing effect with the maximum of
25% noise reduction can be achieved, which is in agree-
ment with the result found by Knight.

In the case of two-photon resonance (k =2) squeezing
may be observed for a larger range of coherent atomic in-
itial preparations than in the one-photon case. A max-
imum effect of 45% noise reduction is achievable. Since
the coherent field amplitude is equal to zero the field
shows the features of a squeezed vacuum. A squeezed
vacuum state [Eq. (5.11)] is (approximately) generated in
the case of a coherent atomic initial preparation
sufficiently close to the ground state. We have shown
that, although the Jaynes-Cummings model is a fully
quantum-theoretical one, the generation of this squeezed
vacuum can be described by treating the atom as a classi-

cal current.
To our knowledge experiments concerning the two- (or

even k-) photon Jaynes-Cummings model have not been
performed. However, since for highly excited Rydberg
atoms both the dipole moments are large and the states
are dense there may be some hope that sufficiently large
coupling constants for a two-photon transition in the
sense of our model may be achievable.

For the case of a Rydberg maser cavity the assumption
of an initial vacuum state of the field might seem to be
somewhat far from the reality. However, it is possible to
perform experiments at cavity temperatures T~0.5 K.
Moreover, it should be feasible to realize initial cavity
fields with a mean thermal photon number of
6.8X10 . Clearly, in such a case the field can be ex-
pected to be sufficiently close to the vacuum so that the
results of the present paper may be regarded as a suitable
approximation. A rough estimation shows that for an in-
itial thermal field with mean photon number of
6.8X10 the predicted squeezing effect of about 45%
might be reduced to a value not smaller than 43%.

S. Haroche, Ne~ Trends in Atomic Physics, edited by G. Gryn-
berg and R. Stora (Elsevier, New York, 1984), p. 195; S.
Haroche and J. M. Raimond, Adv. At. Mol. Phys. 20, 347
(1985).

~G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett. 58, 353
(1987)~

F. Diedrich, J. Krause, G. Rempe, M. O. Scully, and H.
Walther, IEEE J. Quant. Electron. QE-24, 1314 (1988).

4E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
5H.-I. Yoo and J. H. Eberly, Phys. Rep. 118, 239 (1985).
P. Filipowicz, J. Javanainen, and P. Meystre, in Coherence,

Cooperation and Fluctuations, edited by F. Haake, L. M. Nar-
ducci, and D. F. Walls (Cambridge University Press, Cam-
bridge, 1986), p. 206.

~P. Filipowicz, J. Javanainnen, and P. Meystre, Phys. Rev. A
34, 3077 (1986).

8P. Meystre and M. S. Zubairy, Phys. Lett. 89A, 390 (1982).
P. L. Knight, Phys. Scr. T12, 51 (1986).
W. Vogel, D.-G. Welsch, and L. Leine, J. Opt. Soc. Am. B 4,
1633 (1987).

"K.Zaheer and M. S. Zubairy, Phys. Rev. A 39, 2000 (1989).
A. S. Shumovsky, Fam Le Kien, and E. I. Aliskendrov, Phys.

Lett. A124, 351 (1987).
' C. C. Gerry, and P. J. Moyer, Phys. Rev. A 38, 5665 (1988).

A. Joshi, and R. R. Puri, J. Mod. Opt. 36, 215 (1989).
' D. F. Walls, Nature 306, 141 (1983).
' R. Loudon, and P. L. Knight, J. Mod. Opt. 34, 709 (1987).
' R. E. Slusher, B. Yurke, P. Grangier, A. la Porta, D. F. Walls,

and M. Reid, J. Opt. Soc. Am. B 4, 1453 (1987).
' L.-A. Wu, M. Xiao, and H. J. Kimble, J. Opt. Soc. Am. B 4,

1465 (1987).
' G. J. Milburn, M. D. Levenson, R. M. Shelby, S. H. Perl-

mutter, R. G. De Voe, and D. F. Walls, J. Opt. Soc. Am. B 4,
1476 (1987).

L. A. Orozco, M. G. Raizen, M. Xia, R. J. Brecha, and H. J.
Kimble, J. Opt. Soc. Am. B 4, 1490 (1987).

'M. W. Maeda, P. Kumar, and J. H. Shapiro, J. Opt. Soc. Am.
B 4, 1501 (1987).
P. Meystre, G. Rempe, and H. Walther, Opt. Lett. 13, 1078
(1988).
J. Krause, M. O. Scully, and H. Walther, Phys. Rev. A 34,
2032 (1986).

~4R. J. Glauber, Phys. Rev. 131,2766 (1963).
H. P. Yuen, Phys. Rev. A 13, 2226 (1976).


