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Correlations in extended high-density superfluorescence:
A self-organized distributed feedback laser
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We present a simple model that allows a description for the correlation of counterpropagating
waves and the formation of spatial patterns in superfluorescent emission. No separation between
left- and right-running waves is performed, and retardation effects are fully included. The results in-

dicate qualitative agreement between our calculations and experiments in KC1:0,

I. INTRODUCTION

As it is well known in highly excited solid-state systems
like KC1:Oz (Refs. 1 and 2) and diphenyl:pyrene,
superAuorescent emission is observed (for a review see,
e.g. , Refs. 7 —9). In particular, the experiments show that
a spatial mode pattern develops in the emitted field,
which seems to originate from a strong spatial correlation
between counterpropagating pulses. ' '" In this paper we
present a simple model that accounts for this peculiar
spatial pattern. For simplicity we will use a semiclassical
description of the emission process, consisting of the
Bloch-Maxwell equations, where, however, no slowly
varying envelope approximation is done. The relevance
of this last point will be discussed later.

We also will limit our calculation to the early stage of
the emission, because already in this regime the spatial
correlation pattern appears. Initial and boundary condi-
tions as well as the other system parameters are appropri-
ate for the experiments of superfluorescence (SF) in
KC1:02 . Although we do not calculate the whole time-
dependent emission, our model reproduces the experi-
mental situation in which superfluoresence is observed
and thus gives an appropriate description of
superfluorescent emission. Let us briefly recall the exper-
imental situation which is the following.

A laser pulse excites the 02 centers in a well-defined

volume of the crystal. The local centers themselves have
a complicated level structure. ' With a laser pulse a
high-lying level is excited which will decay without radia-
tion into the ground state of the upper potential sheet. '

During this process the system loses all information
about phase correlations. This features is exhibited in the
experiment, because there are no memory efT'ects of the
polarization of the exciting field that shows up in the em-
itted field immediately after the excitation. Now an
avalanche process starts because each local center emits

light in all directions, influencing all other centers. A
correlated area builds up in the sample from which
superfluoresent pulses are emitted in special directions
that depend on the geometry of the sample. ' " For a
rod-shaped excitation volume the emission happens in
the form of counterpropagating pulses along the axis of
the rod. At high impurity density counterpropagating
pulses show a mode structure which is reminiscent of the
spatial standing-wave mode spectrum of a laser. In order
to understand this peculiar behavior one has to assume
that the emitted fields are correlated and that the mode
pattern originates in a kind of interference effect between
left- and right- emitted fields.

II. THE MODEL

It is not possible to explain this behavior in terms of
the available theories, in which the counterpropagating
fields are assumed to be noncorrelated, ' ' and a slowly
varying envelope approximation (SVEA) is calculated for
the field. We can indicate a reason for this discrepancy,
which is based on the space scale involved in our prob-
lem.

We notice that the average distance d between the
centers is much smaller than the wavelengths X of the
emitted electromagn~:tic field in which we are interested.
In fact, in the experiments the concentration of the
centers is 10' cm, i.e., the average distance between
neighboring centers is 10 nm, whereas the optical modes
have X values of the order of 600 nm. Therefore, we ex-
pect to observe field variations on a scale that is much
smaller than A. and for which the SVEA does not hold
anymore. On the contrary, most SF experiments deal
with systems having much lower center densities such
that d &)A., and therefore are well described within the
SVEA.

The space scale implied by our physical system indi-
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cates that it can be adequately described in terms of a po-
larization field P(r, t ). Furthermore, we simulate the ini-
tiation of the emission process by a P(r, t ), which is built
up by randomly oriented dipoles in order to simulate the
eft'ect of an incoherent initial state. We start with the re-
lation

E(t, r) =

which is an exact consequence of the Maxwell equation,
and where At =

~
r —r'~/c =

~

b r
~
/c is the retardation and

P a dipole density. The positive frequency part of the po-
larization obeys the equation

[P(t, r)]' '=ico[P(t, r)]'+'+ign E(t, r) . (2)

Here n is the inversion and depends on (r, t ) and E. g is
the dipole coupling and ~ the transition frequency. All
damping terms have been neglected. Equation (2) is a
consequence of the Bloch equations for a two-level sys-
tern whose use is justified in this context as follows. We
know from experiments and previous theoretical models
that transitions from the ground state of the upper poten-
tial sheet to several vibronic levels of the lower sheet con-
tribute to these eff'ects. ' However, we will confine our
study to the case when just one specific transition is ob-
served so that the local system can then be described as a
two-level system. There is, however, no loss of generali-
ty, because an extension of the model to the general case
bears no difficulties.

We assume that the distribution of the 02 centers is
at random and that their concentration is low enough so
that there is no direct interaction between the centers.
We assume now that the system is highly excited so that
n is positive (total inversion of the centers) and that it
does not vary during the time in which the special pat-
tern develops. This means that we limit our discussion to
the early stage of the emission when the equation for the
inversion density n in (2) can be linearized around its ini-
tial value no. As we will see in the simulation spatial pat-
terns already build up in a time which is a multiple of
A, /c &L/c (photon lifetime in the sample). Equation (2)
for the medium polarization then reads

III. CALCULATION METHOD

We now briefly sketch the calculation method. From
Eq. (3) we get the inhomogeneous solution

P(t, r) =e' 'P(t, r), (4)

with

p= f pEe ' 'dt= f pdt .

From (4) and (5) it is obvious to choose

E Ee I (Ot

P(t+dt ) =P(t)+P dt =P(t)+PE dt+ .

When choosing

(7)

dt «P(t)/PE,
we can neglect higher-order terms in dt. Combining Eqs.
(1), (4), and (7) we get ( ~k

~

=cn/c )

P —2'
P(t+dt )+P(t) — dr e"'a" d'r'

c '
/

b, r
f

(9)

where E and P are functions slowly varying in time. We
want to point out that in our problem this is not an ap-
proximation but a requirement caused by the structure of
the differential equation (3). For the space dependence no
assumption is made. For our numerical treatments we
write

P(t, r) =i ~P(t, r)+ igno E(t, r) =i coP(t, r)+pE(t, r),
(3)

where P=igno
We justify this approximation, which is mainly con-

sistent with the experiments, as follows. The left-right
correlation is already present in the early stage of the
emission process when the inversion does not yet strongly
deviate from its initial value. Already weak modulations
of the inversion in the A,/2 period are expected to
enhance the behavior found in our treatment. We will
discuss this point in more detail after our calculation
method has been presented.

Finally, in the following, the polarization of the host
crystal will be neglected because it is built up through
scattering processes, the contribution of which are
several orders of magnitude smaller than the resonant
processes of the centers (P„,/P„„,= 10 ). .

FIG. 1. The polarization field P in an area of XX 3k, where
1500 grid points are distributed randomly. The length and
thickness of the lines correspond to the amplitudes, the direc-
tion to the phase of P. (a) Starting situation, (b) after two itera-
tion steps with f3dt = 1, and (c) after 16 iteration steps.
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FIG. 2. The absolute of P is drawn as a function of x for an array of the dimension of 100K, for a selected number n of iterations.
In each case the absolute is normalized to !P,„!= 1.

This equation can be solved by an iteration procedure.
During the time of each calculation cycle we assume P to
be constant, which means we can put 1 and 0 equal to
zero. The value of the time step of each iteration has to
obey relation (8). The electromagnetic field which results
from each iteration step induces a polarization field
which again acts as a source for the polarization buildup
calculated in the next iteration cycle.

iterations in an organization in space with a period of
A./2. This clearly shows that the slowly varying envelope
approximation in space is not allowed, because the polar-
ization is modulated in the range of A./2.

In a sequence of simulations it turned out that no

IV. RESULTS

When starting the iteration procedure we assume the
polarization to consist of a random distribution of ampli-
tudes and phases. The three-dimensional space integral is
transcribed into a sum taken at up to 1500 grid points
randomly distributed in a plane. The result of the itera-
tion is seen in Fig. 1 for three dift'erent times. The itera-
tion time step is of the order A. /c. The time scale on
which the pattern formation occurs is therefore much
shorter than all characteristic times of the emission pro-
cesses. It is implied that outside the active volume the
polarization is zero and the refraction index is constant.
For this calculation, it is not necessary to separate left-
and right-running waves, as is usually done. On the con-
trary, our calculations show that in general left- and
right-running waves should be treated separately since
the components are mixed through the retardation.
After two iteration steps a near-field organization in
phases and amplitudes shows up and results after 16

Re (P3
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FIG. 3. The imaginary, real, and absolute of P is drawn for a
linear array of length 6.5A, . The figure describes self-stabilized
polarization which appears in the limit n~~. Numerically,
this condition is satisfied for n ) 1000.
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spurious effects appear when going from a random grid
to an equidistant grid. Therefore, in the following we will
use equidistant grid points with a separation of A,/10
which ensures us that all information about the direction
of the waves is held. We want to consider the starting
process of the self organization in more detail. As an ex-
ample which corresponds to one possible experimental
setup we choose a pencil-shaped (quasi-one-dimensional)
excitation volume. We still have to work with the three-
dimensional Maxwell equations in order to account for
field losses in transverse directions.

From Fig. 2 one already sees that after two iteration
steps local interference structures for the polarization in
small domains are evident. These domains grow increas-
ingly with time. This is seen for the iteration n=5. For
n=10 and 17 small interference structures appear at the
left and right end of the one-dimensional area. This is
due to the fact that at the end of the inversion area small
reflections caused by the gain variation are induced,
which, however, are not significant in the further time
evolution of the system.

In Fig. 3 the real and imaginary parts of the polariza-
tion amplitude are shown separately for an organized
linear array of length 6.5A. It is clearly seen that in the
central region of the array there is no phase shift between
both parts, which implies that this is a standing-wave
area. On the other hand, at both ends of the array a
phase shift of ":90 appears implying areas of either left-
or right-running waves. These self-organized structures
remind us of the distributed feedback (DFB) laser, where
the experimental conditions force periodic inverted struc-
tures with strongly coupled waves. ' There it could be

shown that even an inversion modulation as small as
10 is enough to induce DFB lasers. The main effect
will be Brag g reflection on the internal polarization
modulation.

V. CONCLUSION

In conclusion, we want to emphasize the dominant role
of the retardation term exp( ico—hrIc) in the iteration
equation (9). As one can verify by a simple calculation,
the retardation part mixes the left- and right-running
waves together in such a way that their contribution to
the field at the point r cannot be separated. This indi-
cates again that in a more thorough calculation the whole
spatial dependence of the field must be taken into account
and that the currently used slowly varying envelope ap-
proximation (SVEA) for the space dependence of F. in the
longitudinal direction is not adequate to describe the ex-
perimental results. To our knowledge this point has been
already considered only in Ref. 16. A more comprehen-
sive description of the time-dependent emission, includ-
ing pulse duration and time delays, is also in progress.
Calculations for two-dimensional arrays show prelimi-
nary results in agreement with two-dimensional experi-
ments' '" and will be published elsewhere.
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