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A reduced equation of motion that describes the excited-state dynamics of interacting two-level
impurity molecules in a dielectric host crystal is derived starting from a microscopic model for the
total system. Our theory generalizes the derivation of the conventional superradiance master equa-
tion for molecules in vacuum; the role of photons in the conventional theory is played by polaritons
(mixed crystal-radiation excitations) in our approach. Our final equation thus contains dispersive
and superradiant polariton-mediated intermolecular interactions. The effect of the dielectric host is
completely contained within a rescaling of these interactions with the transverse dielectric function
e(co) of the crystal taken at the impurity's transition frequency. Our theory yields all local field and
screening factors for both the dispersive and the dissipative couplings from a single, unified starting
point. Known scaling laws for the spontaneous-emission rate and the instantaneous dipole-dipole
interaction are extended to the frequency region where the dispersion of e(co) is important.

I. INTRODUCTION

Currently, many optical experiments are carried out on
molecules in a condensed phase; examples of typical sys-
tems are disordered crystals, molecules embedded in
glasses, or solutions. ' The excited-state dynamics of
the molecules studied is affected by the host medium.
The simplest manifestations of the interaction with the
medium are spectral shifts and line broadening, resulting
from homogeneous and inhomogeneous dephasing pro-
cesses. In addition, quantities that appear to be intrinsic
to the molecules under study may be altered by the envi-
ronment. For example, the spontaneous decay rate of an
excited molecule in a dielectric host differs from the rate
for the same molecule in vacuum. Many experimental
and theoretical studies have been dedicated to the effect
of the environment on the radiative lifetime. Apart from
molecules in a bulk dielectric, systems that have received
much attention in this context include molecules (dipoles)
near a dielectric or metallic surface, in high-Q cavities,
in or near small dielectric particles, ' or in an artificial
superlattice with a periodicity in the dielectric constant. "
The basic principle underlying all these examples is that
the density of radiation modes is changed by the presence
of a medium and (or) by restriction of the geometry. Be-
cause the spontaneous decay rate of a molecular excited
state into radiation modes is proportional to this density
of states (Fermi golden rule), it is clear that spontaneous
emission may be enhanced or inhibited by changing the
environment. A total absence of spontaneous emission
may, in principle, occur if in certain frequency intervals
no radiation modes exist at all (band gaps). "' Not only
radiative decay rates, but also intermolecular interactions
are sensitive to the molecular environment. ' A well-

known consequence of this is that the resonant Forster
rate of energy transfer between two molecules depends on
the index of refraction of the host medium. ' The role of

the medium on cooperative radiative phenomena occur-
ring in optically dense systems (e.g., superradiance), is
less well studied. In view of the current interest in linear
and nonlinear optical properties of molecular systems in
condensed phases, it is extremely valuable to give a mi-
croscopic treatment of all these medium effects. This
may be done by deriving a reduced equation of motion
for the excited-state dynamics of the molecules starting
from a microscopic model that includes the host. Not
only would such an approach clarify the microscopic ori-
gin of various medium effects, the reduced equation of
motion could also serve to properly incorporate these
effects in the description of nonlinear optical processes in
a dielectric host.

The excited-state dynamics of a collection of two-level
molecules is described in an elegant way by the superradi-
ance master equation derived by many authors. ' This
equation describes the evolution of a general operator
working in the Hilbert space of the molecules and con-
tains the effects of single-molecule radiative decay, the
Lamb shift, dispersive intermolecular interactions, and
superradiant interactions. The equation can be used to
describe a great variety of optical phenomena, e.g. , pho-
ton echoes and superradiance. ' Usually the equation is
derived for molecules in vacuum, starting from the mul-
tipolar Hamiltonian, in which no direct intermolecular
interactions are present retarded interactions are in-
stead mediated by exchange of photons between two mol-
ecules. For molecules in a dielectric medium, heuristic
arguments may be used to include the effect of the medi-
um dielectric constant on the coefficients (the interactions
and decay rates) occurring in the master equation (see
Sec. V). In this paper we show how this can be done
from first principles, where we even include the frequency
dispersion of the dielectric function. The model system
that we consider consists of a collection of two-level mol-
ecules (impurities) randomly substituted in an atomic
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II. MODEL AND HAMILTONIAN

We consider an infinite simple-cubic crystal with sites
occupied by atoms. One atomic sp transition of frequen-
cy 0, is considered explicitly. The transition dipole mo-
ments between the atomic ground state and the three de-
generate excited states form an orthogonal set and have
magnitude p. On a small fraction of the lattice sites, the
atoms have been replaced by two-level impurity mole-
cules with transition frequency Qo and transition dipole
p (a labels the impurities. ). The )M are not necessarily
oriented in the same direction. We work within the mul-
tipolar Hamiltonian' in the dipole approximation, in
which the fully retarded interaction between the radia-
tion field and a particle with transition dipole operator p,
at point r is given by —p D(r), with D(r) the transverse
electric displacement field at position r. Furthermore,
there are no direct Coulomb forces between particles in
this Hamiltonian; all interactions are instead mediated by
exchange of photons. The total Hamiltonian for our sys-
tem may now be written

H HITIP] +HPP] +H (2.1)

crystal. The basic idea behind our calculation is that the
impurities do not interact through exchange of photons,
but rather through exchange of exciton-polaritons, which
are the proper elementary excitations (mixtures of pho-
tons and excitons) of the host crystal. ' ' We recover the
conventional master equation with interactions and decay
rates which are scaled by the fiequency dep-endent dielec-
tric function of the host crystal. This dielectric function
is obtained within the same calculation, namely, through
the dispersion relation of the polaritons. The unique
feature of our approach is that it yields from a unified mi-
croscopic starting point in an unambiguous way all
local-field factors and screening factors which scale the
interactions and decay rates.

The outline of this paper is as follows. In Sec. II we
further specify the model, define pertinent quantities, and
present the Hamiltonian. The form of the polaritons for
the pure host crystal is derived in Sec. III. In this deriva-
tion, we do not neglect umklapp processes, which leads to
an infinite number of polariton branches in the first Bril-
louin zone (in contrast to the usual two branches when
umklapp is neglected' .) These polaritons are used in
Sec. IV to derive the master equation for a general opera-
tor acting in the Hilbert space of the impurities. Finally,
we discuss our results in Sec. V. Some technical details of
the derivation presented in Sec. IV are contained in Ap-
pendixes A and B.

p = g(Me (8,+k, ), (2.5)

with e; the unit vector along the i axis, and the displace-
ment field D(r) at position r is written in second quanti-
zation as'

2 2MCOk+GD(r)=i g g
k G A. =1

]/2

)( [g i (k+G).r
k+Gze

—a k+Gze
'"+ ' ']ek+oz . (2.6)

Here V is the volume of the quantization box of the radi-
ation, which is taken equal to the crystal volume and will
eventually be sent to infinity, and the unit polarization
vectors ek+ G& are chosen real and such that
e k G&=ek+Gz. Finally, the last term in the total Ham-
iltonian Eq. (2.1) is the interaction between the radiation
field and the impurities, which reads

The second term in Eq. (2.1) consists of three contribu-
tions: the electronic energy of the atoms in the crystal,
the Hamiltonian of the radiation field, and the atom-
radiation interactions. We have

38 „=AGE g B,B,
m &=1

2

+~ y y y ~k+(r~ k+Gzpk+(JjE y (u'

k G A=] m

(2.4)

The index i labels the three Cartesian axes and B, (B,.)
is the creation (annihilation) operator for the excited state
on atom m with transition dipole in the i direction. The
operator 8;, when acting on the ground state of atom
m, yields the excited state of this atom with transition di-
pole in the i direction and gives zero when acting on any
other state. The operator k, gives the ground state of
atom m when acting on its excited state with transition
dipole in the i direction and yields zero when acting on
any other state. In the second term of Eq. (2.4), & k+oz
and &k+G& denote the usual creation and annihilation
operators for a photon of wave vector k+G and trans-
verse polarization X. They obey the Bose commutation
relations [&k+Gz, a k+G & ]=5kk 5G& 5&&. Throughout
this paper, k runs over the first Brillouin zone only, un-
less explicitly stated otherwise, and Cx runs over the re-
ciprocal lattice. cok+G= ~k+Cr~c is the vacuum photon
dispersion relation. In the last term of Eq. (2.4), P
denotes the dipole operator of atom m given by

The first term in this equation represents the electronic
energy of the impurity molecules

H,„,= —gP .D(r ), (2.7)
H „=fiQO+b b (2.2)

[b t, bt(]+=5 p+2b btt(1 —5 p) . (2.3)

where b (b ) is the creation (annihilation) operator for
an excitation on molecule a. These operators obey the
Pauli anticommutation relations

with p, =p (b +b ) the dipole operator of the ath im-
purity.

The reason to combine the three terms in Eq. (2.4) to
one term in the total Hamiltonian is that, as is well
known, for the perfect crystal it is possible to transform
from the radiation and atomic creation and annihilation
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operators to a set of polariton creation and annihilation
operators that diagonalize 8

&

'.' We then obtain

&p i=&X~kAXi. (2.8}
k, v

where / k'„(gz„) is the creation (annihilation) operator of a
polariton with wave vector k in branch v with frequency
m& . These operators obey the Bose commutation rela-
tions

(4..kk ~1=&kk&.. (2.9)

The transformation to these new operators and the
dispersion relation for the polaritons will be worked out
explicitly in Sec. III. We note that there are two approxi-
mations involved in using Eqs. (2.8) and (2.9). First, the
atoms in our system do not occupy a perfect lattice, but,
strictly speaking, holes should be considered at sites
where impurities have been substituted. These holes
would result in scattering of the perfect crystal polari-
tons, giving them a finite lifetime. We will not consider
this perturbation, assuming that the density of impurities
is low enough to make its effect negligible. Second, the
use of Bose commutation relations is a common approxi-
mation which is valid for a low degree of excitation in the
atomic crystal and suSces to treat the linear optics of the
crystal. ' ' Even though we may be interested in the
norQinear optics of the impurities, we will assume that
the nonlinear optics of the atomic system is weak enough
to be neglected, so that we may safely use Eq. (2.9).

The introduction of polaritons is a matter. of conveni-
ence. If we write the interaction Eq. (2.7) between the
impurities and the radiation field in terms of polariton
operators, and we use the form Eq. (2.8) for 8 „,the to-
tal Hamiltonian Eq. (2.1) is expressed in terms of impuri-
ty and polariton creation and annihilation operators. It
is then no longer necessary to address the atomic system
and the radiation field explicitly; their coupled dynamics
has been formally solved by introducing the polaritons.
We may thus describe the complete excited-state dynam-
ics of the impurities by considering them as interacting
with the polariton field. At this point we note a strong
analogy of our starting Hamiltonian and the Hamiltonian
for molecules in vacuum. ' Both contain completely
equivalent unperturbed molecular parts. Also, in both
cases there is a contribution of the same formal form
which describes the elementary excitations of the space
surrounding the molecules: the photons in vacuum case
and the polaritons in ours. Finally, both Hamiltonians
contain an interaction between the molecules and these
elementary excitations, which can also formally be
brought in the same form (Sec. IV). The two Hamiltoni-
ans differ in that the dispersion relation and the
coe%cients occurring in the interaction with the impuri-
ties are much more complicated for polaritons than for
photons.

Sk o, =,' yk, e
'"+ "-,

xp(

~k+GA. X (ek+GA. }i~k+Gi
l

(3.1a)

(3.1b)

where (ek+ok }, is the ith Cartesian component of ek+Gk

%PAVE VECTOR

importance. The transformation is needed to obtain the
dispersion relation (cok ) of the polaritons and to translate
the interaction Eq. (2.7) in terms of polariton operators.
Hopfield derived this transformation within the minimal
coupling (p. A) Hamiltonian' for the crystal and the ra-
diation field. ' We prefer to work with the multipolar
Hamiltonian, however, because there the interaction be-
tween the impurities and the polaritons takes a simple
form, as it only occurs through the radiation field com-
ponent of the polaritons. In the minimal coupling Hamil-
tonian, on the other hand, there is also an interaction be-
tween the impurities and the exciton component of the
polaritons, arising from the Coulomb interactions be-
tween the impurities and the crystal atoms. Although the
polariton problem within the multipolar Hamiltonian has
also been addressed in the literature, results have so far
bein limited to the calculation of only the dispersion rela-
tion for some of the branches. ' A complete dispersion
diagram and the explicit derivation of all of the transfor-
mation coe%cients between the polariton operators and
the atomic and radiation field operators will be given in
this section. The main results are comprised within the
expressions Eqs. (3.6), (3.11), (3.20},and (3.23) and are de-
picted in the Figs. 1 and 2. The reader who is willing to
take these results for granted is advised to skip this sec-
tion.

Our starting point is the multipolar Hamiltonian for
the perfect atomic crystal and the radiation field as given
in Eq. (2.4). Since in an infinite crystal it is natural to
work in momentum space, we transform the exciton
operators as follows:

III. PGLARITQN TRANSFGRMATIQN

In this section, we derive the polariton transformation
for the perfect atomic crystal. Because of the technical
character of this derivation, it is useful to point out its

FICx. 1. Typical polariton dispersion curves in the optical re-
gion (thick solid curves). The diagonal line represents the pure
photon dispersion curve (&uk =kc). The shaded region between
the transverse (cu&) and longitudinal (cuI~) crystal exciton frequen-
cies is the stopgap, where no polariton modes exist.
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and N is the number of lattice sites, which is to be sent to
infinity together with the volume such that N/V—=p is
the average atomic density. We also define 8k+« for

I

A, =3, corresponding to the longitudinal polarization:
ek+Q3 is parallel to k +G. Using Eqs. (2.4) —(2.6) and
realizing that Bk+G,- =Bk;, we find

HO ~+ g X B kiBkl+~ X X g ~k+G~ k+GAPk+«
k A. =1 k G k=1

2 3—i g g g g RC(k, G, A, , X')(B ki ak+Gi Bki—.a k+«+Ps ki.ak+Gi B—ki a k+«),
k G A, =1 A, '=1

(3.2)

AC(k., G, X, A') —= (2, rrkpcok+o)' pek+&i ek~ . (3.3)

1 d
at k+ GA, ~k+ Gk+ GA,

As usual we will assume Bose commutators for the exci-
ton operators in k space

3

i —g C(k, G, A. , X')(Bkg +B kq ),

[Bki.,B k i..] =5kk 5~~, (3.4) (3.5a)

which is a good approximation for crystals with a low de-
gree of excitation. ' ' Since the photon operators also
obey Bose commutation relations, the Hamiltonian Eq.
(3.2) is harmonic and may be diagonalized, i.e., brought
in the form of Eq. (2.8). The eigenmodes are the polari-
tons. In order to find the polaritons we evaluate the
Heisenberg equations of motion for the photon and the
exciton operators (the time dependence is implicit)

3—RC
a

1 d
—.

dr
Sk„=—nBki. +i g y C(k, G, Z, g')

G X=1

k+G& —k —Gk )

(3.5b)

When this set is supplemented with the equations for
a k Gz and B k& [which are easily obtained from Eqs.
(3.5) by Hermitian conjugation], we obtain for every k a
closed (infinite) set of linear equations coupling ak+o~,
a k Gi, Bki, and B ki (all G; A, =1,2; A, '=1,2, 3). The
set is infinitely dimensional, because umklapp processes
(GWO photon operators) are not neglected. We note that
in Hopfield's original derivation of polaritons from the
minimal coupling p A Hamiltonian, these processes were
neglected. ' %'hen working with the multipolar Hamil-
tonian, the high wave-vector photons are essential to
mediate the interatomic interactions. In the p. A Hamil-
tonian, on the other hand, the umklapp processes are
only necessary to account for retardation in the intera-
tomic interactions. This point has been addressed in the
literature; ' but a polariton transformation accounting
for umklapp has not been worked out in detail.

In analogy with Hopfield, ' ' we search for polariton
annihilation operators

2
4~k g g [~«(li@k+og+y&~„(k)& '

k «]
G k=1

-K/a

WAVE VECTOR

3

+ g [xi „(k)Bki +zi „(k)S k~ ], (3.6)

FIG. 2. Schematic representation of the polariton dispersion
diagram including the very high frequency polaritons discussed
in the text. For convenience, a one-dimensional crystal is as-
sumed, with lattice constant a. All curves should also be
reflected with respect to k =0 (dotted line) to obtain the fu11 dia-
gram; these additional curves have been omitted for clarity.
The most familiar part of this diagram is indicated by the shad-
ed box and is shown in more detail in Fig. 1. To facilitate the
presentation, an unrealistically large value for the atomic transi-
tion frequency 0 has been used.

obeying

i dt kkv ~kvf kv (3.7)

Equations (3.6) and (3.7) together with the Heisenberg
equations of motion (3.5) define an infinitely dimensional
eigenvalue problem. The polariton dispersion cok follows
from the associated secular equation, whereas the eigen-
vectors yield the polariton transformation coeScients w,
x, y, and z. Before going into the details of actually solv-
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ing the problem, it is useful to mention two general re-
sults. (i) The condition that the polaritons obey Bose
commutation relations (or alternatively, that the polari-
ton transformation is canonical) yields a normalization re
lation for the transformation coefficients

g g [lw«. (k)l' —
IyGA. (k)l']

G A. =1

+ g [~x,.(k) ~' —~z,.(k) ~']= I . (3.S)

(ii) It can be shown quite generally that the inuerse trans
formation to Eq. (3.6) reads

&k+G~ = g [w Gi, (k C~.—yGi, «)k'-k. ] (3.9a)

Bki —g [xi~(k)/k~ —zi~(k)g k„], (3.9b)

[xq.,(k) —zi, (k)]=0, (3.10a)

3

(cok +cok+ o )yGi (k )
—i g C (k, G, k, , k')

[x&. (k) —z&. (k)]=0, (3.10b)

2—
~ y„y C(k, G, X, X )[w«, (k)+y«. (k}]

with the asterisk denoting complex conjugation. The
complete eigenvalue problem to be solved reads explicitly

3

(cok„cok+o—)wG&, (k)+i g C(k, G, A. , A, ')

which we will label the branches as v—:(G'WO, A, '=1,2).
These solutions have frequencies

~kv ~k+6'

and transformation coefficients

w«. (k) =&oG 4~.

yo~.(k) =0

xi (k)=zi, (k)=i 27Tp

&~1 +G'

' 1/2

pek+G x"eke

(3.1 la)

(3.11b)

which obey the normalization condition Eq. (3.8). We
will accept Eqs. (3.11) as a good approximation to polari-
ton branches with "high energy" (i.e., branches which are
associated with umklapp processes}. Of course, it is pos-
sible to search for systematic improvement of this ap-
proximation by using perturbation theory in 0/cok+G. ,
but we will not do this here.

Now there are five more polariton branches left to
determine. These are possibly strong combinations of the
two (transverse) first Brillouin zone photon branches and
the three (two transverse, one longitudinal) exciton
branches, with a further small contribution of higher
Brillouin zone photons. For these polariton branches 0
may not necessarily be neglected with respect to co&, so
that a more careful solution to the eigenvalue problem
must be sought. We first eliminate the coefficients wG&

andy« for G&0 from Eqs. (3.10)

~k+G)wGiy(k } ( ~+ ~k+G )yGAV(k }

G A, =1

+(cgk —Q)xi. (k) =0, (3.10c)
3

i g C—( k, G, A. , A,
'

)

2—i g g C(k, G, A, , A, ')[wo& (k)+y«(k)]
G A, =1

+(cok +Q)zi „(k)=0 . (3.10d)

The first two equations hold for any G and for X=1 and
A, =2, whereas the last two hold for A,

' = 1,2, 3. The
coefficients w and y can easily be eliminated from the
problem by solving formally for them from Eqs. (3.10a)
and (3.10b} and substituting the solutions into the last
two equations. We then obtain a 6X6 eigenvalue prob-
lem, which (of course) still contains the complete physics;
the complexity is buried in an interatomic interaction
that depends on the frequency ~& . ' We shall not follow
this approach right away because it eventuaily poses
great algebraic difficulties related to dipole sums over the
lattice (see below). Instead, we use physical intuition to
determine the majority of the polariton branches. We
start by making the observation that if there were no
photon-exciton coupling [C (k, G, A, , A.') =0], we would
have polariton branches with frequency cok =rok+G (pure
photons). For GWO, this frequency is orders of magni-
tude higher than the exciton frequency 0, so that even if
the photon-exciton coupling is switched on, the pure pho-
tons for G&0 must still be good approximations to polar-
itons. In fact, if we neglect 0 with respect to cok+G
(GWO), we find consistent solutions to Eqs. (3.10) of

3—g Ri~ (k, cok~)[x~ (k) —z&.„(k)]=0, (3.13c)

iC(k)[woi„(—k)+yoz„(k)]+(cok +Q)zi (k)
3—g Rzz (k, cok )[xi (k) —zi (k)]=0 . (3.13d)

The first two of these equations hold for A, = 1 and A, =2;
the last two hold for X=1,2, and 3, where the coefficients
w and y must be set zero for A, =3. C ( k } is defined as

1/2
27TpQ) k

(3.14)C(k)=

and Rzi (k, co) is the frequency-dependent eft'ective in-
teratomic interaction which is mediated by photons out-
side the first Brillouin zone. It is defined by

X [xi (k) —zz. (k)] . (3.12)

Substituting Eq. (3.12) back into Eqs. (3.10) yields the fol-
lowing 10X 10 eigenvalue problem:

(&ok —
cok)woq (k)+iC(k)[xq (k) —zi (k)]=0, (3.13a)

(aik +cok)yoi (k) —iC(k)[xi (k) —zz„(k)]=0, (3.13b)

—iC(k)[woi„(k)+yo& (k)]+(cok —Q)xz„(k)
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2~k+G
Rii (k, co)= g g 2 2 C(k, G, A.",A)

a [~oi x"= i ~

X C(k, G, A, ",A, '), (3.15a)

The summand in Eq. (3.15b) is closely related to the
Fourier transform of the retarded dipole field tensor
F(r, co), ' so that the sum over all but the central point
in the reciprocal lattice yields a difference between the
lattice [F&(k,co)] and continuum [F,(k, co)] Fourier trans-
forms of F( r, co )

pp 8~
R(k, co) = — — + Re[F((k, co) —F, (k, co)]

which, using Eq. (3.3), may be written in tensor notation
as Ri~ (k, co) =eke R(k, co).ek&. , with

4m' (k+G) —(k+G)(k+G)
G(~p) (co/c) —(k+ G )

(3.15b)

polaritons (cok, /c within the first Brillouin zone), and the
sum excludes G=O, R(k, co) is real. We also note that in
deriving Eq. (3.16), real self interactions (Lamb shifts)
have been neglected; they are assumed to be accounted
for in the exciton frequency Q.

The interaction R(k, rv) is, in general, a nondiagonal
matrix with a complicated k and co dependence, so that
the eigenvalue problem Eq. (3.13) is, in general, too
diScult to solve analytically. The problem may be
simplified appreciably by neglecting the off-diagonal com-
ponents of R(k, co), ' assuming a diagonal matrix with
transverse components Ri(k, co) and longitudinal com-
ponent R)~~(k, co). The 10X10 eigenvalue problem then
separates into two (identical) 4 X 4 problems for the trans-
verse polaritons and one 2X2 problem for the longitudi-
nal polariton (exciton). The neglect of off-diagonal R
components is justified for small (optical) k and co, where
the polariton transformation is the least trivial (strong
mixture of photons and excitons). In this region, we may
approximate

with

F((k, co) =— g F(r, co)e
rk ™,

m (%0)

F,(k, co)= f dr F(r, co)e

(3.16)

(3.17a)

(3.17b)

R

F((k, co) —F, (k, co) = —I F(r, co)e
0

(3.18a)

with R, of the order of the lattice constant
(4vrR, p/3=1). In this approximation we find (along the
lines used in Ref. 27)

Re[F((k, co) —F, (k, co) ])~

coR

l COl"
F(r, co) . 3 —3

c

2
IT

2

—'(kR )—
3 5 c

Re[F((k, co) —F, (k, co)]~

(3.18b)

l COP1—
c

(3.17c)

The real part should be taken in Eq. (3.16) because
R(k, co) as defined in Eq. (3.15b) is real, even though co

contains an infinitesimal imaginary part (co~co+i0 ) in
order to obtain a retarded, instead of an advanced, in-
teraction. In principle, this i 0+ generates imaginary
parts in the summation of Eq. (3.15b) proportional to
5(co/c+~k+G~). Since, however, we are in this specific
part of the calculation only interested in low-frequency

4~
3

—((kR )—
10

2
coR

(3.18c)

up to order (kR, ) and (coR, /c) . An important and
often used further approximation is to neglect
F&(k, co) —F, (k, co) completely, which is justified for opti-
cal wave vectors and frequencies as can be seen from Eqs.
(3.18b) and (3.18c). This leads to R(k, co) =4npQ/3, with
p—:2' /fiQ (as introduced by Hopfield) a parameter
that is small compared to unity for typical cases.

For the transverse polaritons we have the following ei-
genvalue problem

0 cok +cok

iC(k)
iC (k)—

—iC(k)
iC(k)

iC (k) ——iC(k) —R ~(k, co)

iC(k) ——iC(k) co)„—Q R i(k—, co) Ri(k, co)

co„„+Q +R i ( k, cu ) zi (k)

(3.19)

for which the secular equation reads:

(cok —
co), )[Q (1—4irp)+2QRi(k, co), ) —co„,]

=4irPQ co)„. (3.20)

In the approximation R(k, co)=4mpQ/3 this dispersion
relation is a quartic equation for co&, yielding the usual

upper and lower polariton branches separated by the
stopgap' ' ranging from the transverse dipolar exciton
frequency
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co, =Q(1—4mp/3)' ', (3.21a)

to the longitudinal one

,

=Q(1+8 P/3)' (3.21b)

4nPQ'
—co +Q (1 —4')+2QRi(k, co)

(3.22)

(Fig. 1). Inclusion of Re(F& —F, ) in R(k, co) accounts for
effective exciton mass effects and for retardation in the in-
teratomic interactions. ' In the limit e ~~, Eq. (3.20)
yields the dispersion curve for the transverse dipolar exci-
tons. The frequency- and wave-vector-dependent trans-
verse dielectric function follows directly from Eq. (3.20)
and reads (co = coi, )

2

e(k, co):— = 1+

We note that the denominator in Eq. (3.22) is real, imply-
ing that the polariton has an infinite radiative lifetime.
This conclusion is in agreement with the existing litera-
ture. ' ' ' %'e have earlier ' derived an expression for
e(k, co) that very closely resembles Eq. (3.22) combined
with Eq. (3.16), except that co is replaced by co +iyco
(with y the single-atom radiative decay rate) and that the
real part is not taken in Eq. (3.16). A careful analysis of
our previous result shows that the imaginary part in
[FI(k,co) —F,(k, co)]i cancels the extra decay term, so
that there, too, an infinite polariton lifetime is predicted.

Finally, we give the polariton transformation
coefficients that follow from Eqs. (3.19) and (3.12). The
branch label v takes on four values, given by v=(b, A, '),
with b=upper or lower and k'=1 or 2. At frequency
co cok we have

(co+cok )(co'—Q' —2R, (k, co)Q)

2(cokco) [(co Q —2Ri(k, co)Q) +4irPQ co~]

COI CO

ypi (k)= woi„(k),
COg +~

(3.23a)

(3.23b)

xi (k)=i ( co+ Q )col,

[(co —Q —2Ri(k, co)Q) +4mPQ co~ ]'~ (3.23c)

we~„(k) =
i 1/20 2cokC(k, G, A, , A, ')

coi, +G)[(co —Q —2Ri(k, co)Q) +4mPQ cok]z 2 irz (GPO)

(3.23d)

(3.23e)

wGi, (k) (G&0) .
@Ok+6+Q) (3.23f)

The normalization condition Eq. (3.8) is obeyed exactly if
only the first four of the above coefficients are taken into
account. The error in the normalization, which is thus
due to the contributions of the small GAO coefficients
given in Eqs. (3.23e) and (3.231), can be shown to equal

4nPQ co„BR (k, co)/Bco
h(k, co)=-

coI [co —Q —2QRi(k, co)] +4mPQ cok I

An estimate for the derivative of R j (k, co) with respect to
co in the optical region may be obtained from Eq. (3.18c}
in combination with Eq. (3.16). We then find
h(k, co) (4mp(QR, /e), which is much smaller than uni-
ty for realistic cases. We believe that also for (k, co) out-
side the optical region, the derivative of Ri(k, co} is
sufficiently well behaved to justify neglecting h(k, co).
The transformation coefficients are only determined up to
an overall phase factor, which has no physical
significance and has been chosen unity for all branches.
Equations (3.11), (3.20), and (3.23) together define all

transverse polariton branches. The total dispersion dia-
gram is depicted in Fig. 2.

At this point, we would like to summarize and explain
once again our method of solving for the polaritons. %'e
separated the derivation into the approximate solution
for high-energy polaritons [Eqs. (3.11)] and the solution
of the four polariton branches with low frequencies [Eqs.
(3.20) and (3.23)]. It should be stressed that the method
used to obtain the latter solutions is, in principle, also
suited to treat the high-frequency branches because the
formal solution Eq. (3.12) is valid for all frequencies
Therefore, apart from the separation into transverse and
longitudinal parts, the dispersion relation [Eq. (3.20)) is
valid for all branches, i.e., solving this equation for cok
should yield all polariton branches in Fig. 2. This is a
consequence of the frequency dependence of FI —F, .
Since, however, FI —F, is, in general, a very complicated
function of frequency and wave vector, the only roots
that can actually be found easily from Eq. (3.20) are the
lowest ones, for which FI —F, may be neglected, leading
to the familiar quartic dispersion relation. Fortunately,
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the remaining polaritons, which are intimately connected
with umklapp processes, are easily found using physical
intuition, as was shown above. A different way of solving
the polariton problem would have consisted of eliminat-
ing all w and y coefficients as in Eq. (3.12), i.e., also for
Cz=o. This method has already been mentioned above.
A 6X6 eigenvalue problem is obtained with an intera-
tomic interaction like in Eq. (3.15b), except that the sum
now extends over the complete reciprocal lattice. This
interaction is therefore just the lattice Fourier transform
[Eq. (3.17a)] of the retarded dipole-dipole interaction. '9

Again neglecting off-diagonal matrix elements in the in-
teraction, the problem separates into three 2 X 2 problems

with frequency-dependent interactions. In order to ob-
tain the quartic transverse polariton dispersion relation,
part of this frequency dependence has to be known very
well, forcing one to address the details of retarded dipole
sums on the lattice. ' ' Our way of solving, namely,
by explicitly keeping the central Brillouin zone photons
in the calculation, avoids this problem and allows us to
neglect the frequency dependence of the effective interac-
tion.

For completeness, we will finally discuss the longitudi-
nal exciton branch. The eigenvalue problem to be solved
reads

cok~ II —R
~~

(k, ~k„)
—Ri(k, cok )

Ri~(k, cok„) x3 (k)

cok +0+R~i(k, cuk ) z3 (k) =0. (3.25)

Using, again, the approximation R(k, co)=4trPQ/3, the
usual longitudinal dipolar exciton frequency co~~, as
defined in Eq. (3.21b), is found from the secular equation.
Since we will neglect the role of longitudinal polaritons in
the remainder of this paper, we do not derive the trans-
formation coefficients for this branch.

IV. MASTER EQUATION FOR IMPURITY
OPERATORS

(4.1)

where the k summation extends over the first Brillouin
zone and v runs over all branches except the longitudinal
one. In Eq. (4.1) we have defined

s =b +b~

2m'cok+ G
Kk.(a)= y y

G A, =1

1/2

(4.2a)

[mGz (k)+yoz (k)]

i (k+0)-r
X (P, .ek+G~)e (4.2b)

Having found the polaritons for the atomic crystal, we
will now return to the excited-state dynamics of the im-
purities substituted into the crystal. Our derivation of
the master equation that couples different impurity
operators follows to a large extent the derivation of the
conventional master equation for molecules in vacuum as
given by Lehmberg. ' ' ' The difference is that in our case
the molecules interact with the transverse polariton field
instead of the photon field. This causes a considerable
technical complication, but, as we will see, yields the
dependence of the dynamics on the dielectric function of
the crystal in a natural way. Our starting point is the
Hamiltonian Eq. (2.1) expressed in polariton operators.

i then takes by definition, the form of Eq. (2.8) and,
using Eq. (2.6) and the inverse polariton transformation
Eq. (3.9), it is easily shown that

i'
;„i= —

~—g g g [Kk (a)gk —Kk„(a)g k ] s
a k v

Substituting Eqs. (3.23) into Eq. (4.2b), we find for the
four lowest polariton branches [v=(b, k, ')]

1/2
COk

1/2
2'

Kk (a)=V

ik r

I [co —0 —2QR (k co)] +4mPII co

(4.3a)

where ~ stands for cok,, (see Appendix A). Analogously,
we get for the higher branches [v=(Cx', A, ')] with the aid
of Eqs. (3.11)

Kk„(a)=
1/2

27Tcok+ ~~ i (k+0')-r
(P ek+Gk')e

(4.3b)

The Heisenberg equation of motion for a polariton de-
struction operator reads now

dt p'4.= —i~kAk. + —X K k.(a) s. (4.4)

which has as solution

k (t)=4k (to)e
I

+ —g f dt'Kk (a) s (t')e
&V '0

(4.5)

Here to is an initial time, which we will eventually choose
in the infinite past. It should be kept in mind that in or-
der for Eq. (4.5) to be the retarded solution, the frequency

under the integral actually stands for cok —i0+. Now
consider an arbitrary operator Q working in the Hilbert
space of the impurity molecules. Its Heisenberg
equation of motion reads (with the definition
[A,B],:—[ A (t),B(t)])
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Q(t)=iQ() g [b ~b~, Q]t
dt

+ y [s., g], g QK„.(a)g„.(t)
V

(4.6)

where normal ordering with respect to the polariton
operators is used. This equation does not only involve
impurity operators at time t, but also polariton operators.
The latter can be eliminated by substituting the solution
Eq. (4.5), leading to an equation of motion involving im-
purity operators at all times t' & t and polariton operators
at the initial time tp only. We will first work out the
second term in Eq. (4.6)

= ——g [s,g],)M D+(r, t)+ g [s,g], f dt'sp(t') —g QK„(a)Kk„(p)e "' . (4.7)

The first right-hand-side term in this equation represents
the interaction of the impurities with the positive-
frequency part of the pure crystal displacement field
defined by

Furthermore,

SIIix cosx
X

S111X
(4.11a)

p D'+(r, t)= g QKI, (a)g), (to)ev V
with

u= &
—r &r &/I &, v=1 —3r &r &/r & (4.11b)

(4.8)

This field is not afFected by the impurities and propagates
according to the pure crystal dispersion relation. The
second right-hand-side term in Eq. (4.7) contains
polariton-mediated interactions between the impurities,
which we will now work out in a more explicit form. In
Appendix B we show that within the approximation
R(k, co) =4trPQ/3 introduced in Sec. III,

t
)g QKI, (a)KI*, (p)e

k v

(4.9a)

with

3

f (~)=—— &E(co)
1 co e(co)+2

c 3

'2

(4.9b)

In the (II integration in Eq. (4.9a) the polariton stopgap is
excluded from the integration path. In Eq. (4.9b), e(eI) is
the transverse dielectric function in the infinite effective
mass approximation, which foBows from Eq. (3.22) with
R=4IrpQ/3.

[r p= ~r p~
= ~r —rp~]. The appearance of the functions

of e(tt) ) in Eq. (4.9b) is, of course, of utmost importance in
this paper. As shown in Appendix B, these functions
arise in a nontrivial way from (i) a change of variable
from It to co (density of states) and (ii) the functional
dependence of the coupling coefficient Kk (a) on the po-
lariton frequency, combined with the form of e(co)

We now substitute Eq. (4.9a) into Eq. (4.7), interchange
the integrals over co and t', and then apply the Markov
approximation' to the resulting t' integral

f d i[b ( i)+b t( i)] —t(co —tt))(t —t)'
ibp(t)

(4.12)
Qp CO+ l 77

ib pt(t)

0+~ l g

l= ——g [s,g]tp D'+(r, t)
a

Here we used our choice t0 ~ —ao and we indicated ex-
plicitly the infinitesimal imaginary part q~O+ of the
frequency. Ec[uation (4.12) is derived by factoring from
b p( t '

) and b pt( t ') their high-frequency components
exp( —iQot') and exp(I'Qot'), respectively, and assuming
that the remaining operators vary so slowly that they can
be approximated by their values at time t. We thus ob-
tain for the second right-hand-side term of Eq. (4.6)

g [s,Q], g g KI„(a)$1,„(t)

e(co) = 1+ 4trpQ

—co2+ Q 1 — P
3

(4.10)
b p(t)

Qp+ CO l 'g

+—'y f "de f p(~)[s., Q]t
7T ~ p

bp(t)
X

Qp CO+ l 'g
(4.13)
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The third right-hand-side term of Eq. (4.6) follows easily from this by taking the Hermitian conjugate and replacing Q
by Q. If we ignore high-frequency operators, such as [b,Q],bp(t), ' ' and define D' (r, t)
= [D +(r, t)], we obtain as total equation of motion for Q

=i&og [b.'b. Q) ——' &Is., Q]p. D+(r., t) ——'y p. D' (r, t)[s., Q]
dt a a

[b.' Q]bp+—g I dco f p(co)
a p 0 Qo 67+it/

[b,Q]b p b p[b, Q] bp[b t, g]
0+~ I g +0 ~ I g 0+~+ (4.14)

Due to the Markov approximation, this equation is time
local: all impurity operators are to be taken at time t.

The last term of Eq. (4.14) can still be worked out fur-
ther. We use (x i')—'=P(x ')+in5(x) for i)~0+,
where P denotes the Cauchy principal part and 5(x) is
the Dirac delta function. The contributions due to the
delta functions are easily calculated. They represent radi-
ative loss terms (see Sec. V) and, assuming that Ao does
not fall inside the polariton stopgap, we have

—
co~~ to —coi [cf. Eqs. (3.21)] is excluded from the co in-

tegration. If we assume that f p(co) is an analytic func-
tion of ~ and extend the integration path to include the
stopgap regions, we may easily calculate the principal
value integral in Eq. (4.17) using contour integration. To
this end the tensor r contained in f p(co) must be split
into parts with positive and negative imaginary ex-
ponents, for which the integration contour has to be
closed in the upper and lower complex half plane, respec-
tively. We then obtain

with

= g y p[b Qbp ,'(b b—p—Q+Qb bp)],
loss a p

(4.15a)

with

=i g f) p[b bp Q],
disp a,p

asap

(4.18a)

3

2 &0
p=2f p(QO) = Qe(QO)

C

'2
e( flo) +2

3

'2
2O,o e(QO)+2Qe(n )c 0

Qo
Xp r Qe(Qo) r p pp .

c
(4.15b)

The evaluation of the principal part contributions re-
quires more algebra. The term for a =p is due to the
Lambshift of the impurity transition frequency, which we
will neglect henceforth. The terms for asap represent the
real (dispersive) dipole-dipole interactions between the
impurities (see Sec. V). After some straightforward ma-
nipulations, we obtain

dQ i=—g P I dco f p(co)
oo

dt d,, m.
P O

asap

X[b bp, Q]

1 1

Qo ~ Ao+

(4.16)

(use [b,bp]=0 for aXP). Since both e(co) and 7(x) are
even functions of their arguments, the co integration may
be extended from —~ to + oo, yielding

r

p(co)g P J dco [b bp, Q] . (4.17)

asap

Here, not only the stopgap, but also the interval from

Qo
Xp~'V CQE(Qp) r p pp ~

C
(4.18b)

cosx sinx cosxo(xf—:u v
x x

(4.18c)

The tensors u and v have been defined in Eq. (4.11b).
It should be noted that the assumption that f p(co) is

analytic is an oversimplification, and that there are more
poles that contribute to the integral of Eq. (4.17) than the
one at co=Go. First of all, the integration path includes
singularities at +coi [poles of e(co)]. Second, the in-
tegrand contains [e(co)]' and [e(co)],which give rise
to branch cuts. We will not investigate the consequences
of these singularities and cuts on the integral. It should
be noted, however, that the fact that the integration path
hits the poles at +co~ is an artifact, resulting from the ap-
proximate extension of the k integral for the lower polari-
ton branch in Appendix 8 to infinity. In reality, the in-
tegration stops slightly outside the stopgap, yielding a
convergent integral.

The total equation of motion for the operator Q may
now be summarized as follows:
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d"
dt

=i IIOQ[b b, Q]+i g 0 i3[b bp, g]
a a, P

aWP

+ g X.p[b.Qb& ,'—(b—'.b,Q+ gb tb~)]
a, P

&
g[s. Q]p. D+(r, t)
a

—
& gp D' (r, t)[s,Q] .

a

V. DISCUSSION

(4.19)

= —„(H, (t)Q QH, gt))—+i(rg) . (5.1)
dt

Here we defined a non-Hermitian time-dependent
effective molecular Hamiltonian

ff(~)=&&og b b —p D'(r, t)(b +b t)

+& g n.~btb~+ yZ.~btb
aP ay

a&P

(5.2a)

In this paper we derived an equation of motion that de-
scribes the excited-state dynamics of impurity molecules
embedded in an atomic crystal. In our picture, the inter-
molecular interactions are mediated by the exchange of
polaritons between the molecules. The main motivation
for this work is to account in a fully microscopic way for
the effect of the dielectric function of a host medium on
the excited-state dynamics of molecules embedded in it.
Our final result Eq. (4.19) is a time local equation for an
arbitrary molecular operator which contains the initial
condition of the polariton field as the only operator out-
side the Hilbert space of the impurities. As argued in
Sec. II, our theory generalizes the usual description of
the excited-state dynamics of a collection of molecules in
vacuum which are interacting through exchange of pho-
tons. Our final equation of motion has the same structure
as the vacuum superradiance master equation the effect
of the host crystal is contained within the coefficients Q &
and y &, which are scaled by the crystal's dielectric func-
tion and within the field D'(r, t) with which the mole-
cules interact. If, in order to mimic a vacuum environ-
ment, the dielectric function is set equal to unity, the con-
ventional superradiance equation of motion is indeed ex-
actly recovered. The equation of motion Eq. (4.19) pro-
vides a general starting point to study nonlinear optical
phenomena in a condensed phase. The equation may be
written in a more compact way, which better illustrates
the significance of its different terms. First we note that
in order to calculate observables, we are eventually only
interested in expectation values of molecular operators.
Taking the expectation value of Eq. (4.19) and assuming
that at time to the density operator for the total system is
a direct product of an arbitrary molecular density opera-
tor and a coherent state density operator for the polari-
tons, we obtain

From this it follows, in particular, that the single-
molecule spontaneous decay rate is given by

E(QO)+2r..=r".".&«&0) (S.4a)

with

is a term which cannot be interpreted as arising from an
effective Hamiltonian. We concentrate on A,ff(t). Its
first term is just the Hamiltonian Eq. (2.2) of the isolated
impurities. The second term is the coupling between the
impurities and the expectation value
D'(r, t)—= (D+(r, t)+D' (r, t)) of the total electric dis-

placement field in the perfect crystal, i.e., without the im-

purities, at time t. This field is thus an external, classical
quantity. It should be noted that the last two terms in

Eq. (4.19) may only be combined in Eq. (5.2a) to obtain
this interaction with an external field, as a consequence of
the assumed initial condition for the polaritons and the
use of normal ordering of the polariton operators. The
interaction with the external field may be omitted com-

pletely in the special case that the polariton field is initial-

ly in the vacuum state. ' This situation pertains to
spontaneous-emission problems. The third term in the
effective Hamiltonian is a Hermitian or dissipersive inter-
molecular interaction (as anticipated in Sec. IV). As is

easily shown from Eqs. (3.17c) and (4.18b), the coefficient
Q &

is proportional to the real part of the retarded
dipole-dipole interaction p F(r &, Qo) p&, where the

presence of the dielectric host is completely contained in
a rescaling with functions of E(Q0). Finally, the last term
in Eq. (5.2a) is an anti-Hermitian interaction, causing loss
of energy from the impurity system. The coefticient y &

equals the imaginary part of the retarded dipole-dipole
interaction, again with a rescaling involving e(00), and
describes the superradiant intermolecular coupling for
aWP and the single-molecule spontaneous decay rate for
a=f3 Equatio. n (5.1) generates a hierarchy of equations
of motion for expectation values of impurity operators
only, because of the special initial condition for the polar-
itons. We note that only in this situation the equation of
motion derived in this paper (and analogous for the equa-
tion in Ref. 13) is useful for a systematic calculation of
nonlinear optical processes. For other initial conditions,
the operator nature of D'(r, t) must be retained, forcing
one to build a hierarchy which also involves mixed
impurity-polariton operators.

We proceed by concentrating on the intermolecular in-

teractions 0
&

and y &. Our theory shows from a micro-
scopic starting point how these are changed by the sur-
rounding dielectric. It is instructive to study some spe-
cial cases and to compare them with other theories.
We start by considering the near-zone limit
Qe(00)ftor pic ((1. Then

'I 3 2
Qo p .

p& e(00)+24 0 Pa PP ~ (II )
0 (5.3)

and

rg —= —i y q.,b .'gb,
a, P

(5.2b)
VaC
aa

4@a QO
2 3

3' c
(5.4b)
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the decay rate of the same molecule in vacuum. We note
that the rate Eq. (5.4a) can also be obtained using the
Fermi golden rule

(5.5)

with C the coupling between the molecule and the polari-
tons and d the polariton density of states (in fact, as far as
the single-molecule decay rate is concerned, our calcula-
tion is completely equivalent to evaluating this Fermi
golden rule). In the crystal an excited molecule loses its
energy by emitting polaritons rather than photons.
There is considerable current interest in studying the
spontaneous emission of a chromophore in a finite size
environment (a solvent cluster or a microcrystallite). It is
clear from our present derivation that Eq. (5.4) is expect-
ed to hold only if the cluster size is at least of the order of
an optical wavelength. For smaller clusters we cannot in-
voke the notion of polaritons. This conclusion provides
an explanation for recent supersonic beam experiments in
which it was observed that the radiative lifetime of 9, 10-
dichloroanthracene embedded in Ar clusters does not
reach its bulk value [Eq. (5.4)] even for cluster sizes of a
few thousand Ar atoms.

If the impurity transition frequency Oo is far enough
from all atomic transition frequencies so that the frequen-
cy dispersion of the dielectric function may be neglected
[e(cp)=e], we may derive the scaling in Eq. (5.4) from
heuristic (macroscopic) arguments. In this derivation we
also use the Fermi golden rule, but now we simply con-
sider the impurity coupled to an effective (macroscopic)
radiation field with a modified velocity of light given by
c/e' instead of coupled to the microscopic polariton
field. In the frequency domain, the density of modes of
this effective field scales as e, as may be seen, for in-
stance, from Eq. (88) using cok =ceo . Furthermore, the
coupling scales as e ' because the plane-wave ampli-
tude of the macroscopic electric field scales in this way.
The inclusion of these two effects in the Fermi golden
rule leads to a decay rate proportional to e', which is
commonly given as the only dependence on the dielectric
constant. The appearance of the last factor in Eq. (5.4a)
may be interpreted as a rescaling of the impurity s transi-
tion dipole due to the reaction field or local field from the
polarized environment. Using electrostatics, there is a
dilemma of how to account for this effect. On the one
hand, a rescaling of p, with a factor (@+2)/3 is obtained
by considering the impurity as residing in a Virtual cavity
inside the dielectric, whereas the consideration of a real
cavity leads to a factor 3e/(2m+ I). This dilemma has
been pointed out by Agranovich, who adopted the virtual
cavity. In our microscopic calculation, we do not face
this ambiguity at all; the factor I [e(Qp)+2]/3I emerges
naturally, justifying Agranovich's choice. Moreover,
our theory properly accounts for frequency dispersion. It
should be pointed out that in the presence of frequency
dispersion the derivative of e(co) enters the density of
states [cf. Eq. (88)], which, therefore, no longer scales as
[e(co)] . The apparent simplicity of Eq. (5.4a) is the re-

suit of delicate cancellations of factors in the coupling
and the density of states of the polaritons.

The phenomenological arguments given above may in
fact be used to explain the dependence of both 0 p and
y p on e for all values of Aor p/c. To this end, we repeat
the derivation of the master equation for molecules in-
teracting with the effective radiation field, which scales as

, instead of with polaritons. Both 0 p and y p in-
volve two interactions with the field, giving a factor e
the density of states yields a factor e and the local-field
scaling of the dipoles gives [(a+2)/3] . Furthermore, if
we realize that the argument of the tensor ~ and o. is kr
and that the wave number k scales like &e at constant
frequency, the e dependences of Eqs. (4. 15b) and (4.18b)
are obtained.

We now concentrate on the near-zone limit of the
dispersive interaction

~near 1

e(Qp)

e(Qp)+ 2

3

raprap
ep

I' ap
(5.6)

far-zone

sin [ )/ E ( Q p )Qpr & /c ]
u pp,Pa

~ap

Qp e(Qp)+2
c 3

1Q"=——
ap

(5.7a)

c s[oQE(Qp)Qpr &
Ic]'

pa u pp, (5.7b)
ap

from which it is seen that the screening factor 1/e disap-
pears over large distances.

Because of the fundamental role the crystal polaritons
play in our theory, it is useful to address the key points

which is easily recognized as the instantaneous dipole-
dipole interaction scaled by the screening factor I /e(Qp)
and the local field factor I [a(Qp)+2]/3I . This scaling
has also been obtained by Agranovich, starting from mol-
ecules with (vacuum) instantaneous Coulomb interactions
(p. A Hamiltonian), between which exchange of lattice
excitons takes place. We note that Agranovich's start-
ing point is completely unretarded, in contrast to our
theory in which we account for retardation through the
polaritons. Nevertheless, both approaches yield the same
result for the near-zone real interaction because this
quantity is, by definition, not sensitive to retardation. Of
course, effects related to retardation, in particular, the
coeKcients y p, cannot be obtained by just considering
excitons. A well-known consequence of the result Eq.
(5.6) is that the Forster rate of energy transfer between
two molecules, which is proportional to lQ"&'"l, scales
like [(n +2)/3] n, with n =&e the index of refrac-
tion of the surrounding medium. '

Finally, we give the results
[Qe(Qp)Qpr p/c ))1]

2 2
Qp e(Qp)+2

T p=~ 3
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on their calculation once again. First, we did not neglect
umklapp processes, leading to an infinite number of po-
lariton branches and the complete recovery of the retard-
ed dipole-dipole interactions in the crystal. We mention,
without proof, that a theory starting from the multipolar
(p.D) Hamiltonian in which umklapp processes are
nelgected does not yield the local field factor [(@+2)/3]
as, for instance, in Eqs. (5.3) and (5.6), but instead gives
e . This may be understood because in such a theory
D=eE is the local field, instead of (@+2)E/3 (E being
the Maxwell electric field). Neglecting umklapp process-
es, one would therefore predict a scaling of, for instance,
the single-molecule spontaneous decay rate with a factor
e . The most serious approximation in our derivation
of the polaritons is that, in order to obtain analytic re-
sults, we approximated the interaction tensor Eq. (3.15b)
by a constant diagonal tensor R(k, co)=4irPQ/3. This is
only correct if aiR, /c «1 and kR, «1 [cf. Eqs. (3.18)].
We note, however, that this approximation has no effect
on the result for the imaginary interaction y &, provided
that the impurity transition frequency does not approach
the stopgap from below. This can be understood as fol-
lows: the calculation of y & involves a delta function at
m =0,0 so that the polariton transformation coefficients
and dispersion relation are only needed at frequency 0,0
and wave number k0=+E(00)QQ/c. Since I10 is an opti-
cal frequency and we assumed that QD does not approach
the stopgap, we have ADR, /c « 1 and k&R, « 1 (cf. Fig.
1), which justifies the approximation on R(k, ai). We note
that also the extension to infinity of the k integral over
the lower polariton branch as performed in Appendix 8
does not affect y &, again because the relevant wave num-
ber k0 lies inside the first Brillouin zone. It is an open
question how the above approximations affect the real in-
teraction 0, &.

An important question is how our results are limited
by the position of the impurity s transition frequency Q0
relative to the crystal transition frequency Q. We explic-
itly assumed in Sec. IV that 00 does not fa11 inside the po-
lariton stopgap ranging from 0( 1 4nP/3 )

' t—o.
A(1+8'/3)'~ and we reasoned above already that QD

should also not approach the stopgap from below. Strict-
ly speaking, within our theory the imaginary (self-) in-
teractions y &

vanish for 00 inside the stopgap because
the 6 function then falls outside the region of integration
in Eq. (4.14). One should realize, however, that this is en-
tirely due to our approximation on the tensor R(k, co),
which coincides with an infinite effective exciton mass ap-
proximation, leading to a total absence of polariton states
inside the stopgap. In reality, the lower polariton curve
together with the transverse exciton curve, bends upward
into the stopgap at high wave numbers giving a finite
density of states and finite spontaneous decay rates.
There is a second, more fundamental reason why our
theory does not apply when 00 approaches the crystal's
exciton band, namely that it does not account for delocal-
ization of the excitation of an impurity over neighboring
crystal atoms. This is a consequence of the Markov ap-
proximation, as a result of which the interactions 0 &
and y & are only obtained to second order in the
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APPENDIX A

In this appendix, we derive Eq. (4.3a) for the coupling
coefficient Ki, (o. ) for the four lowest polariton branches.
Using Eqs. (3.23), we have, for G=0,

co —fl —2QRi (k, co )

I[co —0 —2QRi(k, )]ai+4mf3f), cui, )' '.
(Al)

and for GWO

ia Gi „(k)+y Gi.(k )

1/2
7rpQ 2&&k+ Gp

CO

1/2
4~a ~w+a

2 2
CO COi, +~

pea+Gx'ei ~
X

[[co —0 —2QRi(k, co)] +4~PA col, [
'

Substituting Eqs. (Al) and (A2) into Eq. (4.2b), we find

polariton-impurity interaction. Delocalization can only
be taken into account in a nonperturbative theory. In his
calculation of the near-zone dipole-dipole coupling men-
tioned above, Agranovich did go beyond second-order
perturbation theory in the molecule-exciton coupling,
and he therefore obtained extra scaling factors which are
important near the exciton band. These extra factors do
not simply depend on e(QD); the universal scaling with
the dielectric function must be expected to break down
when delocalization sets in. Obviously, our results are
most interesting in the frequency region where delocali-
zation is not important and the dielectric function shows
a clear dispersion. A measure for the importance of delo-
calization is given by ppap/fi ~ cubi QD~,

—ratio of the
impurity-lattice coupling and the energy mismatch.
Comparing this with Eq. (4.10) for e(co), we observe that
the frequency dispersion may still be appreciable while
the delocalizaton is negligible as long as p &&p0, i.e., for a
host crystal with a relatively large oscillator strength.
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K)„(a)=
1/2

ik r
e

[[co —Q —2QR i(k, co)] +4'/3Q co„}'

X I [a) —Q —2QR i(k, co)]p .ei,k

+2Qp .R(k, o~).ei, k I . (A3)

The first term in the second set of curly brackets comes
from the G=O contribution in Eq. (4.2b), while the
second term emerges from QG~~o~. We used explicitly
that exp(i' r )=1, and the interaction tensor R(k, co) is
as defined in Eq. (3.15b). If we neglect the off-diagonal
matrix elements of this tensor, as we did in the main text,
we may write

p R(k, co).ez&. =Ri(k, co)(p .
ek& ), (A4)

since eke is a transverse polarization vector (A,
' = 1 or 2).

Equation (4.3a) now follows trivially from Eq. (A3).

and photon are so well separated in energy that they do
not mix. Alternatively, this limiting behavior can be de-
rived more rigorously from the dispersion relation Eq.
(3.20) provided that 2QRi(k, co) ((cok in the region of in-
terest. This condition is fulfilled in particular within the
approximation R(k, co)=4vrPQ/3, which we will confine
ourselves to in the remainder. It now follows from Eq.
(4.3a) that at the edge of the first Brillouin zone

' 1/2
277CO I ikr

(p eik ')e (82)

where the branch label v has been split into its two subla-
bels, and u stands for b=upper. In fact, we note that if
the definitions (3.20) and (4.3a) for co&„& ~ and Ki,„i (a) as
functions of k are considered to pertain also outside the
first Brillouin zone (k+Cx'), these functions are equal to
co&„and K& (a) for the higher Brillouin zones as defined
in Eqs. (3.11) and (4.3b). Therefore it is possible to com-
bine in Eq. (Bl) the integrals for the branches v=(u, A, ')
and v= (Cr'%0, A. ') to one integral over the entire k space

I =I( +I2, (83a)
APPENDiX B

In this Appendix we derive Eq. (4.9). If we take the
limit V~ ~ of the left-hand side of this equation it trans-
forms to

g I dkKi, (a)Ki*„(P)e
(2~)'

(81)

where ~ stands for t —t'. Next we note that if k ap-
proaches the edge of the first Brillouin zone, the polariton
frequency for the branches v=(b =upper, A, ') (the upper
two of the lowest branches) approaches cok. This is clear
from physical insight; at the zone boundary the exciton

2

I, =
i g I dkKi, „k (a)Ki*,„k (p)e

(2~)
(83b)

2

I2 g I dk Kkii. ( a )K glk (P)e (83c)(2ir)', =,

Here it should be understood that in the first integral the
definitions of K&„z (a) and co&„k have been extended to k
values outside the first Brillouin zone. The label l in Eq.
(83c) stands for b=lower

We will first evaluate I&. Using Eq. (4.3a) we find
(v=uA, ')

lk'r
p 1Cdl 7

1 I 2vr ~k (~k Q ) (p eke. ')(eke. ' pp)

(2m) k =, & ~k [o~k —Q (1+8mP/3)] +4m.PQ o)k
(84)

with r &
=—r —r&. Since the frequency mk in this integral

does not depend on the polarization A,
' [cf. Eq. (3.20)] and

is also independent of the direction k of k [as a conse-
quence of the approximation R(k, co) =4nPQ/3], the sum
over A,

' and the integration over k can be performed. It
follows that

I, = g" dkk
cgk (cdk Q ) p~'&(k& p)'pp

M "o cok, [oi2k —Q2(1+8m'p/3)] +4m'pQ cok
4m.13Q

—co +Q (1 4vrf3/3)— (87)

The integral in Eq. (86) can be worked out to obtain the
explicit form of V given in Eqs. (4.11). We now trans-
form the k integration in Eq. (85) to an integration over
the polariton frequency col, —=co. This is done using
cok =kc = &e(co)co, with e(co) the frequency-dependent
dielectric function of the atomic lattice given by Eq.
(3.22) with R(k, co) =4rlPQ/3:

with

lN
Xe (85) Straightforward algebra yields, for the integration ele-

ment,

4rrV(kr p): Jdk(1 —kk)e— (86)
0cog 2 GCOk

k dk =e(co) dco=&e(co) des
C 8CO C 8 CL)
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d cok

ddt

0 (1+SirP/3) —2co +cok

0 (1—4mP/3) —co
(89)

[independent of the form of e(co)]. Taking the differential
of the dispersion relation Eq. (3.20), it is easily shown
that

Finally, the lower boundary k =0 of the integral in Eq.
(85) transforms to a lower boundary at the longitudinal
exciton frequency (co~() as defined in Eq. (3.2lb) (see Fig.
1). We thus obtain

'3t'

CO mr &I, = dco —&e(co) p r &e(co) @pe
C

0 (1+StrP/3) co +[—e(co) 1]co — (co —0 )

0 (1—4~rP/3) —co [co —0 (1 + 8m P/3)] +4mPe(co)Q co
(810)

Using Eq. (87) it can be shown through tedious but straightforward algebra that the factor in the second set of large
parentheses in Eq. (810) equals

0 (1+SirP/3) —co +[e(co)—1]co (co —0 )

0 (1 4irP/3)——co [co —0 (1+8 Pir/3)] +4irPe(co)Q co

so that

1

e(co )

e(co)+2
3

(811)

I, =—I 1cof &(co)e (812)

with f &(co) as defined in Eq. (4.9b).
Now the term I2 in Eq. (83a) is left to be determined. If we extend the integration over all k space, this term can be

treated in exactly the same way as I]. The only di8'erence is that for the lowest polariton branch the interval of the final
integration ranges from co=0 to co=cot, the transverse exciton frequency as defined in Eq. (3.21a) (see Fig. 1). We thus
get

i'
I2 = —f dco f (co)e

0 aP (813)

This result together with Eqs. (83a) and (812), yields Eq. (4.9a). We note that, since in reality the k integration in Eq.
(83c) stops at the boundary of the first Brillouin zone, the co integration will stop slightly below the lower boundary cot
of the stopgap.
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