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Semiempirical specification of singlet-triplet mixing angles, oscillator strengths, and g factors
in nsn 'I, nsn 'p, np, and np configurations
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Methods are presented for determining singlet-triplet mixing angles from measured energy-level
data in two-valence electron systems, and for utilizing these mixing angles to specify E1 and M1 os-
cillator strengths and magnetic g factors from LS coupling and hydrogenic formulas and from data
obtained in single-valence electron systems. These methods are tested through studies of line
strengths in the He, Mg, Ne, Si, and S isoelecironic sequences and of g factors in the Kr and Pb
atoms.

I. INTRODUCTION

Measurements of atomic energy levels, oscillator
strengths, and magnetic g factors provide three comple-
mentary types of information that bear on the
specification of the wave function of the system. Energy-
level data are usually of much higher precision (typically
parts in 10 ) than oscillator strength or g-factor data
(typically parts in 10 ) and systematic trends in energy-
level data also often permit accurate interpolations and
extrapolations along isoelectronic sequences. ' These
three types of information can be deduced directly from
ab initio theory, but it is sometimes possible to utilize
measured energy-level data to obtain more reliable sem-
iempirical estimates of oscillator strengths and of g fac-
tors.

Oscillator strengths for single-valence electron systems
are often accurately predicted by methods that incorpo-
rate measured energy-level data into the calculation.
Semiempirical predictions can be obtained by various
quasihydrogenlike approaches such as the Coulomb ap-
proximation, the quantum-defect method, and model po-
tential calculations. In their simplest implementation
these approaches employ a single-configuration computa-
tion of the El transition moment, but configuration in-
teraction, core polarization, and other electron correla-
tion, etc. , are partially included through the use of exper-
imental energy-level data. As will be shown below, re-
sults obtained for single-valence electron systems can
sometimes be applied to two-valence electron systems
through semiempirical specification of the effects of inter-
mediate coupling. For magnetic properties such as M1
transition probabilities and magnetic moment g factors,
the specification of intermediate coupling effects is even
more direct.

For systems with two out-of-shell electrons, singlet-
triplet, and L-state mixing within a given configuration
manifests itself in the energy splittings, oscillator
strengths, and g factors of the constituent levels. In in-
termediate coupling, the wave functions of levels with
common J become a mixture of LS basis states that are
not subject to the AL and AS selection rules that restrict
their constituent amplitudes. The degree of intermediate
coupling usually increases with increasing ionicity along

an isoelectronic sequence (although counter examples ex-
ist, cf. Sec. IIIA). In fully ab initio calculations, inter-
mediate coupling is implicitly included in the construc-
tion of the wave function. It is also possible to empiri-
cally determine the mixing amplitudes explicitly from
energy-level data, to combine these with semiempirical
methods normally applied to single-electron systems, and
thereby to semiempirically specify oscillator strengths
and g factors for two-electron systems in intermediate
coupling.

The purpose here is to generalize earlier calculations of
this type for nsn'l configurations and to extend their use
to nsn 'p, np and np configurations. Although these
four types of configurations may seem restrictive, they
occur as either the ground or the first excited
configuration in over one-fourth of the isoelectronic se-
quences of the stable elements. The ground con-
figurations include ns np for the C, Si, Ge, Sn, and Pb
sequences; and ns np for the 0, S, Se, Te, and Po se-
quences. The first excited configurations include nsnp for
the Be, Mg, Zn, Cd, and Hg sequences; (n —1)dns for the
Ca, Sr, Ba, and Ra sequences (which becomes the ground
configuration above some ionization stage in the se-
quence); and (n —1)p ns for the Ne, Ar, Kr, Xe, and Rn
sequences.

Formulas are presented below which specify singlet-
triplet mixing angles in terms of energy-level data, and
apply them, together with single-particle E1 line
strengths and LS values for M1 line strengths and Lande
g factors, to the prediction of two-particle line strengths
and g factors. Tests of these procedures are presented for
line strengths in the He, Mg, Ne, Si, and S isoelectronic
sequences and for g factors in the Kr and Pb atoms.

II. CALCULATION OF MIXING ANGLES
FROM ENERGY-LEVEL DATA

The nsn 'l, nsn 'p, np, and np configurations were
selected for study here because they contain no more
than two levels of the same J, so that intermediate cou-
pling connects the LS basis states only pairwise. Concise
specification can thus be made in terms of two-by-two
off-diagonal matrices, for which diagonalization can be
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achieved by solution of quadratic (rather than cubic or
higher-degree) equations. A matrix of the form

a c
c b

can be diagonalized by a basis transformation T 'M T,
where

W'1 =(4GI+g()/2&1(1+1)gl .

Although the diagonalized energies involve square roots
and squares, the centroid of the energy for each J value is
linear in the Slater parameters. Denoting the new com-
posite states by primes, the J-centroid energies cJ are
given by

cos(8z) sin(8J )

—sin(8J ) cos(8J )

Here 0J is the mixing angle, given by

(2)

, =E( Li, )=Fo—GI (I—+1)gi/2,
el=[E( L(')+E('LI )]/2=Fo —((/4,
E, +, =E('LI+i) Fo G, +i(i/2,

(7)

sjn( 8 ) = I 1 + [ W +( 1 + W2 )
1 /2

]
2

]
—1 /2

where

WJ—:(6 —a)/2c .

(3} which can be solved simultaneously to obtain

gi =2(EI+,—EI, )/(21+ 1),
Et+ i

In the cases to be considered, the quantities a, b, and c
can be determined from experimental energy-level data
and used to evaluate 8z. The sign ambiguity in Eq. (3) is

resolved by requiring that OJ=O in the LS limit. This
formulation specifies the mixing coe%cients of the wave
function for each pair of states with angular momentum
J.

A. Mixing angles for nsn'I and nsn'p' configurations

The nsn'l configuration consists of four levels which, in
the limit of pure LS coupling, can be denoted by LI
LI, LI+ „and 'LI. In intermediate coupling these levels

can be specified in terms of the exchange Slater energy
GI, the spin-orbit energy gi, and a common energy Fo
that includes the electron-nucleus energies, the electron-
electron direct Slater energies, and (for excitation ener-
gies) the ionization potential. The Hamiltonian matrix
elements for this configuration in the LS representation
are given in Table I. The nsn'p configuration is de-
scribed by the same matrix with the value l=1 and the
substitution g,

The J = l submatrix to be diagonalized is of the form of
Eq. (1) with

a =Fo —Gi —gl/2,

Fo+ G

c =&I ( I + 1 )gl /2 .

With these values, Eqs. (4) and (5) yield, for the J= I lev-
els,

Iei+ i (21 + 1 )el + ( I + 1 )el8' =—
1 l(1 +1)(EI+, e~ —,)—

(9)

Equation (9) can be substituted into Eq. (3) to specify the
mixing angle 0J in terms of the measured J-centroid ener-
gies. In terms of the LS basis states, the wave functions
for the physical states are therefore

I

Li' &
=cos(81 ) I LI &

—sin(8g ) 'L
g &,

~ LI+ i &
=

~ LI + i &

J

'LI ) =sin( 8I }J LI ) +cos( 8I ) [
'L& ) .

(10)

The ls2p and ls3d terms in the He isoelectronic
sequence

The validity of this approach is demonstrated in Fig. 1

for the case of the ls2p and ls3d terms in the helium
isoelectronic sequence. For these systems highly accurate
theoretical values for the energy levels, ' mixing an-
gles, " and transition probabilities' are available, per-
mitting stringent tests of this formalism. The solid lines
in Fig. 1 represent values for the mixing angle obtained
by substitution of published energy-level data ' into Eqs.
(3} and (9), whereas the symbols denote ab initio values
for the mixing angle computed directly from the wave

The mixing angle 0& can be specified directly in terms of
the physical energies by use of Eqs. (6) and (g), yielding

TABLE I. Hamiltonian inatrix in the LS representation (*Ll~&~'Ll } for the configurations nsn'I
and (with 1 1 and g, —gl)nsn'p .

3

L
3L(+l

1L

3L

Fo —G(—(1+1)gi /2
0
0

L

Fo —
G~ —4 /2

0

v'I(l +1)(i/2

3L(+l

0
Fo —G(

+ I gI /2
0

'L

&I(I +1)gl/2
0

Fo+ G(



6960 LQRENZQ J. CURTIS

Q. 7

0 6
l~~i I

g g ~ I ~I g I I I

Q. 4

sin6,

Q. 3

0.2

0. 1

+t
0 Q

0 20 60

e. Solid curves representHe isoelectronic sequenc-' P and 1s3d "D levels in t e e i

t direct ab initio calculations by

FIG 1. Singlet-triplet mixing angan les for the 1s2p an
levels (Refs. 8 and 9) an ynd s mbols represent iree aonalization of the matrix of energy evgo

Drake (Refs. 8 an d 9) (+) and by Ermolaev an o

10Drake ' (+) and by Ermolaev and Jones
1 th t d t 't '

1S.m Fi. ta,
is this formulation speci es e

1 Ifh '
1n le very accurate y.tion of the mixing ang y

sta e of ionization,values are s i eh'fted downward by one stage o i
~ ~

then the curves are virtually coinci en .

the np con gura
'

fi uration are obtained yb the replacement

here are two matrix diagonalizations to

which the submatrix of Eq.

nd n con6gurationsB. Mixing angles for np and np

and n configurations conta' in five levels
b denoted as P

of the form ns np an ns np,
py gconfi urations. n a

and gl quantities
' '

s described above, t e energ
on the direct electron-

h H 'ltonian matrix ele-
1 ctrons also depen on t e i

er F . The amigy
ments for t e nphe n configuration in t e rep

1 II and the correspon1 h ponding values for

TABLE II. Hamiltonian matrix in the L
and (with the substitution g„—g, ) np

a =Fo —5Fq —
g

b =F,+&aF, ,

c = —v'2g

so that, for t e, f h J=O levels, Eqs. (4) and (11 yield

Wo = —(15F2+g )/2v'2$ (12)

'D - P mixing, for which the submatrixSecond, there is 2-
of Eq. (1) involves

&~'LJ ) for the configurations nprepresentation

3p
3p

'D2
'So

3p

Fo —5F2 —
(p

0
0
0

—v'Zg,

3p

0
F() —5F, —(p /2

0
0
0

3p

0
0

Fo —5F2 + gp /2
g /v'2

0

0
0

g /v2
Fo+F2

0

'So

—v'2g
0
0
0

Fo + 10F2
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a =Fo —5F2+g(/2,

b =Fp+F2,
c =g~/W2,

so that for the J=2 levels, Eqs. (4) and (13) yield

W2 =(12F2 —
g~ )/2~2/~ .

In this case the J-centroid energy values are

so= [E('So )+E( Po )]/2=Fo+5F2/2 g /—2,

(13)

(14)

where

SM, = / (i //L+g, S//k ) /' . (23)

Here g, is the g factor of the electron, L and S are in
units of A, and SM& scales isoelectronically as independent
of Z. In either case, the absorption oscillator strength f
is given by'

(2J;+1)f(i, k) =(1.4992 s/cm )

X [E(k) E(i—)] (2Jk+1) A (k, i) .

(24)
e&=E( P& )=Fo 5F2 gpl2

e2= [E('D2 )+E ( P~ )]/2=Fo —2F2+( l4,
which can be solved simultaneously to obtain

g =4(5e —2eo —3E, ) /15,

Fz =2(Eo—
&i }/15 .

(15)

(16)

Equations (12) and (14) can be expressed in terms of mea-
sured energies using Eqs. (16) to obtain

10E2 21E&+ 1 1EpWp=— (17)
4~2(5Ez —3e, —2eo }

and

SM, (LSJ,LSJ+1)=(+ 1) [(L +S + 1 }2—J2) ]

X [J', (L —S)'—]l4J, ,

SM, (LSJ,LSJ)=(+1}(2J+1)
(25)

If either the bra or the ket in Eqs. (21) or (23) involves
composite LS basis states as in Eqs. (10) and (19), then
the line strengths will consist of mixing angle factors and
LS values for the line strengths. Various methods for the
evaluation of SE, will be discussed in subsections below.

For magnetic dipole transitions, the line strength fac-
tors S~& for pure LS coupling connect only states that
differ at most by the J quantum number, and depend only
on angular factors, involving simple rational fractions
given by' '

5E2+ 3E, i SCp82=—
2&2(5e2 —3e, —2eo)

(18) X [S(S+1) L(L +1)—

~

P' ) =cos(8 )~ P ) —sin(8 )~'S ),

~ Pz ) =cos(8z)( Pz ) —si (8')('D )2,

(

'D
2 ) =sin( 8z ) ( Pz ) +cos( 8z ) )

'D2 ),
(
'So ) =sin(8o) ( Po ) +cos(8o) (

'So ) .

(19)

Substitution of Eqs. (17) and (18) into Eq. (3) permits the
mixing angles to be specified in terms of the measured J-
centroid energies. In terms of the LS basis states, the
wave functions for the physical states are therefore

+3J(J+1)]/4J(J+1)],
where the factor (+1) denotes the sign of the unsquared
quantity in Eq. (23).

Since the considerations made here assume that precise
energy-level data are available, the transition probabili-
ties and oscillator strengths can be uniquely specified in
terms of the line strengths and energy separations. Thus
(avoiding ambiguities in the use of experimental or
theoretical energy levels to convert among theoretical
line strengths, oscillator strengths, and transition proba-
bilities) presentations in the subsections below will com-
pare isoelectronically scaled line strengths: Z SE] for the
E1 case; SM, for the M1 case.

III. TRANSITION PROBABILITIES,
OSCILLATOR STRENGTHS, AND LINK STRENGTHS

where

X [E(k) —E (i)] S~,(i, k), (20)

(21)

Here r is in units of ap, and SE, scales isoelectronically as
1/Z . For M1 transition rates'

(2Jk+1)A~, (k, i)=(2.6973X10 " cm /s)

X [E(k}—E (i)] S~,(i, k), (22)

In terms of the line strengths, the transition rates A for
the E1 transitions are given by'

(2Jk+ 1)Az, (k, i) =(2.0261 X 10 cm /s)

Sz, ('S 'PoI )=k cos (8, )((ns~r~n'p) )

S~,('So, P', )=k sin (8, )((ns(r(n'p) )

(26)

where the factor k accounts for equivalent electrons and
appropriate Racah algebra factors. The transition mo-

A. Line strengths for nsn'I and nsn'p configurations

For an nsn'p configuration, the most common type of
E1 transition connects it to a nearby ns 'Sp state. Simi-
larly, for an nsn'p configuration, the most common type
of transition is to a nearby n'p 'Sp state. These transi-
tions can be specified in terms of the mixing amplitude of
the 'P& LS state. The presence of the spectator ns or n'p
electrons is taken into account by the mixing angle, and
these transitions can be specified using single-electron ra-
dial transition elements using
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SM, ( P', , P o)= 2c os (Oi),

SM, ( P2, P', )= —,'cos (9,),
SM, ('P', , Po)=2sin (8, ),
SM, ('P', , P', )=—', cos (8, )sin (9,),
SM, ('P', , P2)= —,'sin (6, ) .

(27)

The Is -Is2p transitions in the He isoelectronic
sequence

An application of this method to E1 transitions in the
He sequence is shown in Fig. 2. In pure L,S coupling the
1s 'So-1s2p 'P, resonance transition is E1 allowed, but
the 1s 'So-1s2p P, intercombination is El forbidden.
In intermediate coupling both are allowed, and as seen in
Eq. (26), the resonance and intercombination transition
elements are multipiled by factors cos (0, ) and sin (0, ),
which were computed and displayed in Fig. 1. Figure 2
shows a comparison between mixing angle predictions

ment ( ns~ r~ n 'p ) can be obtained by a number of semi-
empirical approaches, as will be discussed in the context
of specific examples.

The M1 line strengths for these systems can be ob-
tained using Eqs. (10) and (25), and are given by

with two different semiempirical estimates of the transi-
tion moment, and the ab initio relativistic random-phase
approximation (RRPA) calculations of Lin, Johnson, and
Dalgarno. ' The symbols denote the RRPA calculations,
the solid lines represent results using empirical mixing
angles and a Coulomb approximation calculation' of the
transition moment, and the dotted lines represent the
same calculation made using a screened hydrogenic ap-
proximation of the transition moment suggested by Dal-
garno and Parkinson'

[( ls~r~2p ) [
=2"/3 (Z+0. 155) (28)

These three calculations are in close agreement for the in-
ter combination line, and for the resonance line the
Coulomb approximation follows RRPA reasonably well,
although deviations occur at very high Z.

Figure 2 indicates that the mixing angle is a dominant
consideration in this calculation, since a crude estimate of
the transition moment can yield reasonably good predic-
tions. While semiempirical methods are intended for
(and are usually more successful in describing) complex
many-electron systems, this He-sequence example pro-
vides a test of these methods in a case for which the ener-
gy levels can be considered precisely known over the en-
tire isoelectronic sequence.

3.5

He SEQUENCE 1s -1s2p

3.0

2.0

1.5

1.0
0 0

0.5

.0 vvvvm0.
40

I
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FIG. 2. Z-scaled line strengths for the 1s -1s2p transitions in the He isoelectronic sequence. Calculations using Eq. (26) with the
semiempirical. mixing ang]es from Fig. 1 are denoted by the solid curves (with the transition moment evaluated by the Coulomb ap-
proximation) and the dotted curves (with a screened hydrogenic value for the transition moment). The symbols represent ab initio
RRPA calculations (Ref. 12) for the resonance (+) and intercombination (0 ) line strengths.
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The 3s -3s3p transitions in the Mg isoelectronic
sequence

The ns -nsnp resonance and intercombination transi-
tions in alkalilike isoelectronic sequences are (in contrast
to the He example above) unbranched, so their transition
probabilities can be determined in level lifetime measure-
ments. An application to the n=3 case of the Mg
isoelectronic sequence is shown in Fig. 3. In this case,
the values used for the single-particle 3s-3p transition mo-
ments were taken from the corresponding quantities in
the Na isoelectronic sequence. Exclusive of the informa-
tion contained in the mixing angles, the transition mo-
ments for these two sequences di6er only through the
presence of screening by an additional 3s spectator elec-
tron. It was found by least-squares-fitting methods that,
by scaling squared transition moments for the Na
isoelectronic sequence downward by a constant (Z-
independent) multiplicative factor of 0.83, almost perfect
agreement could be obtained with published ab initio line
strengths in the Mg sequence.

The mixing angles are computed from experimental
Mg sequence energy-level data' for Z ~ 33, which were
supplemented by the theoretical values of Cheng and
Johnson' for 36 &Z ~92. The line strengths for the Na
sequence were taken from the theoretical values of Kim

and Cheng, and the theoretical line strengths for the
Mg sequence were taken from the calculations of Cheng
and Johnson. ' To retain the corresponding energy or-
dering of the two systems, the J =

—,
'-

—,
' line strengths in

the Na sequence were used to predict the intercombina-
tion line strengths in the Mg sequence, and the J =

—,
'-

—,
'

line strengths Na sequence were used to predict the reso-
nance line strengths in the Mg sequence resonance lines
(although the J dependence was slight).

As can be seen from Fig. 3, agreement between the
semiempirical and ab initio values is excellent. While the
multiplicative factor 0.83 is purely empirical, the fact
that it is a single overall constant is important since it
permits predictions of lifetimes based entirely on experi-
mental data. If accurate energy-level data are available
for both sequences and a data base for lifetimes in the Na
sequence exists, then the multiplicative constant could be
determined from a single accurate lifetime measurement
(of either the singlet or triplet level) for one isolated ion
in the Mg sequence. This permits lifetimes measured in
the Na sequence to be used in the prediction of lifetimes
in the Mg sequence using only singlet-triplet mixing an-
gles determined from experimental energy-level data.

Qualitatively similar results were also obtained for the
n=2 case, using energy-level and oscillator strength data
for the Li and Be sequences from the multiconfiguration

800

600

400

200

I0
20 30 40 50 60 70 SO 90

FIG. 3. Z-scaled line strengths for the 3s -3s3p transitions in the Mg isoelectronic sequence. The solid lines denote calculations
using Eqs. (26) with empirical mixing angles, and the use of the transition moments for corresponding elements in the Na sequence,
scaled downward by an empirical factor 0.83. The symbols represent ab initio calculations (Ref. 20) for the resonance (+) and inter-
combination (0 ) line strengths.



LORENZO J. C RTIS6964

Kim, and Des(M( DF) calcu a
.

d f o~ the energy
lations Cheng,Djiac-Fock

les were obtaine o' '
moments

x 2] Mixjng ang
e and transitjPn

claux '
th Be sequence,

th and energy
level values

he oscillator s
ttempt-

s for t e .
strengt ained frPm t e

was agai~ a efor the Li seque
it was fpund t at

values or
thod, and i

Lj sequence
least squares m

ment for t e
ed by

d t ansition tnom
) u]tiplicatyve

ing the q
nstanf. (Z-&ndep

26) gave good

e s uare r
.

e endentdownward y
dictions pf Eq .

2, he reso-
0 70, the pre

ations for t e
factor of. 0.

h
dM (N)

intercon1
'

Li) an
homolo-

lication to
ue also has oh t this techniqueindicates t aquences ind

r '
ransition

lie ability.
1 redict M1 transis. (27) to accurate y prThe use of Eqs.

M, and Zn isoe ec rilities in the Be, g,
and compared witnces w d demonstrated an itnces was alrea y

Additional examptions in Ref. 4.
'

n of M1 line strengthe cal ion o
III B.

culat

in the Ne isoelectronicThe2p - p-2 3s transitionsin t e
sequence

-2 3s tran-lication to the 2p - p

O~Z «80
in the ei

aken from e
and used toca c ' of Ivanova ancal calculations o

ren ths were comP
~

les. Pine streng
dro en-

compute
'

a simple u y

the mixing ang
f 11 screened hydr gd f,om Eqs. (26) us'"g '

like transitio ™

9 )22plrl3s ) ('=const/(Z— (29)

'
n this constant wou ld e ual

h b0.8806. oo
st-s uares met o sd (through least-sqtes was obtaine

(b a factor ostant upwar y
th 1'

f cjllator str gcalculations o os
'

Hansen. As
t}1

ll in cpnsi era
'

bes o
p

n mixing c
onfi uration (i.e.,g

w
'

d to alternative a ei
c behavior of

which has le o
t e isoelectronic

N'" b'fe from Ne I to a

1 f 1 h
4 are associateused in Fig.

1.0

I I I

20
I I I I II I I I I I

40
I I I I I I I I I I

30 3525
2

te calculationsolid lines denote cqsforthe2p - p
ed hydrogen i e

led line strengths
nd a fully screene yusing Eqs.. (26) with empirical mix

tor 2.20.



SEMIEMPIRICAL SPECIFICATION OF SINGLET-TRIPLET. . . 6965

B. Line strengths for np and np configurations

Using Eqs. (19) and (23), the Ml line strengths for ei-
ther an np or np configuration can be written as

S~,( P, , Po)=2cos (Oo),

SM1( P2i Pi)= 2cos (02) t

S~(('D2, P, ) =—,'sin (82),

SM, ('Dz, P2)= —", cos (82)sin (02),

S~,('So Po ) =0,
Sst, ('So, P, )=2sm (Oo) .

(30)

The 3s23p2 and the 3s23p configurations in the Si and S
isoelectronic sequences

Figures 5 and 6 display the results of this approach ap-
plied to the calculation of line strengths for transitions
within the ground configurations 3s 3p and 3s 3p of
the Si and S isoelectronic sequences. The solid curves
represent predictions [using Eqs. (30)] based on mixing
angles deduced [using Eqs. (3), (17), and (18)] from
energy-level data. The (+) symbols denote ab initio
MCDF calculations.

In computing the mixing angles, the data compilations
of Ref. 24 for Z ~ 42 have been supplemented for
43 Z 92 by theoretical energy-level values from the
MCDF calculations of Huang for the Si sequence and
of Saloman and Kim for the S sequence. The ab initio
calculations of the line strength are also drawn from the
MCDF calculations of Refs. 25 and 26. Because of the
labeling convention used in some versions of the MCDF
codes, the published compilations do not trace isoelec-
tronic trends past an anticrossing with a level from
another strongly interacting configuration. The I.S label-
ing is only nominal, with the dominant configuration
often differing at the high- and low-Z limits, and some
compilations follow the energy ordering rather than the
symmetry properties of the levels. Thus two different
isoelectronic trends are sometimes joined at an anticross-
ing. This occurs in the Si sequence for the 'D2 level
above Z=76, and for the S sequence ' for the P& level
above Z= 89, for the 'Dz level above Z= 80, and for the
'So level above Z=68, and accounts for the high-Z ter-
mination of some theoretical loci in Figs. 5 and 6.

The agreement between semiempirical and ab initio
calculations for the Si sequence is good, and becomes
nearly exact if the semiempirical results are shifted up-
toard by one unit of Z (in contrast to a dotonward shift by
one unit of Z observed for the helium sequence). For the
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FICx. 6. Line strengths for the M1 transitions within the 3s 3p ground configuration of the S isoelectronic sequence. The solid
lines denote calculations made using Eqs. (30) with empirical mixing angles and LS coupling formulas for the transition moments.
The symbols (+) represent the ab initio MCDF calculations of Saloman and Kim (Ref. 26).

S sequence, no shift is indicated, and agreement is good
for all transitions except P2-'D2. The small discrepancy
between semiempirical and ab initio values exhibited
there may indicate the presence of strong configuration
interaction effects.

Radiative branching ratios of Ml transitions from the
same upper level are sometimes used for calibration pur-
poses. For example, in Ref. 28 the branching ratio for
decays from the 3p 'D2 level was used for a radiometric
calibration of an optical spectrometer. In this case the
ratio of intensities is proportional (to within detection
efficiency factors) to the ratio of transition probabilities.
As seen from Eqs. (20) and (30) this is given by

A ( P2 —'D2) E('D2) E( P~)—
3 cos (Oz),3 ('P', —'D~) E('D2) E( P',)—

(31)

and, by virtue of Eqs. (3) and (18), this ratio is entirely
specified (in the single configuration approximation) by
measured energy levels.

IV. GYROMAGNETIC RATIOS

The energy of interaction of an atom with an external
field 8 can be written as

where the magnetic moment operator is defined as in Eq.
(23), po is the Bohr magneton, and gJ is the magnetic g
factor. In the limit of pure LS coupling and the approxi-
mation of the Dirac moment g, =2, the g factor assumes
the Lande value (for JXO)

gLsJ=[3J(J+1) L(L +1)+S(S+—1)]/2J(J+1) .

(33)

gLsJ gLsJcos (~J )+gL's'Js n (~j )
2 2

gL'S'J gLSJ ~J +gL'S'J (~J )
2 2

(34)

Thus measured energy-level data can be used in conjunc-
tion with Eqs. (3) and either Eq. (9) or Eqs. (17) and (18)
to determine the mixing angles, and combined with LS
values from Eq. (33) to specify physical g values by Eq.
(34).

The 4ps5s configuration in Krt and the 6s26p 2

configuration in Pb t

If there is intermediate coupling between two levels LSJ
and L'S'J as in the case of Eqs. (10) and (19), then the
physical g factors can be written' in terms of the mixing
angles and the Lande g factors as

E ., =s 0&ill(L+g. s).Bilk &=pogJMJ (32)
Table III presents two applications of the method: the

4p 5s configuration in KrI involves mixing angles com-
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puted as described in Sec. II A; the 6s 6p configuration
in Pb I involves mixing angles computed as described in
Sec. IIB. Mixing angles were obtained from measured
energy-level data. For the KrI case, energy-level data
was taken from the measurements of Kaufman and Hum-
phreys. Energy-level data for the Pb I case and g-factor
data were taken from Ref. 30. The agreement between
the calculated and measured g factors indicates that these
systems are dominated by intermediate coupling effects.

These computations provide a clear comparison be-
tween configuration interaction and intermediate cou-
pling effects. Deviations of a physical g factor from its
(nonzero) Lande value for levels that are not mixed by in-
termediate coupling ( P2 for sp configurations, P, for p
configurations) indicate configuration interaction. Agree-
ment with Eq. (34) for levels with nonzero Lande values
that are mixed by intermediate coupling ( P, and 'P, for
sp configurations; P2 and 'D2 for p configurations) indi-
cates intermediate coupling. This method is particularly
useful for applications to ionized atomic systems, for
which little experimental g factor data presently exist.

V. CONCLUSION

Level E (cm ') Lande ' Predict Expt. '

Kri 4p 5s, sin(8&)=0.717
P2 79 972

3p 80 917
Po 85 192

1P 85 847

3
2
3
2

Oe
0

1.500
1.243
0/0'
1.257

1 ~ 502
1.242

1.259

Pb I 6s 6p, sin(80) =0.377, sin(82) =0.640
3p 0 0 e 0/0e

0
3p 7 819' 1.500

2

3p 10 650 3 1.295
'D2 21 458' 1 1.205
1S 29 467' Oe 0/00

'Obtained from Eq. (33).
"Obtained from Eq. (34).
"'Moore, Ref. 30.
Kaufman and Humphreys, Ref. 29.

'gj is undefined for J=O.

1.501
1.269
1.230

TABLE III. Intermediate coupling calculation of g factors
for the 4p'5s levels in Kr I and the 6s 6p levels in Pb i.

It has been shown that intermediate coupling effects in
wave functions of nsn 'l, nsn 'p, np, and np
configurations can often be reliably parametrized using
singlet-triplet mixing angles deduced from energy-level
data. The mixing angles can then be used in conjunction
with simple I.S coupling formulas to reliably predict M1
transition probabilities and g factors. The mixing angles
can also be used to predict E1 transition probabilities if a
reasonable approximation to the transition moment can
be obtained. In the cases studied here, it was found that
good predictions could be made using very simple ap-
proximations to the transition moment (hydrogenlike,
Coulomb approximation, or scaled values from a neigh-
boring isoelectronic sequence). Although these methods
cannot be expected to work well in cases where strong
configuration interaction effects are present, these effects
often occur locally in an isoelectronic sequence, and can
be identified by isoelectronic irregularities in the energy-
level data.

Although powerful ab initio codes presently exist
which permit direct numerical computation of oscillator
strengths and g factors for complex systems, this simple

mixing angle approach can be provide a useful aid in the
prediction, interpretation, and systematization of data. It
provides a unique prediction in terms of energy-level data
that is independent of methodologies; it incorporates
empirical information into the calculation and compares
interactions that sample differing portions of the wave
function; it provides a means of characterizing and
separating intermediate coupling and configuration in-
teraction; it reveals inconsistencies within large blocks of
data; and it provides a sensitive way to characterize the
agreement between experiment and ab initio theoretical
predictions.
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