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Perturbative-polarization-propagator methods of different orders employing large Gaussian basis

sets are used to calculate discrete pseudostate representations of the oscillator strength distribution
of the water molecule, from which continuous total and partial photoionization cross sections are
then determined by moment-theoretical methods. The cross sections obtained in the first-order and

second-order polarization-propagator approximation are in very good agreement with recent photo-
ionization measurements. In particular, the present results agree much better with experiment than

previous calculations that use the static-exchange approximation. The main reason for this is that
first- and higher-order polarization-propagator approximations obey certain sum rules for the oscil-
lator strength distribution, whereas the static-exchange approximation does not. This makes propa-
gator methods particularly well suited for use in connection with moment theory. Disagreement of
previously reported cross sections of the water molecule with experiment, such as the overestima-

tion of the 1b2 partial cross section, have been partially attributed to the neglect of channel coupling
in these calculations. Therefore, in the present work, the separated-channel approximation is avoid-

ed and all possible couplings between ionizations from all valence-shell molecular orbitals are al-

lowed for.

I. INTRODUCTION

The importance of water in many environments has
stimulated a great deal of investigations of pho-
toprocesses involving the water molecule. More recent
experimental studies employing classical and synchrotron
radiation sources or, equivalently, fast electrons were
aimed at autoionization processes and the rovibrational
structure of the resulting ionic states, ' total, ' and par-
tial ' photoionization cross sections, the electron dis-
tribution in the water molecule, "' and the reaction
products of dissociative photoionization. ' '

Theoretical studies of the photoionization of the water
molecule have been performed at various levels of ap-
proximation. Earlier approaches used plane wave' or
Coulomb wave' expansions for the continuum wave
functions. There has also been an attempt to extrapolate
molecular photoionization parameters from those of the
constituent atoms. ' ' These methods are computation-
ally very inexpensive, but the resulting cross sections
agree only partially with experimental measurements. '

Better agreement with experiment has been obtained by a
density-functional (scattered-wave Xa ) calculation. '

More advanced methods that explicitly construct approx-
imate continuum functions, such as the R-matrix
method, ' ' the linear-algebraic method, ' or the
Schwin ger variation procedure, ' have to our
knowledge not yet been applied to the water molecule.

The bulk of photoionization cross-section calculations
on the water molecule has been carried out using
moment-theoretical methods. Moment-theoretical
("Stieltjes imaging") methods (Refs. 24, 25, and refer-

ences therein) have the advantage that they start from a
set of discrete transition energies and oscillator strengths
which may be calculated by standard quantum-chemical
techniques employing finite I. basis sets. These discrete
transition parameters may, in principle, be calculated at
any level of sophistication and, in particular, at any level
of electron correlation treatment. Thereby the method
allows an easy assessment of the inhuence of electron
correlation on the photoionization cross section.

However, only one of the previous investigations in-
cludes electron correlation by means of the time-
dependent Hartree-Fock (TDHF) or random-phase ap-
proximation (RPA). Unfortunately, the basis set used in
that calculation is too small to provide a satisfactory
description of the molecular photoionization continuum,
and the results are to be taken as qualitative estimates
only. The other three moment-theoretical calcula-
tions employ the static-exchange (SE) approximation
and large basis sets for the determination of the discrete
pseudostates. They mainly differ in the basis set used.
Diercksen et al. used a CGTO (contracted Gaussian-
type orbitals) basis set of double-g quality augmented by a
large number of diffuse functions centered on the oxygen
atom. Delaney et al. also used diffuse functions on the
hydrogens, allowing for multicenter continuum wave
functions. Cacelli et al. used a one-center basis of
STO's (Slater-type orbitals) centered on the oxygen that
includes hydrogenlike orbitals with appropriate quantum
defects for the representation of Rydberg series as well as
"oscillating STO's" of the form r" 'exp( —gr)coskr to
mimic continuum wave functions. All three basis sets
contain nominally around 120 basis functions. However,
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as these calculations have been performed in the
separated-channel approximation, the actual number of
basis functions in the calculations was smaller: for any
given ground-state occupied molecular orbital (MO) and
transition dipole direction only those diffuse basis func-
tions had to be included that gave rise to nonvanishing
transition matrix elements.

The static-exchange approximation has been the most
popular approach for the generation of discrete pseudo-
states for moment-theoretical analyses. It uses a self-
consistent field (SCF) description for the molecular
ground state. The excited pseudostate wave functions are
determined by a singly excited configuration-interaction
(SCI) calculation in the space of the SCF canonical virtu-
al orbitals or appropriately modified virtual orbitals.
Correlation among the excited pseudostates is introduced
through the SCI procedure. However, flexibility is thus
given to the excited-states wave functions exclusively and
no improvement in the description of the ground state is
achieved. Therefore, the static-exchange scheme neces-
sarily leads to an unbalanced approximation in terms of
the electron correlation.

An attempt has been made to achieve a better descrip-
tion of the electron correlation in static approaches by in-
cluding higher than singly excited configurations into the
configuration-interaction (CI) expansion. ' ' This ap-
proach though leads quickly to intractable eigenvalue
problems, since in the moment-theoretical step of the cal-
culation all energy eigenvalues and transition moments
are required and not just the few lowest ones as in
bound-state calculations. A further objection to this kind
of approach is that limited CI expansions cannot cure the
problem of an unbalanced description of the electronic
states involved.

Another way to include the influence of electron corre-
lation on the pseudostate properties is the use of linear-
response or polarization-propagator (PP) methods. In
these approaches it is possible to account for the electron
correlation due to higher than singly excited
configurations without including these configurations ex-
plicitly in the eigenvalue problem. That is to say, the ma-
trix to be diagonalized still has the dimension of the space
of all single particle-hole excitations as in the SE approxi-
mation. Electron correlation may be included into PP
methods in several ways (see below).

In fact, the SE approximation may be viewed as a low-
order approximation to the polarization propagator. [To
be precise, it falls between zeroth and first order, the
zeroth-order approximation being the single-transition
approximation (STA).] The first-order PP approximation
is equivalent to the TDHF or RPA methods. From the
first order upward PP methods have certain invariance
properties that static incomplete CI methods do not have,
and that make them particularly suitable for use together
with moment theory. These invariance properties are de-
scribed in detail in Sec. III. In spite of the usefulness of
RPA there have been only a few applications of this
method to photoionization cross-section calcula-
tions. ' To our knowledge only two moment-
theoretical cross-section calculations have been reported
to date that treat electron correlation at a higher level

than RPA. One uses a multiconfigurational extension
of RPA (MCRPA), the other one uses a PP formulation
that is based on a coupled cluster reference state.

In the present contribution a third way of accounting
for electron correlation in a PP formulation is pursued.
The approach uses as reference state a many-body pertur-
bation theory (MBPT) wave function and evaluates all
terms that contribute to the transition energies and oscil-
lator strength consistently through a given order in per-
turbation theory. In this work the second-order approxi-
mation to the PP (SOPPA) is used. The SOPPA method
is a well-established technique and there are numerous
applications (for a recent account, see Ref. 40). Here it is
applied for the first time in a moment-theoretical calcula-
tion of photoionization cross sections.

All previous theoretical calculations of the photoion-
ization cross sections of the water molecule have been
performed in the separated-channel approximation. This
approximation neglects couplings between different ion-
ization channels (ionizations out of different molecular
orbitals) and it has been successfully applied to the calcu-
lation of partial photoionization cross sections in many
cases. However, it has been previously suggested that
this approximation is responsible for a significant overes-
timation of the partial cross section for the lb2 orbital of
the water molecule. Furthermore, total cross sections
can only be obtained as sums of partial cross sections in
this approximation, which leads to discontinuities at each
ionization potential. These discontinuities are not found
experimentally since channel couplings smoothen the
photoionization cross sections in the vicinity of the ion-
ization potentials. Therefore, in this work the couplings
between ionizations out of all four valence-shell MO's are
investigated.

II. REVIEW OF MOMENT THEORY

The molecular photoionization cross section o(ai) in
megabarns (1 Mb = 10 ' cm ) is proportional to the os-
cillator strength function f (ai) in the continuous part of
the spectrum

a ( co ) = 2~r aa o X 10' f (ai ),
where o; is the fine-structure constant and ao is the Bohr
radius in centimeters. The differential oscillator strength
function is given by golden-rule expressions in the
dipole-length, mixed dipole-length —dipole-velocity, and
dipole-velocity approximation (all quantities in atomic
units)

f (ai)= —ail & 'P(ai)lrlO& I',2

3

f( )= —&0lrl~( )&&~( )Iplo&,
~ 2

3

f( )=— l&+( )Iplo&l',
2 1

3 co

where l0& is the electronic ground state with the energy
Eo, %(ai) is a continuum state with energy Eo+co, and r
and p are the electron position and momentum operator,
respectively. These expressions correspond to the more
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familiar ones for excitations to discrete states l i )

f, =—co, & ilrl0 & l' ,
=2

f, =i—(olrli)(i plo),= 2

f; = —
1 &ilplo& I' .

3 co]

The three formulations become equivalent when l0) and
'P(co) or li) are either exact solutions of the electronic
Schrodinger equation or if they are calculated within cer-
tain models (see Sec. III).

The continuous oscillator strength cannot be calculat-
ed directly in a discrete basis set since the L basis discre-
tizes the continuous spectrum of the electronic Hamil-
tonian. However, f (co) may be calculated from its power
moments S(k)

S(k) = f co"f (co)dco,
coT

where coT is the appropriate ionization threshold. Nega-
tive moments are used throughout this work because of
the well-known divergence of the moments with
k ) 2. ' If all moments are known (which means an
infinite number of moments) f (co) is determined com-
pletely. However, in practice only a limited number of
moments may be calculated with reasonable accuracy
from a set of discrete transition energies B; and oscillator
strength f;

tained as the n roots of Q„(1/co)

Q„(1/co; ) =0

and the f, may be calculated from

n —I Q~(I/co )

a, = g (I/co, )f,

Qi( I/co; ) =( I/co; ) —a, ,

N

b„ i= g (1/co;)" 'Q„ i(1/co;)f;,
0 1 n —2 i=1

a„= g (1/co; )"Q„
1

0 1 n —1 i=1

n —1

,(1/co; )f;
(=1

Q„(1/co, ) = [(1/co; )
—a„]Q„,(1/co; )

„b,Q„—,( I/co) .

m=0

In this work a faster numerical method is used that ob-
tains the co; and f; from the eigenvalues and eigenvectors
of a tridiagonal symmetric matrix.

The orthogonal polynomials are generated recursively
by an algorithm originally proposed by Chebyshev

Qo(1/co; ) = 1,

This algorithm can be shown to be equivalent to the one
given by Langhoff et al. In this recurrence algorithm
the approximate moments do not appear explicitly but
are hidden in the summations over all discrete transi-
tions, so that the success of this method still depends on
the ability of the discrete transitions from an L calcula-
tion to reproduce the moments of f (co) with sufficient ac-
curacy. Moreover, although this direct recurrence algo-
rithm based on the co; and f; seems to be numerically
more stable than a recurrence starting from the S(k), it
should be noted that because of the differencing involved
in each step all orthogonal polynomial recurrence algo-
rithms become unstable for large n. To avoid numerical
problems this part of the calculation is carried out in
128-bit precision.

Given the co; and f, an nth-order approx. imate distri-
bution function F'"'(co) is then constructed

0, CO (C01

fj, co; ( co ( co; + iF'"'(co)= ~

~ = I

S( —k) = g (1/co, )"f;, k =0, 1, . . . , 2n —1 .
i =1

The sum extends over all N transitions with 6; )coT, and
n )0 is usually much smaller than N. Therefore, f (co) is
not completely determined, i.e., there may be more than
one function whose moments are equal to
S(0),S( —1), . . . , S( —2n +1).

Given a finite number of moments it is, however, possi-
ble to find an nth-order approximation f '"'(co) to f (co) in
such a way that consecutive orders converge to f (co) in
the limit of large n. This convergence is ensured by the
Chebyshev inequalities. The algorithm for finding
f'"'(co), the so-called Stieltjes method, as implemented in
the program SCAMPI (Stieltjes-Chebyshev analysis of
molecular photoionization ) is briefly described in the
following.

From the discrete transition parameters co; and f,a.
new set of n transition energies co; and oscillator
strengths f, is determined which reproduce the first 2n
approximate moments

n

S( —k)= g (1/co;)"f;, k =0, 1, . . . , 2n —1 .

The 1/co,. and f; may also be viewed as quadrature abscis-
sas and weights for a generalized Gaussian quadrature
rule associated with the density or weight function f (co)
and the integration interval from coT to infinity. They
are calculated from the orthogonal polynomial Q„(1/co)

f Q„(1/co)Q (1/co)f (co)dco=N„5„
co T

where N„= f Q„(1/co)f ( )d coTcohe 1/co,. can be ob-
T

g f, =S(0), co„(co

which is a nondecreasing "staircaselike" function and
which approximates the cumulative oscillator strength

F(co)=f f (co')dco' .
cc) T

Numerical difFerentiation of F'"'(co) yields the desired
nth-order approximant f '"'(co)
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f '"'((o)=0, co„&co .

In order to obtain a continuous nth-order approximation
these data points are interpolated by a cubic spline func-
tion. A monotonicity-constrained spline has been found
particularly useful since it follows the original data very
closely and avoids overshooting.

As an alternative approach to continuous oscillator
strength functions the use of the so-called Chebyshev
procedure has been proposed. ' It is closely related to
the Stieltjes procedure, except that it allows one of the
quadrature abscissas co;, say cop, to be varied at will over
the energy range. This is done by replacing the orthogo-
nal polynomial Q„(1/co) of the Stieltjes development by
the quasiorthogonal polynomial q„(1/co)

q„(1/co) =Q„(1/co) —7Q„,(1/(o),

where r=Q„(1/(op)/Q„)(1/(op). This polynomial is or-
thogonal to all Q (1/co) with m & n —2 but not to
Q„,(1/co), and it may be generated by the modified re-
currence relation

q„(1/~) = [(1/~o) —a„—r]Q„,(1/~o)

b„)Q„z—(1/co) .

Note that only the polynomial of degree n has changed,
the polynomials of lower degrees being the same as in the
Stieltjes case. Again, the quadrature abscissas and
weights may be calculated from

q„(1/cu; ) =0,
n —1 Q

~
( 1 /ro . )

Nm=p

Since cop may be varied continuously, a continuous ap-
proximate distribution function F'"'((o) can be obtained
which may be differentiated analytically to yield the
desired continuous approximate density f(")((o). The ex-
act formulas for the derivative have been given by Cor-
coran and Langhoff (beware of misprints).

The Chebyshev approach seemingly is an attractive al-
ternative to spline interpolation of the Stieltjes density.
However, there are several problems associated with it.
Firstly, its quadrature abscissas and weights render an ex-
act quadrature only for polynomials of degree up to
2n —2 instead of 2n —1 as required for an nth-order
Gaussian quadrature. Therefore, the "nth-order" Che-
byshev distribution and density are not strictly of order n
but fall between the true nth and the true (n —1)th order.
Secondly, it has been observed previously that one of
the Chebyshev abscissas may fall below cuz. This is a
consequence of the fact that one of the roots of any
quasiorthogonal polynomial is not confined to lie in the
interval of orthogonality between co& and infinity as op-

posed to the roots of orthogonal polynomials. The theory
of quasiorthogonal polynomials predicts in more detail
under which circumstances, that is to say for which
choice of ~, one root escapes from the interval of ortho-
gonality. ' Here, it is merely noted that in the applica-
tion to photoionization ~ has to be less than

Q„(1/~p)/Q„)(1/~p)

for all co; to lie above co&-. This implies that certain values
of ~ and, in consequence, certain values of ct)p may not be
used if unphysical results are to be avoided.

The most severe drawback of the Chebyshev method,
however, arises from the fact that in contrast to the or-
thogonal polynomials there is nothing that prevents a
quasiorthogonal polynomial to run almost parallel to the
abscissa in the vicinity of a root. This is the case when its
first derivative (and possibly higher derivatives) are nu-
merically zero around the root (1/co; )

o=q„(1/(o; ) =q„"(1/(o,. ) =
which occurs if

~ ~ ~

As a result it becomes very difficult for any numerical
root search algorithm to locate 1/co; accurately. Instead,
it may find a point in the vicinity where q„(1/co) is also
numerically very small. This numerical instability causes
parts of the energy range to become repulsive for roots,
i.e., if an attempt is made to place cop into such a region,
then mp is not recovered by the root search method but it
is "pushed" to one edge of that region. Similar problems
with the Chebyshev procedure have also been observed
elsewhere. ' Implementation in higher precision arith-
metic does not avoid these artifacts sufficiently. A nu-
merically much more robust way of obtaining continuous
approximate cross sections is the aforementioned spline
interpolation.

III. OSCILLATOR STRENGTH SUM RULES

As described in the previous section the moments S(k)
of the oscillator strength density function f (co) in the
continuous part of the spectrum enter the moment-
theoretical calculation of the photoionization cross sec-
tion either directly or implicitly. Accurate calculation of
the S(k) by the discrete transition energies and oscillator
strengths from an I. calculation is essential for the
moment-theory approach to be successful. Et would
therefore be desirable to compare the calculated S(k)
directly to experimentally measured S(k). These may, in
principle, be determined by appropriate integrations of
the experimental photoionization cross sections. Unfor-
tunately, for many molecules the cross sections are not
available in the complete energy range or are too inaccu-
rate.

In contrast, several of the total oscillator strength mo-
ments s (k)

s(k)= g co,
"f;+I co"f(co)den.

iscr cont
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s( —1)=—0=2
3 o),

s(0) =N,
2s(1)=—0
3 gp; o),

that include excitations to discrete states as well as ion-
ization, are related by sum rules to physical observables
or to expectation values of certain operators over the
ground-state wave function ~0), '

s( —2)=cT, ,

by the discrete excitations and the low-energy continuum.
For example, the continuum above 100 eV contributes
less than 0.1% to the polarizability of HzO. On the other
hand, c7 (and the higher negative moments even more) de-
pends on a few low-energy excitations and ionizations
which must be calculated very accurately. These sums
rules become especially sensitive to the small excitation
energies because they enter with inverse powers. For mo-
ments or mean excitation energies that contain positive
powers or functions of co the opposite is true. They de-
pend mainly on the high-energy continuum part of the
spectrum. Therefore, this part must be well described in
order to reproduce for example I(0) correctly.

5(r, )

i =1

4s(2)= no'(0—
3 o) . IV. POLARIZATION-PROPAGATOR METHODS

Here, 1V denotes the number of electrons in the molecule,
c7 the average static electric dipole polarizability, r, and

p; the position and momentum operators of electron i,
and all quantities are in atomic units. Note that the sum
rules apply to the exact wave functions as well as to cer-
tain approximations, provided that the basis-set error is
eliminated. Of these sum rules, s (

—2) and s(0) are par-
ticularly important in the present context. The Thomas-
Reiche-Kuhn (TRK) sum rule s(0) normalizes the oscilla-
tor strength distribution, so that it must be obeyed by the
L calculation in order to avoid global overestimation or
underestimation of the cross section. The dipole polari-
zability is the highest negative moment that can be mea-
sured conveniently. If the polarizability is not repro-
duced, it is very likely that the higher negative moments
are incorrect as well.

Closely related to the normal sum rules are the loga-
rithmic sum rules l (k)

l(k)= g co,"ln(co, )f, + f co"ln(co)f (co)dao .
dlSCr cont

The l (k) and s (k) define the set of so-called mean excita-
tion energies I(k)

I (k) =exp l(k)
s k

which appear in the Bethe treatment of charged-particle
impact on matter: I( —1) is related to the cross sec-
tion for electron excitation or ionization, I(0) to the en-

ergy deposition (stopping power), and I(1) to its mean
fluctuation or straggling. The Lamb shift of electronic
energy levels is governed by I (2).

Different sum rules depend on different parts of the os-
cillator strength distribution: in the case of H20 for ex-
ample, 97% of the oscillator strength lies above the first
ionization threshold of 12.61 eV, so that the discrete
part contributes only 3% to the TRK sum rule. On the
other hand, this part contributes 25%%uo of the polarizabili-
ty. Consequently, the calculation of different sum rules
encompasses different computational problems. For the
TRK sum rule a balanced description of the whole spec-
trum, including the high-energy continuum, is important.
In contrast, the polarizability is completely determined

The theory of polarization-propagator techniques is
covered in detail by a number of review articles.
Here, only the aspects of PP theory relevant to moment-
theoretical calculations are briefly summarized.

Linear-response theory deals with the response of a
system to an external perturbation. In the case of the PP
the perturbation may be a time-dependent electric field in
which case the propagator yields information about elec-
tric dipole transitions. In contrast to the more familiar
static approaches linear-response theory avoids the calcu-
lation of ground-state and excited-states wave functions,
but obtains the transition energies and oscillator strength
directly from the poles and residues of the PP.

The lowest-order PP approximation is equivalent to a
CI calculation that includes all single excitations. This
method is also known as the multichannel static-
exchange (SE) approximation or Tamm-Dancoff approxi-
mation. It has in common with all incomplete CI expan-
sions that oscillator strengths obtained in the dipole-
length and dipole-velocity formulations are generally
different, even for a complete basis set. The transition en-
ergies and oscillator strengths obtained in the SE approx-
imation do not satisfy any of the sum rules of Sec. III.

The first-order PP approximation (RPA or TDHF)
differs from the SE approximation in that the SCF deter-
minant is no longer used as the electronic ground state
but merely as a reference state for the generation of the
first-order PP matrix or RPA matrix. The manifold of
excitation operators now includes all single excitations
and deexcitations. This leads to elements in the RPA
matrix that correspond to double substitutions in addi-
tion to the singly excited terms that are already present in
the SE matrix. Provided the basis set is large enough and
all possible single particle-hole excitations are included,
the different formulations for the oscillator strengths are
completely equivalent in RPA, and the TRK sum rule is
obeyed exactly. Note that the basis set need not include
continuum functions for the TRK sum rule to be
satisfied. A discrete L basis, if sufficiently large, recov-
ers all of the continuum oscillator strength. The RPA
static electric dipole polarizability and other second-
order response properties are equal to these properties
obtained in the coupled Hartree-Fock (CHF) approxima-
tion within the same basis set. As the RPA oscillator
strengths are identical in different dipole gauges, all oscil-
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lator strength moments become identical as well.
It has been noted previously that often more reliable

results can be obtained in the SE approximation if the
mixed length-velocity gauge is used. ' This feature is
not due to the inclusion of electron correlation effects in
this gauge at the SE level as has been claimed, but rath-
er to cancellations of errors. It can be shown that the
TRK sum rule calculated in the mixed gauge must be
equal in the zeroth- and first-order PP approximations,
and in fact also in higher-order perturbative PP approxi-
mations. This equivalence holds only for s(0), the transi-
tion energies obtained in different orders are considerably
different, so that other moments than s(0) differ as well.

Of the linear-response methods that go beyond the
RPA level, only MCRPA provides a strict dipole-
length —dipole-velocity equivalence and only MCRPA
obeys the TRK sum rule exactly in all gauges. The
reason for this is that only RPA, MCRPA and a hy-
pothetical full-CI PP satisfy the time-dependent analog of
the Hellrnann-Feynman theorem. ' For the perturbative
PP applied in the present work Jgrgensen and Od-
dershede have shown that the equivalence restrictions
and the sum rules are fulfilled through the order in per-
turbation theory through which the PP is evaluated con-
sistently. This is in marked contrast to the SE approxi-
mation which may produce large differences between os-
cillator strengths calculated in different gauges and errors
in the TRK sum rule often of the order of 25%%uo or more.

The second-order PP approximation that is employed
in the present work uses as the reference state an MBPT
expansion which contains double substitutions in first or-
der and single substitutions in second order. All elements
of the PP matrix and all contributions to the transition
moments are evaluated consistently through second order
in perturbation theory so that transition energies and os-
cillator strengths are consistent through second order.
To achieve a consistent second-order treatment terms in-

volving singly, doubly, and triply substituted
configurations have to be included implicitly into the
SOPPA method.

V. COMPUTATIONAL DETAILS

extended basis sets. (ii) The basis must span the bound
excited states, including a number of Rydbeg states, as
well as the low-energy ionization continuum. This region
of the spectrum is important for a correct reproduction
of the higher negative moments. This is generally
achieved by adding a large number of diffuse functions to
the basis whose exponents continue the geometric pro-
gression of those of the valence basis. Requirements (i)
and (ii) have been used as guidelines for the choices of the
basis sets used in two of the previous photoionization
cross section calculations of water. (iii) More recent-
ly, however, it has been realized that for a reliable repro-
duction of the lower negative moments, and especially
the TRK sum rule, sufficient flexibility of the basis set in
the high-energy continuum is essential. In the case of the
water molecule 26.2% of the cumulative oscillator
strength is contributed by the region above 125 eV. The
continuum functions at high energies are very contracted
and show rapid oscillations in the molecular region. An
effective way of mimicking this behavior is to select an in-

Oxygen
Basis set 101' Basis set 105 Hydrogen

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16

105 374.945 3200
15 679.240 3310

3534.544 6760
987.365 1600
315.978 7520
111.654 2810
42.699 4510
17.395 5960
7.438 3090
3.222 8620
1.253 8770
0.495 1550
0.191 6650
0.076 6660
0.030 6664

s functions
15 679.240 3310

3534.544 6760
987.365 1600
315.978 7520
111.654 2810
42.699 4510
17.395 5960
7.438 3090
3.222 8620
1.253 8770
0.495 1550
0.191 6650
0.076 6660
0.030 6664
0.012 0000
0.005 0000

1776.776 559
254.017 712

54.698 039
15.018 344
4.915078
1.794 924
0.710716
0.304 802
0.138 046
0.062 157

TABLE I. Exponents of uncontracted Cartesian Gaussian
basis sets used in this work.

The calculations of the photoionization cross sections
and of the oscillator strength sum rules are performed in
the vertical approximation at the experimental equilibri-
um geometry of the water molecule [R(OH)=1.811096
a.u. , a=104.4499 (Ref. 64)j. In all calculations the
Cartesian coordinate origin is placed at the molecular
center of mass.

Special attention must be paid to the selection of the
basis set (see Table I). In the foregoing sections it has
been emphasized that the discrete basis set must sample
the entire spectral range equally well for all oscillator
strength sum rules to be obeyed and hence for the
discrete transition energies and oscillator strengths to be
useful in the moment-theoretical analysis. More
specifically, there are three requirements on the basis set:
(i) The basis must describe the molecular ground state
sufficiently well, a condition which is easily met by many

200.000 0000
46.533 3670
14.621 8090
5.3130640
2.102 5250
0.850 2230
0.337 5970
0.128 8920

p functions
46.533 3670
14.621 8090
5.3130640
2.102 5250
0.850 2230
0.337 5970
0.128 8920
o.046 oooo
0.0170000

d functions
4.000 0000 1.218 8700
1.218 8700 0.361 0200
0.361 0200 0.1000000
0.1000000 0.030 0000

'418 dipole-allowed transitions.
436 dipole-allowed transitions.

1.500 000
0.400 000
0.100 000
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itial basis set that contains functions with large exponents
and leave this basis completely uncontracted.

These considerations lead to the choice of a
(15.8.4./10. 3.) uncontracted GTO basis set of 101 func-
tions (denoted as basis set 101 in Table I). It has been op-
timized by Lazzeretti and Zanasi "to reproduce the TRK
sum rule at the RPA level. It has also been used success-
fully for the calculation of mean excitation energies. In
order to check the relative importance of very compact
and very diffuse basis set functions an uncontracted
(16.9.4./10. 3.) GTO basis set consisting of 105 functions
(basis set 105) is derived from basis set 101 by deleting the
most compact s, p, and d functions on the oxygen atom
and adding two more sets of diffuse s and p functions and
one more set of diffuse d functions (Table I). Although
these bases are optimized for sum rules and not for total
energies the SCF total and orbital energies are very close
to their Hartree-Fock limit values as can be seen by com-
parison with the best available SCF calculation on HzO
that included 140 CGTO functions' (see Table II). A
comparison with an SCF calculation that includes a11
basis-set functions that appear in basis set 101 and/or
basis set 105 (denoted as basis set 115) indicates that
omitting the innermost s function in going from basis set
101 to basis set 105 accounts for most of the energy
difference. The addition of the very diffuse functions to
basis set 101 has a negligible effect on the total and orbit-
al energies which suggests that the bases are almost com-
plete in this region.

Calculation of the discrete transition energies and os-
cillator strengths is performed with the perturbative po-
larization propagator program for closed-shell reference
states which is part of the MUNIcH program system.
The SE and first-order (RPA) calculations are generally
performed including a11 excitations possible within the
the given basis set. Due to the large disk space require-
ments in the present implementation the excitation space
has to be truncated in second-order (SOPPA) calcula-
tions. The lowest occupied orbital which corresponds to
an inner-shell oxygen 1s orbital can safely be excluded
since no mixing between inner-shell and valence-shell ex-
citations occurs at the SE and RPA levels. The virtual
space is truncated so that there are 60—65 single particle-
hole transitions per polarization direction left to be treat-
ed in SOPPA. These cover the photon energy range from
0 to approximately 90 eV, which dominates the higher
negative moments. The remaining spectrum is filled in
with the transitions from a complete RPA calculation.

This splitting is only necessary in the calculation of the
sum rules and the total photoionization cross sections
where coupling between all valence channels is allowed
for.

The partial cross sections reported in this contribution
are calculated in the separated-channel approximation:
only excitations from the one occupied orbital which
forms the ionization channel under consideration are in-
cluded in the calculation. This reduces the number of
single particle-hole excitations so that the whole virtual
orbita1 space can be included at a11 orders, including
SOPPA. The same orbital space is used for both the gen-
eration of the particle-hole excitations and the treatment
of electron correlation within the chosen order of pertur-
bation theory. ' All propagator matrix elements
prescribed by the perturbation scheme are evaluated in
this restricted space. In SOPPA, for instance, there are
contributions from two-hole —two-particle excitations
which are not contained in RPA (for explicit formulas for
the matrix elements in different orders, see Ref. 57).

VI. SUM RULES OF THE WATER MOLECULE

Calculations of the total oscillator strength distribution
moments s (k) from the discrete transition energies and
oscillator strengths and comparison to theoretical or ex-
perimental reference data provides a check on the quality
of the L oscillator strength. The moments s(0), s( —1),
s ( —2), and 27.211[I(0)] (in eV) calculated in the zeroth-,
first-, and second-order polarization propagator approxi-
mation are listed in Tables III—VI, respectively, together
with theoretical and experimental reference values, if
available.

The quality of the reference data varies considerably
among the moments. There is no ambiguity for the TRK
sum rule. The static dipole polarizability has been deter-
mined very accurately both by experiment (Raman spec-
troscopy ) and theory. Here the SDTQ-MBPT(4)
(fourth-order MBPT including all single, double, triple,
and quadruple substitutions) values of Ref. 69 are given;
for an account of other recent calculations of the polari-
zability of water see Ref. 44). The values of the other two
moments are less certain. There is a considerable scatter
among the experimental data for s( —1), and I(0) cannot
be determined directly by experiment.

Comparison of all calculated moments with the refer-
ence data clearly shows that the static-exchange approxi-
mation fails to reproduce the oscillator strength distribu-

lai
2ai
1b,
3ai
1b;

Basis set 101 Basis set 115Basis set 105
—20.564 581
—1.352 418
—0.717 962
—0.585 296
—0.509 064

—20.565 555
—1.352 967
—0.717 988
—0.585 119
—0.509 092

—20.564 731
—1.352 526
—0.718 069
—0.585 405
—0.509 114

TABLE II. SCF total and orbital energies for the water molecule (in a.u. ).

140 GGTO
basis set' Expt. '

—19.83
—1.18
—0.6802
—0.5417
—0.4638

Total energy —76.065 283 —76.063 184 —76.065 304 —76.0673

'Reference 12.
References 71 and 72.
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Basis set 101
SE
RPA
SOPPA

Basis set 105
SE
RPA
SOPPA

Theory
RPA'
Exact

Experiment
Photoabsorption
EMS'
Photoabsorption and EMS'

'References 64 and 65.
Reference 3.

'Reference 2.

DL

12.08
10.19
10.13

11.94
9.90

10.04

10.0065
10

9.99
10.02
10.00

DV

8.42
9.78
9.89

8.25
9.73
9.73

9.9450

DL-DV

9.97
9.97

10.00

9.81
9.81
9.88

TABLE III. TRK sum rule s(0) for the water molecule in the

dipole-length (DL), dipole-velocity (DV), and mixed (DL-DV)
approximation.

tion of the water molecule. Moreover, it is clearly seen
that the disagreement of the dipole-length and the
dipole-velocity approximation within SE is considerable,
while the moments in the mixed approximation equal
those in the mixed approximation in RPA as predicted by
theory. Because of the inability of SE to reproduce
correctly the known moments its use together with
moment-theoretical methods does not seem justified,
given that more appropriate methods are available.

The TRK sum rule in the random-phase approxima-
tion approaches very closely the exact value of 10, and
the RPA polarizability is equal to a CHF polarizability
obtained using a specially optimized basis set. The
agreement of the RPA moments calculated in different
gauges is very good. The moments calculated in different
gauges in the second-order approximation show a slightly
larger spread than the corresponding RPA values, as is
expected from theory. However, these deviations are
much smaller than those of the SE values. The SOPPA
moments are generally closer to experiment than the
RPA moments. The convergence with the order of the
MBPT expansion, however, does not seem to be uniform
in all cases. In particular, the dipole polarizability of the
water molecule is underestimated by RPA while it is

TABLE IV. Moment s( —1) for the water molecule in the dipole-length (DL), dipole-velocity (DV),
and mixed (DL-DV) approximation (in a.u. ).

DL DV DL-DV

Basis set 101
SE
RPA
SOPPA

Basis set 105
SE
RPA
SOPPA

Theory
RPA'
DOSD '
Experiment (total spectrum)
Photoabsorption
EMSd
Experiment (continuum only, co& 12.62 eV)
Photoabsorption
Photoabsorption and EMS'
Electron impact

Proton impact"

8.35
7.16
7.60

8.35
7.04
7.73

7.0420
7.316

7.12
7.22

6.332
5.86

6.48+0.30~

5.86

5.61
6.66
7.68

5.54
6.93
7.72

7.0128

6.76
6.90
7.63

6.72
6.98
7.72

'Reference 65.
Dipole oscillator strength distribution (DOSD) constructed from experimental and theoretical infor-

mation, empirical increment rules, etc.
'Reference 73.
Reference 3.

'Reference 2.
'Reference 74.
~Reference 75.
"Reference 76.
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TABLE V. Average static electric dipole polarizability
cz=s( —2) for the water molecule in the dipole-length (DL),
dipole-velocity (DV), and mixed (DL-DV) approximation (in

a.u.). Values of the individual components of the a tensor are
reported in Ref. 44.

calculated in different gauges is very good, the dipole-
length formulation seems to give the most reliable results.
For that reason all photoionization cross sections report-
ed in this work are calculated in this approximation.

DL DV DL-DV VII. PHOTOIONIZATION CROSS SECTIONS

Basis set 101
SE
RPA
SOPPA

9.64
8.50

10.44

6.92
7.83

11.04

8.05
8.14

10.72

A. Partial cross sections of the valence-shell orbitals

In the one-electron model the ground state of the water
molecule has the following orbital configuration:

Basis set 105
SE
RPA
SOPPA

Theory
CHF'
SDTQ-MBPT(4)'
SDTQ-MBPT(4) +vibr. carr. '
Experiment
Photoabsorption'
EMS'
Rayleigh depolarization

'Reference 69.
Reference 70.

'Reference 3.
Reference 68.

9.66
8.53

10.79

8.53
9.92
9.97

9.45
9.72
9.922

6.85
8.43

11.32

8.02
8.48

11.04

TABLE VI. Mean excitation energy 27.211 I(0) for the water
molecule in the dipole-length (DL), dipole-velocity (DV), and
mixed (DL-DV) approximation (in eV).

DL DV DL-DV

Basis set 101
SE
RPA
SOPPA

Basis set 105
SE
RPA
SOPPA

Theory
RPA'
DOSD '

69.77
71.98
71.46

68.07
71.24
68.08

72.9151
71.62

83.01
75 ~ 38
69.82

81.62
71.82
68.10

73.0970

76.19
73.71
70.66

74.57
71.53
68.13

'Reference 65.
Dipole oscillator strength distribution (DOSD) constructed

from experimental and theoretical information, empirical incre-
ment rules, etc.
'References 77 and 78.

overestimated by SOPPA. This overestimation can be
traced to a number of low excitation energies that come
out too small in SOPPA. These observations also hold
for the individual components of the dipole polarizability,
which are discussed in more detail in Ref. 44.

Known moments are generally equally well reproduced
by both basis sets. This is true for both RPA and SOPPA
calculations. Although the agreement between moments

(la&) (2a&) (lb') (3 a)~(lb, )~ .

The five orbitals give rise to the ionization potentials
539.7, 32.2, 18.55, 14.73, and 12.62 eV, respectively. '
The la& orbital forms the inner shell, the 2a, orbital the
inner valence shell, and the remaining three orbitals the
outer valence shell.

The partial cross sections of the valence-shell orbitals
are shown in Figs. 1—4. They are calculated by the SOP-
PA method employing basis set 101. Cross sections ob-
tained by the simpler RPA method are generally quite
close to the SOPPA results. The SE cross sections, on
the other hand, resemble more the SE results reported
previously, i.e., they tend to be far too large. The
figures also show the contributions of the three polariza-
tion directions. For comparison cross sections of Tan
et al. obtained by electron momentum spectroscopy
(EMS) are also displayed. These have been obtained for
the energy range from 16 to 60 eV. Recently the data
have been supplemented by a synchrotron radiation study
for photon energies between 30 and 140 eV. In the over-
lapping region the two sets of data agree very well. The
low-energy and ((20 eV) of the cross sections is less cer-
tain. This is partly due to presence of narrow resonances
and autoionizing states in this region. On the other
hand, there are considerable technical diSculties in ob-
taining experimentally the low-energy photoionization
cross sections.

Figure 1 shows the partial cross section for the non-
bonding orbital 1b, . The cross section passes through a
maximum at 18.5 eV, which is in remarkable agreement
with the experimental cross section. The previous SE cal-
culations yield a much smaller cross section in this area
below 22 eV. ' A more recent EMS study of this re-
gion finds an even larger cross section at low energies,
while synchrotron radiation measurements scatter be-
tween 4.5 and 10 Mb. ' A compilation of cross sections
for this orbital obtained by different methods is given in
Ref. 6.

The partial cross section for the bonding orbital 3a, is
displayed in Fig. 2. It also agrees very well with the EMS
data and shows a maximum at 19 eV which was also
present in the earlier SE calculations. 27-29 Diercksen
et al. have suggested that it is caused by coupling be-
tween the 3a, ~2hz valence excitation and the 3a

&
~kbp

ionization. In the present calculation a weak mixing of
this excitation and the ionization channel is also ob-
served. Again, there is considerable spread among the
experimental cross sections between 18 and 22 eV. The
minimum at 20 eV found in one of the experimental stud-
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B. Total valence-shell photoionixation cross section

The calculation of the total valence cross section of the
water molecule poses additional technical problems not
encountered in the calculation of partial cross sections of
single orbitals. For a complete description including
channel coupling one would ideally like to include all
possible single particle-hole excitations from all valence
orbitals into the polarization propagator determination of
the transition energies and oscillator strengths. This is
feasible in RPA while for the SOPPA cross sections a
partitioning of the excitation space as discussed in Sec. V
has to be performed.

Another problem arises in the treatment of quasi-
discrete states embedded in the ionization continuum.
Excitation into a low-lying quasidiscrete state does not
necessarily lead to ionization of the molecule, since it
may decay into the ground state by fluorescence or may
lead to dissociation of the molecule into neutral frag-
ments. Hence, their oscillator strength does not (or at
least not fully) contribute to the molecular photoioniza-
tion cross section. This has been observed experimentally
for energies below 20 eV, where the absorption cross sec-
tion is larger than the ionization cross section. Above
20 eV every absorption leads to ionization of the system.
In a moment-theoretical calculation it is necessary to sort
the transitions into those which correspond to quasi-
discrete states and those which describe the continuum.
In the present work the contributions from the individual
channels to the transitions are examined and the follow-
ing rule is adopted. If a transition s dominant contribu-
tion arises from a channel whose experimental ionization
potential is exceeded by the transition energy then this
transition is regarded as ionization and is kept in the
moment-theoretical analysis. Otherwise it is regarded as
transition to a quasidiscrete state and is discarded.
Above 20 eV all transitions are kept. This approach to

the photoionization in the low-energy regime is rather
simplistic but works well for the water molecule. It is
presently the only viable path since no detailed studies of
the fluorescence, dissociation, and autoionization dynam-
ics of all these resonant states have been performed.
Only very recently has a quantitative theoretical descrip-
tion of the dynamics of the first bound excited state of
water been achieved. As in the case of the partial cross
sections the transitions from the 2a, inner valence-shell
orbital are shifted to correct for the neglect of orbital re-
laxation. Csiven that the contribution of this orbital to
the total cross section is quite small the shifting causes
only a minor change in the total cross section.

The theoretical cross sections are compared to the re-
cent double ionization chamber measurements of Haddad
and Samson. These agree very well with older EMS
data of Tan et al. , except in the region between 20 and
40 eV where the latter suggest a cross section which is
smaller by 3 Mb.

For comparison the total cross section obtained by
summing up the partial cross sections of Sec. VIIA is
displayed in Fig. 5. This separated-channel SOPPA cross
section already shows better agreement with experiment
than any of the previous theoretical studies, which under-
lines the importance of the use of moment-conserving po-
larization propagator methods in connection with mo-
ment theory. However, there are still some artifacts in
the cross section like the discontinuities at each ioniza-
tion potential which are not observed experimentally
since channel coupling smoothens the cross section in the
vicinity of the ionization potentials. Furthermore, the
theoretical cross section is too large between 20 and 30
eV. This overestimation can be seen to arise from too
large a cross section for the 1b2 orbital as discussed in
Sec. VII A.

The coupled-channel total cross sections of the valence
shell are calculated in basis set 105 in RPA and SOPPA

30

25

e(Mb)

20

15

10

10 20 30

e(eV)

BO 70

FICx. 5. Total valence-shell photoionization cross section of the water molecule calculated in the separated-channel approximation
(SOPPA, basis set 101), partial contributions of the individual channels, and experimental reference data (Ref. 2).
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2. 0

1.5
(1a~) A

o(Mb)

1.0

0 5

0

~ kb2~ kb)

530 550

~(eV)

570 590 600

FIG. 8. Photoionization cross section of the inner-shell la, orbital of the water molecule (separated-channel approximation,

SOPPA, basis set 101),contributions of the individual polarization directions, and experimental (EMS) reference data (Ref. 8).

shifted by this amount towards smaller energies. Howev-
er, it cannot be expected that this correction works as
well as in the case of the inner valence-shell orbital since
an inner-shell hole is a much larger perturbation. The
SOPPA method can account to a small extent for this
perturbation. Experience with the conceptionally related
electron propagator (one-particle Green's function ')
method, however, indicates that at least a fourth-order
MBPT treatment is necessary to predict inner-shell pro-
cesses reliably.

Below the ionization potential of this channel four
quasidiscrete states at 534.0, 535.9, 537.1, and 583.5 eV
were observed in EMS studies. ' These have been
identified by Diercksen et al. as excitations of one la&
electron into virtual valence and Rydberg orbitals. The
three lower excitations are also found in the present work
at 530.8, 531.4, and 535.8 eV, the fourth being too close
to the continuum to be resolved. The observed disagree-
ment between experimental and theoretical excitation en-
ergies (after Koopmans's correction) is as expected for
inner-shell processes studied by a second-order method.

The cross section above the ionization potential is
displayed in Fig. 8, together with reference data from a
recent EMS investigation by Ishii et al. which essential-
ly reproduces older results of Wight and Brion but gives
absolute cross sections. Use of the recent cross section
avoids the problem of renormalization of the experimen-
tal data that has been a source of arbitrariness in assess-
ing the quality of the previous SE studies of this cross sec-
tion. ' The present SOPPA cross section js in remark-
able agreement with the experimental results. The earlier
SE calculation of Diercksen et al. showed a more rapid
decay of the cross section at higher energies, and the con-
tributions of the individual excitation dipole directions to
the cross section was completely different from the
present cross section. The broad feature in the experi-
mental curve at 555 eV has previously been attributed to

shake-up satellites. ' It is interesting to note that the
cross section of this work also shows a broad feature at
560 eV since the polarization propagator only contains
single particle-hole excitations and is therefore not able
to describe two-electron shake-up processes.

VIII. CONCLUSIONS

Moment-theoretical methods for the calculation of
continuous photoionization cross sections rely heavily on
the fact that a representation of the molecular photoion-
ization continuum by discrete I. basis functions repro-
duces correctly the power moments of the oscillator
strength in the continuum region. In this contribution
various moments of the water molecule are calculated
and compared to experimental and theoretical reference
data. This comparison shows that the SE method is not
able to reproduce known moments. It has long been
known that the the SE approximation produces an error
in the TRK sum rule. For the water molecule it amounts
to +20% which caused the large overestimation or un-
derestimation of photoionization cross sections in earlier
calculations. In contrast, both RPA and SOPPA
practically fulfill the TRK sum rule with the basis sets
used in the present work.

In this work partial photoionization cross sections for
all ground-state orbitals of the water molecule are calcu-
lated in SOPPA and fully coupled total valence-shell
cross sections are calculated in RPA and SOPPA. All
cross sections show better agreement with experiment
than any previous calculations. It is believed that the fol-
lowing three reasons are responsible for this.

(i) The most important point is to use a method (and a
large enough basis set) so that the TRK sum rule is
effectively obeyed. This requirement rules out the SE ap-
proximation (and other incompletely CI treatments),
especially since an RPA calculation is computationally
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only insignificantly more expensive than an SE calcula-
tion.

(ii) The second improvement is obtained by avoiding
the separated-channel approximation which causes
artificial discontinuities at the ionization potentials and
perhaps incorrect cross sections elsewhere. In the case of
the water molecule the remaining error in the partial
cross section of the 1b2 orbital can be explained as an
effect of the separated-channel approximation.

(iii) The inclusion of electron correlation as such seems
to have the smallest effect on the calculated photoioniza-
tion cross section of the water molecule once conditions
(i) and (ii) are met since the RPA cross sections are not
much inferior to the SOPPA cross sections. This result

may not be generalized to other systems. Canuto
et al. ' have reported a case where even higher orders
than SOPPA had to be included to obtain reliable mo-
ments and cross sections. However, the success of RPA
in the case of the water molecule suggests that the cross
sections of much larger systems can also be reliably ob-
tained if electron correlation is not of utmost importance.
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