
PHYSICAL REVIEW A VOLUME 40, NUMBER 12 DECEMBER 15, 1989

Mode-selecting efFects and coherence in hot-plasma x-ray lasers
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The three-dimensional time-dependent set of Maxwell-Bloch equations for amplified spontaneous
emission in diffraction-dominated (low Fresnel number) and small-gain systems is solved. The expli-
cit form of the modes of radiation for gain and density profiles which are typical of hot-plasma x-
ray-laser experiments is derived. The behavior of the excitation strengths of the modes is analyzed.
It is found that due to the combined effects of diffraction, refraction, and gain, the excitation
strength is a more rapidly decreasing function of the mode number in systems with smaller Fresnel
numbers. The behavior of coherence as a function of propagation length in systems with various
Fresnel numbers is computed and analyzed.

I. INTRODUCTION

In the past few years, several groups have reported suc-
cess in getting amplified spontaneous emission (ASE) at
soft-x-ray wavelengths out of hydrogenlike and neonlike
ions in hot laboratory plasma. ' The development of these
amplifiers into bright sources of coherent radiation at
wavelengths in the range of A. = 22 —44 A (the "water win-
dow") will open the road to the creation of holograms of
live biological samples. '

The present experimental setups are capable (at least
theoretically) of generating pulses of 1-MW radiation
from plasma sources of length I. -=3 crn and radius
R =—200 pm. Due to the large Fresnel number of these
systems (I' =R /A, L -=66) the number of spatial modes in
the output radiation is large (n =F=—4000),—yielding low
spatial coherence.

A method to obtain 1 MW of single-transverse-mode
radiation was suggested by Rosen, Trebes, and Mat-
thews. Their method is based on driving the amplifier
by single mode of radiation from a thin long preamplifier.
The only requirement from the preamplifier intensity is
that it be higher than the spontaneous noise in the main
amplifier. In order to achieve single-transverse-mode ra-
diation, the radius of the preamplifier must be of the or-
der of 25 p,m (corresponding to a Fresnel number of the
order of 1). The subject of this work is to study the phys-
ical effects which lead to mode filtering in amplified spon-
taneous emission (ASE) in such small Fresnel number
systems.

Previous treatments of radiation propagation in hot-
plasma x-ray lasers were based on ray tracing. ' Lon-
don has analyzed intensity arnplification in the steady
state of ASE by the radiative transfer method, namely,
following ray trajectories and modeling the plasma by a
medium with prescribed gain refractive index and density
of radiating sources. In order to analyze problems such
as transverse and longitudinal coherence the more refined
semiclassical laser theory, which includes the wave be-
havior of the radiation as well as the dynamics of atomic
polarization should be used. The progress in the last two

decades in the theory of superfluorescence "(SF) stimu-
lated Raman scattering, (SRS) and ASE, ' ' can help us
in this task. It was shown that a complete quantum-
mechanical description of SF, SRS, and ASE is given by a
set of equations for the field and polarization operators
which are formally identical to the set of Maxwell-Bloch
equations of the semiclassical theory of laser-atom in-
teraction, with an additional stochastic Langevin term.
This theoretical framework can now be used and further
developed, in order to analyze results such as transverse
coherence and power spectrum obtained in x-ray laser
(XRL) experiments. Such a program was initiated by us
in Ref. 5. The model equations were solved, in the limit
of large Fresnel numbers (negligibly small diffraction
effects), by the ray-tracing technique, yielding formulas
for the field intensity, field autocorrelation function, com-
plex degree of coherence, and power spectrum. The re-
sults of Ref. 5 are useful in the analysis of the present
XRL experiments, ' which are mainly single-pass ASE ex-
periments with large Fresnel numbers.

In the preamplifier proposed by Rosen, Trebes, and
Matthews one expects that, due to small Fresnel num-
bers, diffraction will play an essential role in determining
the characteristics of the output radiation. For such sys-
tems the expansion in 1/F, used in Ref. 5, which leads to
a geometric-optics-like solution of the model equations is
not valid and a complete treatment of the wave behavior
of the radiation is required. The nature of the evolving
field indicates also the appropriate mathematical ap-
proach to the solution. Due to the filtering effect, small-
Fresnel-number systems support only a small number of
modes. Elementary analysis of transverse coherence,
early works on optical resonators, and more recent
works on transverse coherence of SF (Ref. 10) and SRS
[(Ref. 7(b)] all show that, in a system initiated with a ran-
dom signal, the number of transverse coherent modes
that survive at the end of the system is n -4~ R /
A. L =I . Obviously field evolution in small-Fresnel-
nurnber systems is best handled by expanding the field in
a set of coherent fields (modes) with random coefficients.
Such an analysis was successfully applied (to SRS) for a
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square gain profile. ' ' The functional shapes of the
modes and their excitation strengths were found by using
the known propagator of the wave equation in a homo-
geneous medium as a kernel of the integral equation for
the modes. The integral equation was solved numerical-
ly. This method is limited to a square gain profile.

For the purpose of analyzing transverse coherence in
XRL experiments gain profiles other than square have to
be considered. In this work we present a method for
evaluating the modes, their excitation strengths, and the
coherence of the output radiation for a general gain
profile. The method is simple and analytically solvable
for the class of gain and density profiles of the form

f [rT/[R (1+z /L )]I /(1+z /L ),
where rT and z are the coordinates perpendicular and
parallel (respectively) to the long dimension of the system
(the lasing axis); R and L are the transverse dimension
and length of the system, respectively.

The plan of the paper is as follows. In Sec. II we
present a brief review of the model equations for hot-
plasma x-ray lasers. In Sec. III we expand the radiation
field in Gaussian-Laguerre functions which constitute a
complete orthonormal set of transversely localized solu-
tions of the wave equation in free space. This expansion
reduces the model equations to a set of coupled-mode
equations (i.e., a set of coupled stochastic differential
equations for the projections of the field on the modes).
The solution of the coupled-mode equations is derived at
the end of the section. This solution is used in Sec. IV to
derive a formula for the mode expansion of the complex
degree of coherence of the output radiation. The explicit
form of the complex degree of coherence for the class of
gain profiles of the form

g =f, {rT/[R (1+z /L )]I/(1+z /L ),
is given in Sec. V. In that section we also derive a repre-
sentation of the actual modes of the system as an expan-
sion in the set of Gaussian-Laguerre functions. In Sec.
VI a numerical study of the actual modes, the excitation
strengths, and the coherence of the output radiation is
presented. Summary and discussion are given in Sec.
VII.

II. THE BASIC EQUATIONS

In these equations, ii=z/L, p=rT/R and ~=~—z/c rT
is perpendicular to the lasing axis z, R and L are the
transverse and longitudinal scale lengths typical of the
system, Q is the normalized envelope of the radiation
field E, P is the normalized envelope of the atomic polar-
ization p, W is the population inversion, R is the random
Langevin force, and a is a dimensionless normalization
factor (the numerical value of which is of the order of the
gain-length product). Also,

E(rT, z, t)=EO(rT, z, t)e'" '"'

&=
I dI IE, I /&,

—dP (icolc)(z ct)—
(4)

and

b, =(E,—82)/A' —co,

a=(3/8m)A, An;L/I

d=(a) IeRdl~2&,

co =4mn e /m,
and

1/F =L/[R (cv/C)] .

n, and n, are the electron and ion densities. e and m are
the electron charge and mass. u, , u2, E, , and c.2 are the
eigenvectors and eigenvalues of the atomic Hamiltonian
in the absence of radiation. 6 is the detuning between
the radiation frequency and the atomic transition fre-
quency. eRd is the atomic dipole operator. A is the Ein-
stein coefficient, A =(—', )~d~ cv /(Pic ). b,D is the full

width at half maximum (FWHM) of the detuning distri-
bution d(h). I is the total linewidth due to both homo-
geneous and inhomogeneous broadening effects. The
averaging process [),„ is over detunings due to different
Doppler shifts of atoms moving with different velocities
relative to the laboratory system. The yP and A terms
in Eq. (2) are relaxation and fluctuation terins, respective-
ly, due to homogeneous dephasing effects" (y is the de-
cay rate due to phase changing collisions plus the sum of
radiative decay rates of upper and lower levels divided by
2). Fluctuations at different times and locations do not
correlate; furthermore, it may be shown that "

The spatial and temporal evolution of the radiation
field in hot-plasma XRL is governed by the set of linear-
ized Maxwell-Bloch equations in the rotation-wave slow-
ly varying envelope approximation:

(W(P, il, w)%(P', g', w') )
=5 (p —p')5(g —ii')5(r —r')2I /(n;R L) . (10)

i P'~' +V' Q(p, rt, ~)/2F
'yl

+[co (p, ri)(L/2cvc)]Q(p, ri, r) =aI [P(p, g, ~)],„,

i ' ' =6 P(p, ri, r) —W(p, g)Q(p, ii, ~)
. aP(p, ~, r)

7

Equations (2) and (10) define the random Langevin force

At the end of Sec. V it will be shown that, in the limit
of very small gain, this definition leads to the correct
spontaneous-emission rate. Also, initially the atomic po-
larizations at different locations do not correlate, and the
following relation holds; "
(P(p, ii, ~=0)P(p', il', ~'=0) )

i y P(p, g, r) +A(p, g, w)—. (2) =5 (p —p')5(g —g')/(n, R L) .



MODE-SELECTING EFFECTS AND COHERENCE IN HOT-. . . 7057

ia—WQ [I /(y+s+iA)], „
=a[P(p, i},0) —i J7 ][I /(y+s +i b, )],„. (12)

In general the averaging process [in Eq. (12)] introduces
the inhomogeneous line broadening, namely,

As a first step towards the solution of Eqs. (1) and (2) we
perform a Laplace transform with respect to the time
variable r and eliminate p, thus reducing Eqs. (1) and (2)
to a single equation,

~
an'

i +V 0 /2F + (L /2coc )co 0p

Q(p, g, r) = pa' (ri, 7)&p (p, ri),
I',p'

or equivalently,

(15)

f (p, g, s} are to the left of the integration contour in the
complex s plane.

III. COUPLED-MODE EQUATION

In this section we will use Eq. (12') to derive a set of
coupled stochastic differential equations for the projec-
tions of the field envelope on a complete set of coherent
modes. This will serve us in the analysis of the field
coherence in Sec. IV. We expand the field in the form

[1/(y+s +i b, )],„=1/(1 +s) . 0 (p, i},s)= ga ' (i},s)U'. (p, g) . (16)
It may be shown that the total linewidth I may be ap-
proximated by the sum of the homogeneous width and
the width of the Doppler line profile, namely, I =y+ Az.
[For Lorenzian line shape d (b, ) =(hn /m)/(b, &+6 )

these results are exact' .]
We therefore rewrite Eq. (12) in the form

. an~
i +V' f}, /2F+(L/2coc)co f}, iaW'fl, —I /(I +s)

a& P

=a[P(p, ri, 0) —iA ][I /( I + s) ] . (12')

(14)

where b is chosen so that all the singular points of

In Eqs. (12) and (12') the Laplace transform of a general
quantity f is defined by

L~, ,~(f)=f (p, rl, s)= J e "f(p, rl, r)dr, (13)
0

L~, ',~(f )=f(p, ,i})r=f e "f (p, ri, s)ds,—i oo+b

j',p'

U~ (p, i}) are the Gaussian Laguerre functions" which
constitute a complete orthonormal set of transversely lo-
calized solutions to the free space paraxial wave equation,
i.e.,

BU' (P,il), U' (P, il)
(17)

aq

J pdp f dP U*'(p, g, il)Up (p, g, q)=5(l, l')5(p, p') .

(18)
where p= ~p~, P is the angle between p and the x axis.
The coupled-mode equation is obtained by using the ex-
pansion (16) in Eq. (12'), multiplying by U '(p, P, g) and
integrating over p dp d P [with the help of relations
(17) and (18)]. Using a gain profile of the form
aw =aowof (p, i}) and a density profile of the form
co =cozou (p, g), the result is (for details see Appendix)

Ba,~'(ri, s)
i —i [aowoI /(s +1 )]g[N' .(i})exp[2i(p —p')tan '(g)]/Fg ]a '(g, s)

ag I

+(L/2coc)co og[D' ~ (i})exp[2i(p —p')tan '(g)]/Fg ]a ~ (rl, s)=[1 /(s+I )][B'(il)—i3 ( },7)]s.
p

(19)

In the last equation the terms in the curley brackets are
the overlap integrals of the gain and of co with the
modes. B (ri) and A (g, s) are the projections (on the
modes) of the random source terms P(p, i},r =0) and
J7 (p, q, s), respectively, and g =2(1+g )/F. N and
D ~ are defined explicitly in the Appendix.

A more compact form of Eq. (19) is obtained by chang-
ing to new variables,

O=tan '(i}+i}o),

Defining the matrices

(p)~~
—=&(p,p')p

and

T'(il, s + I )—:[(aowo/2)1 /(s + I )]N'(q)

+i (L /4coc)cu ~'(ri) 2ip, —

the coupled-mode equation (19) takes the form

GABY

(O, s)/BO iT'(O, s +I )—Y'(O, s)

(22)

(23)

F~ '(g, s) =exp( —2ipO)a~ '(il, s), (21)

and using a vector and matrix notation. For example,
( a ( i},s) }& [the p component of the vector
a'(g, s)]=a~ '(i},s), ( Y'(il, s)}~ [the p component of the
vector Y'(g, s)]:—Y '(7},s), and (N'(g)} ~ [the p,p' ele-
ment of the matrix N'(i})]:NL'. (ri). —

= [Fg (O)/2]exp( 2' O)—
X[—i A '(O, s)+B'(O)]I /(s + I ) . (24)

The solution for the stochastic vector of mode amplitudes
a may be formally written in terms of the Green's func-
tion of Eq. (24). Defining the matrix 6 0, which is the
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solution of the equation

BG o( 0, 0', s + I')
i iT—'(g, s+I )Go(0, 0',s+I )=0,

G'(g, g, s+I )=I
(unit matrix), and the matrix G',

G i e 2iP8[ G I /(s + I ) ]e
—2iP8 (26)

with the condition

It may be easily shown [using Eqs. (21), (24), (25), and (26)
and assuming a(0=00)=0, P(0=00)=0] that the solu-
tion for the stochastic vector of mode amplitudes is

a'(g, r)=(I F/2) f dr' f dg'e "' ''G'(0, 0', r r')—g (0')[ i A—'(0', r')+5(r')B'(0')]
0 0

or

a'(q, r)=r f 'dr f "dq e " -"G-'(~, q', r r)—
0 0

X [ i A—(ri', r')+5(r')B (ri')] . (27)

IV. THE COMPLEX DEGREE OF COHERKNCK

The analysis of transverse coherence of the output ra-
diation, in hot-plasma XRL, is carried out in the present
work by studying the properties of the complex degree of
coherence defined by '

equal to the visibility of the interference pattern in a
double-slit Young's interference experiment with the out-
put radiation as the source and the slits located at p and
o . Maximum coherence corresponds to

~ p ~

= 1; partial
coherence corresponds to

~ p~ ( l.
It has been demonstrated by many authors that the

analysis of coherence is made simpler by using the notion
of coherent modes. ' ' '"' The expansion used in Sec. III
[Eqs. (15) and (16)] with the help of the correlation law of
the Langevin force and initial polarization [Eqs. (10) and
(11)] yields the following mode expansion of the field en-
velope autocorrelation function:

p(p, g, g, r:ir, @,6, T)

C(p, g, g, r:a,@,6, T)

[& ~n(p, y, g, r)~ && ~Q(ir, e, e, T)~ &]'

where C is the field envelope autocorrelation function

(28)

C (p, P, 0, r:cr, 4,6, T)

= g U'(p, g, g)U'(p, @,6)&ap(g, r)a'(6, T)&,
I p p

(30)
C(p, y, g, r ~,e,e, T) = &n(p, y, g, r)n*(~, C, e, T) &.

(29)

As is shown in Ref. 13, by a simple example, the norm of
the complex degree of coherence ~p(p, itp, g, r:o,g, g, r)~ is

I

where the correlation matrix of mode amplitudes,

&ai(g, r)a ~ (6, T) &—:M(g, r, e, T),

is given by

(31)

M(greT)=[a /(8R Lno)]F I f dr' f dg'e "' " "' ''[2I +5(r')]
0 0

X[GI(g g r r )e2iPODI(0 )e
—2iPP Gal( eg T r )] (32)

Relations (30)—(32) establish a procedure for evaluating
the complex degree of coherence for any given system
which is characterized by a known geometry and the
(three-dimensional) gain and electron density profiles.
Explicitly, the procedure comprises the following steps.

(a) Use Eqs. (A3) and (A6) to evaluate the gain overlap
matrix N and electron density overlap matrix D; use Eqs.
(22) and (23) to construct the matrix T.

(b) Solve Eq. (25) for Go(0, 0',s+I ): use relation (26)
and the inverse Laplace transform in order to obtain the
Green's matrix G ( 0, 0', r)

(c) The complex degree of coherence
iM, (p, g, g, r:o,@,6, T) is obtained by inserting the results
in relation (32) and using Eqs. (28), (29), (30), and (31).

In this procedure steps (a) and (c) are simple and easy
for numerical implementation; step (b) is a bit problemat-
ic. The difficulty stems from the fact that in order to per-

form the inverse Laplace transform one has to solve Eq.
(25) (which comprises a set of ordinary differential equa-
tions in 0) separately for every value of the transform
variable s. The original equation for G (g, g, r) in g, r
space is an integro-differential equation.

The difficulty may be removed if one is satisfied in
evaluating the complex degree of coherence at the steady
state established at late times r))aog L/I' (for the
source for this inequality see Appendix B in Ref. 5). In
order to evaluate the complex degree of coherence, in this
limit, only G (0, 0', s =0) is needed. Namely, in this case
the set of ordinary differential equations (25) for G needs
to be solved only once; this may be easily done numerical-
ly.

In the present work we wanted to also study the rnech-
anisrns which affect the transient evolution of coherence.
For this purpose we have chosen an example of a family
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of gain and density profiles for which Eq. (25) could be
analytically solved and G'(0, 0', ~) could be evaluated
both in the steady state and during the transient. This
example is presented and analyzed in Sec. V. An exten-
sive study of the steady-state behavior of coherence for
various types of profiles [which require numerical solu-
tion of Eq. (25)] is left for a planned future work.

[G (0, 0', ~—r') ]

=+exp(ip 0')K exp[i', (0—0') ]

XIO j [2a()w() I g (0—0')(r ~')]' j

XK exp( ip—'0) . (38)

V. AN ANALYTICAL SOLUTION
FOR A FAMILY OF GAIN PROFILES

n, =Zn, , (35)

where Z is the degree of ionization and w0, o.0, n0, R „R2

are constants. It may be shown that (see the Appendix)
in this case the matrix T is independent of 0. Conse-
quently, the solution of the Green's-function equation
[Eq. (25)] is

G (0 0~ s) e T(s)(()—6')

=exp( [ [(aowo/2)I /(s)]N'

+i (L/4coc)cu OD' 2ip j(—0—0')) .

(36)

Using relation (26), diagonalizing T, and performing the
Laplace transform with the help of the formula'

The analysis of the complex degree of coherence [Eq.
(28)] requires knowledge of the explicit solution of the
Green's-function equation Go [Eq. (25)] for the gain
profile under consideration. In this section we present
such an explicit solution for the family of gain and densi-
ty profiles which have the following dependence on the
coordinates rT and z:

8'(rT, z)a(rT, z)

=woaof)[rT/R, (1+z /L )]/(1+z /L ), (33)

n;(rT, z)=nou [rT/Rz(1+z /L )]/(1+z /L ), (34)

In Eq. (38), K; are the elements of the matrix which di-
agonalize the matrix T 0=(L/4coc )co OD'(q) —2p and A~

is the pth eigenvalue of T0, i.e.,

g K '(T()) K ~ ~ =5(p,p')A.
m, m'

(39)

(see also Appendix A in Ref. 5).
At this point we have in hand all the information

necessary for the evaluation of the field envelope auto-
correlation function; we define a new set of modes and a
density overlap matrix,

V'(p, P, O) =+K 'e '~ U' (p, P, O), (40)

0 (0)= g K '(D )K
m, m'

(41)

The final formula for evaluating the field envelope auto-
correlation function is obtained by inserting the Green s
function [Eq. (38)] in the formula for the correlation ma-
trix of mode amplitudes [Eq. (32)] and then inserting the
result in Eq. (30), with the help of definitions (40) and
(41). The final result is

C (p, P, O, ~:(7,@,6, T)

g is the first-order correction to the mth eigenvalue of T
due to the gain matrix X,

g„=+K 'N K (39')
m, m'

In diagonalizing the matrix T we have treated the gain
matrix as a small perturbation on the matrix T0. This
approximation is justified since in XRL experiments re-
fraction and diffraction dominate over the gain,

(L /4coc )co () » I (a()w()/2)

L(, ,)(e' '/s) =lo[(4a~)' '], (37) = g V"'(p, (t(, 0) V' (p, 4,6)X (0,6,7, T),
~ s»p'

(42)

where I0 is the modified Bessel function of order zero, we

get the following solution for the Green's function:
where the correlation matrix of the new mode amplitudes
1s

X .(0 6 r T)=[ao/(8R Lno)]F I f dw'f dO'e ' '' ' ''[21 +5(r')]0 .(0'),
0 0

Xexp[ik (0—0') imp (6——0')]Io. [[2aowol g (0—0')(~—r')]' jIO

X [[2a w 1 g„(6—0')(T r')]' j— (43)

From the last equation we see that the assumption made
in Ref. 7(b) that the correlation matrix of mode ampli-
tudes is a diagonal matrix holds true only for the case of
a homogeneous medium where the overlap matrices and
the Green's matrix G are diagonal.

The definition of the new modes [Eq. (40)] helped us to
reduce the diagonal terms of the correlation matrix, g
to a form similar to the one-dimensional correlation func-
tion, as can be seen by comparing Eq. (43) in the present
work with Eq. (34) (with p=p'=0) in Ref. 5. Further-
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W(rT z)a(rT z)

=tUoaoexp[ —rT/R, (l+z /L )]/(1+z /L ),

(46)

FIG. 4. First free space mode and first actual mode as a func-
tion of the normalized radius p (I' = 1).

n;(rT, z)=noexp[ —rT/R2(1+z /L )]/(1+z /L )

(47)
(with a gain-length product of tt)oao= 5 and an ion densi-
ty of n =2X10' cm; these numbers are representa-ty o no-
tive of x-ray lasers' ). For this gain and density profiles,
the overlap matrices are analytically evaluated by the
method of Ref. 16 and the Appendix. The matrix N
takes the form

PP.
(p +I)!(p'+1)!

' 1/2
p p +I p'+I

rn +p —p'
(p —m +1)! 2(p )( )2,„+p p

(p —m )!
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FIG. 5. Third free space mode and third actual mode as a
function of the normalized radius p (F= 1).

where

a =F/(F+1) .
Examination of the definition of the complex degree of
coherence [Eqs. (28) and (29)] together with the explicit

solution for the correlation function [Eqs. (42)—(45)]
shows that the excitation strength [g;! (defined as the
real part of the eigenualues of the matrix 'P plays an
essential role in determining the coherence of the output
radiation. When the tg; ] is a strongly peaked function of
the eigenvalue indices p, l, only a few modes contribute to
the sum in Eq. (42); the norm of the complex degree of
coherence ~p( pP, 8w: cd, 8~) t is closer to unity and
consequently the output radiation is more coherent. In
Fig. 1 the excitation strength of the modes is shown as a
function of the mode index for two cases: Fresnel num-
ber=1 and Fresnel number=5. Clearly the decrease in
excitation strength is much stronger for I' =1, leading to
a better transverse coherence in this ease. In Figs. 2 and
3 we show the norm of the complex degree of coherence

((Mph=0, 8,v~~:o =0, /=0, 8,~~~)~ as a function
of p for 8=0. 1 and 0.733 (corresponding to q=0. 1 and
0.9). From these figures we see that, as expected, coher-
ence is better for longer propagation length and larger
Fresnel numbers. In Figs. 4 and 5 the first and third
modes are plotted as a function of the normalized radius
p. For comparison we also show the free space modes.
From this figure we see that the actual modes of the sys-
tem are more concentrated in the high-density regime
than the corresponding free space modes.
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VII. SUMMARY AND DISCUSSION

The temporal and spatial evolution of a small signal ra-
diation field in hot-plasma XRL is governed by the set of
Maxwell-Bloch equations. [Eqs. (1) and (2) in the text. ]
The nature of the radiation field is determined by the
Fresnel number of the system. The case of a large
Fresnel number was treated in Ref. 5. It was shown that,
correct to the lowest significant order of the expansion in
the small parameter 1/F, Maxwell-Bloch equations may
be reduced to a set of equations which describe the evolu-
tion of the field characteristics (phase, amplitude, gain)
along ray trajectories. The essence of the large-Fresnel-
number approximation is in the transverse Laplacian
term in the wave equation [Eq. (12) in the present work].
One represents the field envelope in a phase amplitude
form and neglects a term of the form (1/F )V ! Q, ! (which
is responsible for diffraction) while keeping the terms

(1/F)V [1n(Q/!0! )] V !Q!, (1/F)V in(Q/ II! ) .

These terms together with the terms proportional to the
square of the plasma frequency co and the population in-
version W are responsible for refraction and gain and
yield the ray equations. The final result is a prescription
for evaluating objects such as the field intensity and
coherence as a function of time and location in terms of
the solution of coupled ray equations. This may serve as
a tool for the analysis of the interplay between gain and
refraction and their inhuence on the characteristics of the
output radiation in existing x-ray laser experiments
which are large-Fresnel-number experiments.

In order to achieve a better transverse coherence, fu-
ture experiments are planned with small Fresnel num-
bers. In such systems diffraction is a major effect which
determines field evolution, the 1/F expansion is not
justified and the method developed in Ref. 5 is not applic-
able. The purpose of the present work was to derive a
method (complimentary to the one developed in Ref. 5)
to solve and analyze the Maxwell-Bloch equations for
difFraction-dominated (small-Fresnel-number) systems.
The method takes advantage of the fact that, due to
diffraction, small-Fresnel-number systems can support
only a few natural modes of radiation. Explicitly, the ap-
proximations applied in deriving the method are the fol-
lowing. (a) The coupled mode equation [Eq. (19) or
equivalently Eq. (24)] is in fact an infinite set of coupled
stochastic differential equations for the projections of the
field envelope on a complete set of coherent modes. The
solution involves a truncation. We have found that for
Fresnel numbers ranging from 1 to 5 convergence in the
spectrum of the matrix T and in the shape of the actual
system modes [see Eq. (40)] was obtained for matrices of
order 100X 100. For larger Fresnel numbers larger ma-
trices were necessary and the method becomes less practi-
cal. (b) In diagonalizing the matrix T [see Eqs. (39) and

(39')] we have treated the gain matrix as a small perturba-
tion on the refraction-diffraction matrix To. Indeed, in
x-ray laser experiments refraction dominates over the
gain (see Appendix A of Ref. 5 for details). (c) For small
Fresnel numbers the real part of the spectrum of T (the
excitation strengths) is a rapidly decreasing function of
the mode index (see Fig. 1) and the elements of the corre-
lation matrix of the amplitudes of the actual modes de-
pend exponentially on the corresponding excitation
strength [see Eqs. (43)—45)]. This indicates that only a
few (much less than 100) elements and actual modes
should be applied in evaluating the intensity and coher-
ence. We have found for Fresnel numbers of 1 —5, con-
vergence (up to l%%uo) is already obtained for 15 modes.

As in the complementary method for large Fresnel
numbers, the final result in this work is a prescription
for evaluating objects such as the field intensity and
coherence as a function of time and space. This can serve
as a tool for analyzing the role of diffraction, refraction,
and gain in determining the characteristics of the output
radiation field in various configurations of small-Fresnel-
number systems.

Some multiple pass hot-plasma x-ray laser experiments
have already been performed, using multilayer mirrors.
In such experiments, in addition to improved amplifica-
tion, also some improvement in the longitudinal coher-
ence is expected. It is possible to generalize the theory of
the present work and to include also mirrors and axial
modes. This may be done by using the axial-transverse
modes U' = U'exp(2vriqcr/L) instead of the transverse
modes U in the expansion. Relations (28) and (29) are of
course useful also for the analysis of longitudinal coher-
ence. We are at present developing a study along this
line.

The linear theory presented here (and also in Ref. 5) is
valid for systems with small gain-length product where
the depletion of population due to induced emission is
not significant (nonsaturated systems). This is the case in
most existing hot-plasma x-ray laser experiments. Future
experiments with longer lasing plasmas (and possibly
higher gains) may approach saturation. The competition
between modes near saturation may be estimated from
the spatial overlapping the modes obtained from our
linear theory [Eq. (40) in the text and Figs. 4 and 5]. The
area of population inversion shared by different modes is
a measure of mode competition. Of course, a more de-
tailed study of the dynamics of mode competition in the
saturated case requires a nonlinear theory which is out of
the scope of the present work.

APPENDIX

The explicit form of the Gaussian Laguerre functions
is [see Chap. (16) in Ref. 12]

U (p, p, q) =[2p!/vr(p +l)!]' (2' pg/)'L'(2p /g )//exp[ —p /g —i [lp+Fp /2b —(2p +l +1)tan 'rl]j, (Al)

where p=!p!,P is the angle between p and the x axis, (=2(1+g )/F and b =(q+ I/g). The coupled-mode equation
(19) is obtained by using the expansion (16) in Eq. (12) multiplying by U (p, P, g), integrating p dp dP [with the help of
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relations (1j) and (18)]. We use a gain of the form a(p, g) W(p, g) =aowo f (p, rl). The coefficients of the resultant equa-
tions are

a.w. f pdp f d4 U (p 4»n)f(p' n»,'(p 4»n)
0 0

=5(l, I')aowo exp[2i (p —p') ]tan '(g/Fg )[2p!/(p + I)!]'~ [2p'!/(p'+ I)!]'~2F

d~L, ~ ~ 2 x gL~, ~ ~ I'~ —P 4

=5(I, I')aowo(X~~ (rl) [exp[2i (p —p')tan '(rl )] j /F(2) =0, (A2)

where

N'
~ (rl ) = [2p!/(p + I )!]' [2p'!/(p'+ I)!]' F

x f g I3dx L'(I3x )f (g px, rl)L' (px)(px)'

Np~ =[2p!/(p +I)!]' [2p'!/(p'+I)!]'~

X fP d xL& (Px )f i (Px /F)L ~ (I3x )(I3x ) e ~"/2,

(A4)

IB=F/(1+F),
Xe ~ /4, (A3) namely, in this special case N ~ is independent of g.

In the same way for density profile of the form

and

x =2p /Pg

In the case where the gain profile is of the form

a(p, g) W(p, q) =aowo f (p', g)
=aowo f, (p'/(1+ g') ) /( 1+g'),

we have

n, (p, g) =nou(p, q),
n, (p, g) =Znou (p, 7I ),

(Z is the ionization degree), or

co (p, rI)=co ou(p, g),
a(p, rl) =aou (p, g),

we have

f pdp f dp &~"(p,p, g)u(p', rl)u~'(p, p, g)=5(1,1') exp[2i(p —p')tan '(g/Fg )][2p!/(p+I)!]~~2[2p'!/(p'+I)l]~~~F

X f g pdx L~(l3x)u(g px, rl)L~. (px)(px)'e ~"/4

:—5(l, l')[D'. (rl)[exp[2i(p —p')tan '(g)]]/Fg ], (AS)

where
D', (rl) = [2p!/(p +I)!]' [2p'!/(p'+ I)t]' F

X f g adx L'( ax)u(g ax, g)L' (ax)(Px)'

X e ~"/4

In the case where the density profile is of the form

u (p', g) =u&(p'/(1+q'))/(1+g'),
we have

D,', =[2p'/(p —I)']'"[2p"/(p'+I)']'"
X fPdx Lz(Px)u&(Px!F)Lz (Px)Px) e ~"/2 .

(Aj)

Again, in this special case D ~ is independent of g. The
projections of the random source terms on the right-hand
side of Eq. (12) are

A '(ii, s)

= f pdp f dP U~"(p, P, q)R (p, g, rl, s)a(p, q),
(A8)

B'(g)= f "pdp f dp U"(p, p, g)P(p, p, q, s)a(p, 7I) .

(A9)
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