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Total multiphoton-ionization rates for an extremely short-ranged potential
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The total ionization rate by a plane-wave field in the long-wavelength approximation from a
three-dimensional 6-function potential is reconsidered. Well into the above-threshold ionization re-

gime, the Keldysh approximation turns out to yield virtually the exact ionization rate for circular
polarization. For multiphoton orders in excess of n —10, lowest-order perturbation theory only
holds for intensities much lower than those employed in current experiments. For moderate intensi-
ties, the total ionization rate is very well approximated by a slope of N+k with integer k 1.
Within the range of most experimental interest where one or several channels are suppressed by the
ponderomotive barrier, the slope is again near N and decreasing with increasing intensity.

I. INTRODUCTION

One of the most interesting aspects of above-threshold
ionization (ATI) is the very different behavior of the total
ionization rate and the partial ionization rates (where the
electron absorbs a definite number of photons) as a func-
tion of the intensity I of the ionizing field. The partial
rates exhibit a pronounced and definitely nonperturbative
dependence on the intensity. This is evident from those
features such as peak switching and peak suppression,
which first raised the interest in ATI phenomena. On the
other hand, for the same intensities, the total ionization
rate still follows more or less closely the I dependence
(with N close to the minimum number of photons that is
required for ionization) that had been characteristic of all
multiphoton ionization rates before the first observation
of ATI. ' The persistence of the approximate I behavior
of the total rate which is predicted by lowest-order per-
turbation theory (LOPT) has thus far not been seriously
challenged by either experiment or theory. Experimen-
tally, I behavior has been observed well into the intensi-
ty region where many electron energy channels are al-
ready closed due to the ponderomotive potential barrier.
All deviations from the I shape thus far have been attri-
buted to saturation. Only very recently are there indica-
tions of a slope smaller than N below saturation. How-
ever, it seems that the situation must still be considered
inconclusive. On the theoretical side, many numerical
simulations demonstrate the persistence of the I behav-
ior of the total rate up to fields where the partial rates are
no longer described by anything near perturbation
theory. Analytical results are not available.

In this paper, we intend to shed some light on this situ-
ation by investigating an (almost) analytically solvable
model of multiphoton ionization: a three-dimensional 5-
function potential including a regularizing operator.
This model potential, which is originally due to Fermi,
has been considered in the context of applications in nu-
clear physics, many-body physics, and atomic phys-
ics. " Due to the presence of the regularizing operator

it has exactly one bound state (without it would have
none) like its one-dimensional counterpart. Hence it
would be expected to give a reasonable description of the
H ion, which has just one bound state. How far results
derived from this potential can be applied to ATI of rare
gas atoms is, of course, debatable. It might serve as a
realistic approximation of a short-range potential. '

While it clearly does not apply whenever any resonant
state is involved it might at least point in the right direc-
tion in the case of nonresonant multiphoton ionization.
Moreover, if the model should turn out to be in conflict
with experimental data, these differences could be attri-
buted to the long-range character of the actual binding
potentia1.

The paper is organized as follows. In Sec. IIA we
rederive the Keldysh approximation. Following Kel-
dysh' we use the electric field gauge throughout, which
leads immediately to gauge-invariant results even if the
external field is not properly turned on and off. In Sec.
II B we specialize our results to the three-dimensional 5-
function well. In this case, the electric field gauge has an
additional advantage over the p A gauge: in the latter,
due to the momentum dependence of the regularized 5-
function potential, minimal substitution generates an ad-
ditional electron-field coupling term (which was omitted
in Ref. 9. It has been shown' that it makes no contribu-
tion to the ionization rates, but it might affect the wave
function). No such term exists in the electric field gauge.
Various forms for the total ionization rate are obtained.
In Sec. II C we compare for the 5-function potential the
Keldysh approximation with Berson's solution, which is
exact in the context of the quasienergy formalism. It
turns out that the Keldysh approximation is exact up to
the neglect of the Stark shift of the ground state. Section
III discusses the total ionization rate as a function of the
applied field for various multiphoton orders, based on nu-
merical evaluation of a double series. A possibly unex-
pected result is that for high multiphoton orders the total
rate already deviates from the I behavior predicted by

40 6904 1989 The American Physical Society



TOTAL MULTIPHOTON-IONIZATION RATES FOR AN. . . 6905

lowest-order perturbation theory (with N the minimum
number of photons required for ionization in a weak field)
for intensities far below those where channels close due to
the ponderomotive barrier. Finally, Sec. IV summarizes
our conclusions. Throughout this paper, we use units
such that A=c =1.

—3/2 t(E ~
—p'r . (E)lim f d r(2n) e ' iG'+'(rt, r't'}

f~oo

where

lf'J' '(r, t)=(2 n}

y(E)( i tI )e

II. AN ATOM IN A PLANE-W'AVE FIELD

A. Derivation of the Keldysh approximation

Xexp i n(t) r —. d~n (r)
2m

(2.6)

M = lim f d r g' '( r, t ) 'go(r, t ),
f~oo

(2.1)

where $0(r, t ) is given by the time evolution of the initial
state Pp '(r, t ), viz. ,

We want to consider an atom that is subjected to a
finite pulse of an electromagnetic wave. In fact, we only
consider one electron bound by a static potential. Prior
to the arrival of the pulse the electron is in the ground
state with the wave function $0 '(r, t ) =$0 '(r )exp( i ~EO ~

t )

with ~EO~ the binding energy. The probability that the
electron is ionized into a final state with momentum p
and wave function f& '(r, t) is determined by the square
of the matrix element

n(t)= p eA(t—) . (2.7)

The lower limit of the integral in Eq. (2.6) only contrib-
utes an irrelevant phase and can be left arbitrary. Thus
the Keldysh approximation yields the matrix element

M' '= i f—d r dt g' '(r, t)*[—er E(t)]$0' '(r, t) .

(2.8)

The matrix element (2.8) can be rewritten in a different
form whose evaluation is much simpler in most cases.
Noticing that

is the Volkov wave function in the electric field gauge and
[E(t)= —8 A(t) IBt ]

(0r, t)= lim f d r'iG+(rt, r't')go' '(r', t') .
f ~ —oo

(2.2) ~ a—er E(t)exp[ —in(t) r]= i ex—p[ in(t) —r], .
at

(2.9)

=5(t —t')5(r —r') . (2.3)

The unperturbed propagator G'+'(rt, r't') satisfies the
same equation with the term e r.E( t ) missing. The full
propagator then obeys the integral equation

G+ =G + +G+ HI G+ =G + +G+ HI G + (2.4)

written in shorthand operator notation with
Ht~ —er E(t). Using Eq. (2.2) and the second version
of Eq. (2.4) in Eq. (2.1) we obtain, exploiting the ortho-
gonality of the eigenfunctions of Ho =p /2m + V(r),

Mz= lim f d rd r'dt'P~ '(r, t)*G+(rt, r't')
taboo

Here G+(rt, r't') denotes the retarded propagator in the
presence of both the ionizing field E(t) described in the
dipole approximation and the binding potential V(r)

2

i — +er E(t) V(r) G—+(rt, r't')
Bt 2m

we integrate by parts on the right-hand side (rhs) of Eq.
(2.8) and obtain

M' ' = i d r d—t P' '(r t }'
P p 7

X — n (t)+i f' '(r,—t) .
2m at

The boundary terms at t ~+~ vanish for a field pulse of
finite duration [since no harmonics of the field frequency
are there to cancel the rapidly oscillating term
exp(i~E ~to)]. With the help of

n'(t)
exp[ —in.(t).r]= — V exp[ in(t) r], — .

2m 2m

a further integration by parts yields

M' '= i d r—dt f' '(r t)"
P p

X [ —er'. E(t')]$0' '(r', t'), (2.5)
V'+ q,"'(r, t }

2m

which is still exact. Both wave functions are in the pres-
ence of the binding potential, but in the absence of the
field.

The Keldysh approximation replaces f' '(rt ) by a
plane wave with momentum p and energy E =p /2m,
and the full propagator G+ by the propagator G'+ ' in the
presence of merely the field [i.e., with the potential V(r)
missing in Eq. (2.3)]. The corresponding approximation
in the p- A gauge, which is not gauge invariant, is re-
ferred to as the Keldysh-Faisal-Reiss (KFR) approxima-
tion. ' ' We notice that

= —i fd r dt g' '(r, t)" V(r)go' '(r, t) .

(2.10)

In this case it is obvious that the boundary terms vanish.
The matrix element M' ' in the form of Eq. (2.8) or (2.10)
is manifestly gauge invariant: in view of Eqs. (2.6) and
(2.7) it only depends on the electric field strength E(t)
and the mechanical momentum n(t). .

The total transition rate per time is obtained by sum-
ming ~M' '

~
over all momenta
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1 = hm —fd'p IM,'~' I'
T~ oo

1= lim — d r dt d r'dt'iG' '(rt, r't')
T~ oo T

X V(r)g(') '(r, t)*V(r')$0( '(r', t') . (2.1 1)

Here G' ' denotes the homogeneous Green's function of
the electron in the presence of the field

form (2.10) is straightforward. The result is

M(K) . K ins p Teap
e

m menn

X6 ~EO~+ [p +(ea) ]—neo
2m

(2. 19)

G' '(rt, r't')= i—f d p g' '(r, t)g' '(r', t')*

ei%'(r(, r'(') —(At((, (')G (0)(rt

where

(2.12)

with pT the absolute value of the momentum transverse
to the propagation direction of the field and

tan5= py

px

A(rt, r't') = —e A(t). r A(t')—r'

I

, f dr A(~}
t —t

AL(t, t')= f dr A'(r)
2m

d~A ~
2

(2.13)

(2.14)

The evaluation starting from the form (2.8) is less
straightforward. Since we are here using a field of infinite
extent it is not quite obvious that the integration by parts,
which established the equality of the expressions (2.8) and
(2.10), is still legitimate. We defer a discussion of this
point to the Appendix, noting here only that an explicit
evaluation of Eq. (2.8) does reproduce the result (2.19).

Squaring Eq. (2.19) and integrating over the absolute
value of the electron's momentum gives the transition
rate per time and solid angle

and

G' '(rt, r't')= im
2~(t t ' i e)——

. m(r —r'}
X exp i

2 t —t'

3/2

(2.15)

dr= fp'dp—~M( ' ' dn=ydr„,
n

eap, sinO
dI „= p„J„dO,

27Tm m 6)

with

p„= [2m(neo —
~EO~ )

—(ea ) ]'~

(2.20)

(2.21)
is the homogeneous Green's function of the free electron.

B. Application to a 5-function well

For the attractive three-dimensional 5-function poten-
tial

Summing d I „over all channels and integrating gives one
of several equivalent expressions for the total ionization
rate. Alternatively, starting from Eq. (2.11), we obtain

V(r) = 6(r) r,277

Br
(2.16)

T ~ T m —T/2

(2.22)

the wave function of the ground state is
1/2

e ' tlE l~
e

K

277
q,"((r, )t=

with (Eo~ =v l2m. For a circularly polarized field

A(t) =a(x coscot+y singlet ),

(2.17)

(2.18)

W(t, t') = (t t') 1——(ea)
2m

sin[co( t t '
)l2]—

co(t —t')l2

2

(2.23)

The evaluation is comparatively simple since
J7(Ot, Ot') —=0 and for the circularly polarized field (2.18)

the evaluation of the Keldysh matrix element M' ' in the depends only on the time difference. Therefore

21TK m

m 2 2&l

' 3/2

~

~
d'T . (ea)

exp( i ~Eo~r}exp i — r—1—
—~ (7.—(e}' 2m

sin(cow/2 )

C07 /2

2

(2.24)

We can obtain a double sum for 1 if we expand the exponential of the sine into a power series and use

ei vrP/2e"=2



TOTAL MULTIPHOTON-IONIZATION RATES FOR AN. . . 6907

(where A, + =A, for A, )0 and A, + =0 for A. &0) to perform the integral over r. This yields

2(ea )'IEOI [na~/IEOI —1 —(ea )'/2m IEOI ]'++' '
+1}( )( + (2.25)

Only positive values of n ~ N contribute to the sum on
the rhs. N is the minimum number of photons required
for ionization in a weak field.

C. Comparison of the Keldysh-approximation
with the exact solution

Once a (complex) solution e of this equation has been
found, the total ionization rate I is determined by

that is

(ea)'
2m fE, f IE, f

(2.27)

r= —2IEO IIme . (2.28)

Ionization from the regularized 5-function well (2.16)
has been treated exactly without invoking the Keldysh
approximation. We will see that in this case, for most
practical purposes, the exact results agree with those ob-
tained from the Keldysh approximation. It was shown
that the total ionization rate is determined by the solu-
tion of the equation

2(ea ) IEO IF(e)=1+i g g ( —1)"+'
s=On = —s m co

L

(neo/IEOI+e)'+'
X =0.

(2s+ l)(s —n )!(s +n )!

(2.26)

These cancellations change the effective expansion pa-
rameter in Eq. (2.26) from 2(ea ) IEof/(mao ) to

2(ea} IEo I

(2.29)
m co

2(ea)
m IE, IIE. I

which is in a multiphoton situation typical of ATI small-
er than the superficial expansion parameter by about two
orders of magnitude. These cancellations explain why
the iterative procedure, whose lowest step leads to the
Keldysh result (2.25), already gives for all but the strong-
est fields practically the exact solution of Eq. (2.26).
Below, we will quantitatively compare the solution of Eq.
(2.26) with Eq. (2.25).

It is also worth mentioning that the diA'erential transi-
tion rates (2.20) agree with the exact result [Eq. (17) of
Ref. 9] completely up to an overall factor that is the ratio
of the exact total ionization rate over the total rate in the
Keldysh approximation. Hence, in the case of a 6-
function weH, the latter exactly predicts the relative
strengths of the various channels and their angular distri-
butions.

tend to fields stronger than that. The sum over n in Eq.
(2.26) involves very significant cancellations: if the
numerator (e+ neo/IEOI )'+'~ is expanded with respect
to n a~/IEo I, then all low-order terms vanish according to

k
1}n n 0, k&2s

(s n—)!(s +n )! ( 1)',

Equation (2.27) also determines a real field-dependent lev-
el shift h. This shift does not contain the apparent in-
crease of the ionization potential due to the ponderomo-
tive term (ea ) /2m IEO I, which is exhibited separately. It
is, therefore, small and is normally neglected in the con-
text of above-threshold ionization.

Whenever an ionization rate makes any sense, it will be
very small, i.e., I /2IEOI will be very small compared
with unity. Notice that for s ~ N the factor
(neo/IEof+e)'+' on the rhs of Eq. (2.26) is purely
imaginary as long as Ime= —I /2IEOI can be neglected
with respect to [—1 —(ea) /2m IEOI +neo/IEOI]. As
just mentioned, this should be an excellent approximation
for small enough n. For sufficiently weak fields, certainly
for 2(ea} IEO I/(me@ ) «1, an iterative procedure to
solve Eq. (2.26} suggests itself whose lowest order consists
of dropping 6 and keeping I only in the term s =0. This
yields an explicit equation for I which agrees with Eq.
(2.25), i.e., this procedure is equivalent with the Keldysh
approximation. At first glance it appears that this is only
justified for very weak fields satisfying the above condi-
tion that 2(ea) IEO I /(me@ ) « 1. However, the following
argument suggests that the validity can be expected to ex-

III. BEHAVIOR OF THE TOTAL
IONIZATION RATE

In this section we will investigate the behavior of the
total ionization rate as a function of the applied field
strength. The discussion will primarily be based on nu-
merical evaluation of the double sum (2.25). A parameter
that plays a central role in ATI is the quantity

2

=(7.53X10 '
)A, I,

2m co
(3.1)

(3.2)

with A, in pm and I in W/cm and a the amplitude of the
vector potential as defined in Eq. (2.18). This is the ratio
of the height of the ponderomotive barrier (ea) /2m over
the energy of a laser photon. ' Hence when g & 1 at least
one electron channel is closed due to the ponderomotive
barrier. The condition g & 1 also marks the definite onset
of nonperturbative behavior of the partial ionization rates
into the electron energy channels. We abbreviate
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The expansion parameter in the double sum (2.25) for
the total rate is

2(ea) IEol
p = =4g/w,

mao
(3.3)

which is in a multiphoton situation larger than g by at
least one order of magnitude. However, we argued in
Sec. II that the effective expansion parameter may be
smaller than this. The quantity

&2m IE, I —
( w)

—l/2
ea

(3.4)

is called the Keldysh parameter. Its common interpreta-
tion is that for y &&1, multiphoton absorption is the
predominant mechanism of ionization while for y ((1 it
is tunneling.

For a very intense field such that

specified where the asymptotic estimate and LOPT are
reasonably trustworthy. One notices that the gap be-
tween the regions where one of the two limits applies in-
creases rapidly with decreasing w. For w =0.12499 the
range of LOPT is already outside the figure. In each
case, the midpoint between where the rate starts to devi-
ate noticeably from LOPT and where it merges with the
asymptotic form (3.7) roughly corresponds to a value of
the Keldysh parameter (3.4) of &2.

In what follows we will denote by LOPT~(k) the lead-
ing term on the rhs of Eq. (3.8), but with N, viz. , the
minimum number of photons required for ionization, re-
placed by N+k(k ~0). LOFT~(k) corresponds to the

0-

V«1, V»w/IE, I, ~/IE. I «1,
where

V = =2gco =(earn) 3 (eE)

(3.5)

(3.6)

O
uJ

CU

D

O

-8- (a)

(E denotes the electric field amplitude) there is an asymp-
totic estimate of the total ionization rate ' ' —12-

IE, I
V

I =— exp23zz

25/2

3V' 15 V

2

(3.7)
—16

0-

y=vZ

The dependence of this asymptotic formula on w is very
weak so that essentially it only depends on V. On the
other hand, LOPT, as given by the term of the sum (2.25)
with s = n =X and ea =0 within the square root, reads

N+ 1/2
'=4IE Ip2~(Nw

—1)'
(2N + 1)!

O

C)

-12

(2N+1)p w

(Nw —1)
(3.8) —lg0-

where we included on the rhs the order of the next to
leading term. We have that w '=N and, under the most
favorable conditions, Nw —1=co, so that the order of the
leading correction is p . This would suggest that pertur-
bation theory can only be trusted for p (&1 and, in fact,
breaks down completely when Nw —1~0. LOPT would
be out of the question long before the first channel closes
because of the ponderomotive barrier.

In order to investigate the transition between the two
limits (3.7) and (3.8) we have numerically solved Eq.
(2.26) for e and determined I from Eq. (2.27). Figure 1

gives the total ionization rate I /21E~ I
as a function of V

on a log-log scale for different values of m. In each case
the dot-dashed curve on the right is the asymptotic esti-
mate (3.7). From its derivation it is only a reliable ap-
proximation as long as V satisfies the conditions (3.5).
The full curve is the solution of Eq. (2.26). The dashed
curve represents LOPT, i.e., the first term on the rhs of
Eq. (3.8), with N = 3 for w =0.5, N = 5 for w =0.22, and
%=9 for w=0. 12499. In each case the regions are

O

D

(c)

—12 -08 —0 4

1o g ', Q)

FIG. l. Iog, o(I /2IEol 1 as a function of log, oVfor (a) w=0. 5,
(b) m=0. 22, and (c) m=0. 12499. Solid curve, exact solution
from Eq. (2.26); dashed curve, lowest-order perturbation theory;
dot-dashed curve, asymptotic estimate (3.7). The vertical ar-
rows on the abscissa specify the values of V where q=1 and
@=&2. The arrows parallel to the abcissa indicate the regions
of V where LOPT and the asymptotic estimate are reliable ap-
proximations.
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term in the sum (2.25) with s =n =N+k and ea =0 in
the square root.

Actually, two of the above cases are such that pertur-
bation theory should not apply at all since Nw —1 is ei-
ther zero or almost zero. What has been labeled as
LOPT in Figs. 1(a) and 1(c) was really LOPT&(1). Hence
it seems that when LOFT appears to become inapplic-
able, the exact rate prematurely switches to the LOPT re-
sult with the next higher value of N. In Fig. 1(b), where
Nw —1 is about half way between two zeros the exact
rate starts with a slope of 5 as expected. It then tern-
porarily adopts a higher slope of approximately 5.5 be-
fore it merges with the asymptotic curve.

At g= 1, where the lowest peak of the ATI electron en-
ergy spectrum is suppressed, each of the three rates plot-
ted in Figs. 1(a)—1(c) are already quite different from
LOPT [be it LOPTz(0) for Fig. 1(b) or LOPT~(l) for
Figs. 1(a)—l(c)]. However, in practice, just by looking at
the slope of 1" with respect to I, the deviation from
LOPT„(0) would be hard to detect. The dependence of I
on I is still smooth, and the slope is not very different
from what one expects from LOPT&(0): for r)= 1, the
slopes are about 2.1, 4.3, and 7.8, respectively, not incom-
patible with two-, five-, or eight-photon ionization. Also,
at no time until the exact rate starts merging with the
asymptotic curve is the absolute deviation between LOFT
and the exact rate larger than a factor of 5.

It is interesting to notice that the naive expectation
that the slope of the total rate at a given intensity might
be

O

0

0.2
l

0.3 0.4
I

0.5 O6
I

O. c 0.8

FIG. 2. log, o(l /2~Eo~) as a function of w for V=0. 1 (bold
curve). The various light curves are the LOFT&(0) expressions
for 2&N ~9 as labeled.

N;„(I)=N+s(I), (3.9)
b

ui
CU

o
where s (I) is the number of peaks suppressed at intensity
I does not hold true. Rather, the slope increases towards
values larger than N already at intensities corresponding
to g &(1 where no peak is suppressed yet. At g=1, the
total rate is already bending back from this higher slope
toward the asymptotic limit, so that the slope near g = 1

may be close to N again.
Figure 2 gives a more detailed account of the qualita-

tive difference between the exact rate and LOFT. The
bold curve is the total ionization rate for fixed V=O. 1 as
a function of w. The various light curves are the
LOPT~(0) expressions for 2 ~ N 9. Premature switch-
ing to the next highest N is again evident: e.g. , the exact
result is well approximated by N = 3 up to about w =0.52
at which point N=2 quickly takes over. The better
LOPT works, the closer should be the agreement between
the exact result and one of the LOFT curves. For smaller
values of w, the disagreement grows becoming as large as
one order of magnitude. Notice, however, the scale of
the ordinate, which is very different from Fig. 1, and the
fact that V=0. 1 corresponds to a quite strong field: for
V=0. 1 and w=0. 1, we have g=5, i.e., about the lowest
five peaks of the electron spectrum have been suppressed.

Figure 3 displays results for hi.gher multiphoton orders
comparable to ATI experiments with A. =1064 pm. A
quick glance seems to indicate that LOFT holds almost
all the way up @=&2 where the curves are about to
merge with the asymptotic limit, viz. , the dashed curve in
the upper right of Fig. 3. A closer look, however, reveals

—50-
0.22

= O. I 5

O. 105

o.08

o. 06

log(0

FICx. 3. The logarithm of the total rate as a function of
log&oVfox various multiphoton orders, curve A w =0.22(N=5),
curve B w=0. 15(N=7), curve C w=0. 105(N=10), curve D
w =0.08(N=13), curve E w =0.06(N=17). For curves C, D,
and E the actual slopes of the curves are higher than the respec-
tive values of N. This is discussed in the text and evident from
Table I; it is not visible on the scale of the figure. The dashed
curve in the upper right of the figure is the asymptotic estimate
(3.7). For each curve, arrows mark the values of V for which
q= 1 (at least one channel closed) and y=v 2 (transition from
multiphoton to tunneling regime).
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that this is not quite true. The rate for w =0.105 follows
LOPT&o(0) only up to V- 10 (corresponding to
p-0. 13«1); from there on up to V&0. 1 it switches to
LOFT,o(l). Notice that this already happens for 7) «1,
where one does not expect yet any nonperturbative
effects, least of all in the total rate. A superposition of
LOPT|p(0) and LOPT~o( 1 ) gives an excellent approxima-
tion to the total rate up to V-0.018 and a fair one (up to
within one order of magnitude) up to V-0.07, cf. Table
I(a). The same pattern can be observed for w=0. 08.
Here the exact rate is well approximated by LOFT»(1)
up to V-0.07; only for V ~ 10 does it finally approach
LOPT»(0). Finally, the exact rate for w =0.06 is given
by LOPT, 7(1) from well outside the figure up to
V-0.2X10 where it switches to LOFT, 7(2), which is
a good approximation up to V-0.03 [cf. Table I(b)].

It is ironic that, although deviations from LOFT~(0)
occur at much lower fields than expected, they might not

become visible in experiments (better: gedanken experi-
ments with an atom well described by a 5-function poten-
tial) in the intensity range around and slightly above
g=1, which has been of most interest in ATI experi-
ments. While the slope of the total ionization rate is
higher than N at lower intensities, the slope is bending to-
wards the asymptotic limit in just this region. Here,
then, the slope is again close to N, viz. , the prediction of
LOPTN(0).

Finally, we should mention that the difference between
the solution of Eq. (2.26) and the direct evaluation of the
double sum (2.25) is marginal. Numerical results for
w) 0. 125 have been obtained via the solution of Eq.
(2.26) and have been compared with the sum (2.25).
Discrepancies approached about 1% near V= 1 and were
much smaller for V&(1. The results for w (0.105 were
derived from the sum (2.25). The alternating character of
the sum (2.25) required usage of a multiprecision pack-

TABLE I(a). Logarithm of the total ionization rate I /2IEpI as a function of log, pV for w =0.105.
The par ametel g 1s unit& for log |pV= 1 .3 1 and g = 5 for log ~p V= 0.97.

logip V

—4
—3.25
—3.0
—2.75
—2.5
—2.25
—2.0
—1.75
—1.5
—1.25
—1.0

Eq. (2.25)

—70.90
—55.82
—50.67
—45.39
—40.00
—34.54
—29.07
—23.63
—18.29
—13.31
—9.09

LOPTip(0

—70.91
—55.91
—50.91
—45.91
—40.91
—35.91
—30.91
—25.91
—20.91
—15.91
—10.91

log (I /2IEp I )

LOPT»( 1 )

—73.04
—56.54
—51.04
—45.54
—40.04
—34.54
—29.04
—23.54
—18.04
—12.54
—7.04

LOPT&p(0) +LOPT]p( 1 )

—70.91
—55.82
—50.66
—45.39
—40.00
—34.52
—29.03
—23.54
—18.04
—12.54
—7.04

TABLE I(b). Same as Table I(a) for w =0.06. The parameter g equals 1 at log&p V= —1.68 and g= 5

at log» V= —1.33.

log, p(I /2IEp I )

logip V

—5
—40
—3.5
—3.25
—3.0
—2.75
—2.5
—2.25
—2.0
—1.75
—1.5
—1.25
—1.0

Eq. (2.25)

—149.73
—113.74
—95.72
—86.68
—77.56
—68.37
—59.02
—49.58
—40.13
—30.87
—22.27
—16.32
—9.62

LOPT, (0)
—151.24
—117.24
—100.24
—91.74
—83.24
—74.76
—66.24
—57.75
—49.24
—40.74
—32.24
—23.74
—15.24

LOPT)7(1)

—149.74
—113.74
—95.74
—86.74
—77.74
—68.74
—59.74
—50.74
—41.74
—32.74
—23.74
—14.74
—5.74

LOPT|7( 2 )

—154.08
—116.08
—97.08
—87.58
—78.08
—68.58
—59.08
—49.58
—40.08
—30.58
—21.08
—11.58
—2.08

LOFT I 7(0)
+LOPT&7( 1 )

LOPT &7( 2 )

—149.73
—113.74
—95.72
—86.68
—77.58
—68.35
—59.00
—49.55
—40.07
—30.58
—21.08
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age. Up to 75 valid digits had to be kept to obtain the
smooth connection between LOPT and the asymptotic
limit.

IV. CONCLUSIONS

An interesting observation made in this paper is that
the Keldysh approximation for a short-range potential
with just one bound state is virtually exact. This was no-
ticed by direct comparison of Berson's exact solution
with the corresponding Keldysh approximation. This
fact may be not too surprising. For the two approxima-
tions made by Keldysh, viz. , ignoring all bound states of
the atom besides the initial ground state and replacing
the continuum states of the binding potential by plane
waves, are not much of an approximation for a 5-function
potential with only one bound state. What is neglected
by the Keldysh approximation even in this context is the
possibility of repeated virtual transitions between the
ground state and continuum states (viz. , Rabi oscillations
between the ground state and the continuum leading to
the very small real level shift 5) and the exact form of the
continuum wave functions at the origin. Both approxi-
mations are much more questionable for a long-range po-
tential. In fact, simulations of a one-dimensional model
with a lang-range potential have exhibited' poor agree-
ment between the exact calculated transition probability
and the Keldysh approximation. Moreover, the KFR
model (evaluated with hydrogenlike wave functions) does
not fit the experimental data very well over a range of in-
tensities. ' For a one-dimensional 5-function potential,
however, and a constant electric field, it has been shown
that the Keldysh approximation gives good results.

Surprisingly, in a multiphoton situation where ten and
more photons are required for ionization, lowest-order
perturbation theory [denoted above by LOPT&(0)],
strictly speaking, only holds up to very low intensities,
much lower than those employed in ATI experiments.
For any intensity of experimental interest that leads to a
measurable ionization rate, the slope of the total ioniza-
tion rate versus intensity comes out to be N+1 or even
N+2 [denoted above by LOPT)v(1) and LOFT)v(2)] in
place of N, which is predicted by LOPT&(0). This has
nothing to do with the apparent increase of the binding
potential by the ponderomotive potential. Rather it is re-
lated to the fact that the phase space for low-energy elec-
trons is very small. The increase of the slope from N to
N+1 and N +2 already occurs at intensities so low that
the ponderomotive potential plays no role yet. On a log-
log scale as used in Fig. 3, this change in the slope is

I

hardly visible. The perturbation theory curves for
difFerent values of col(ED~ appear to make a perfect
tangent bundle to the asymptotic curve which is indepen-
dent of co/~ED~. The transition from one to the other
occurs for a value of the Keidysh parameter of about ~2.

Since the curves have to bend from the large slope of
perturbation theory to the much smaller slope of the
asymptotic curve, there is a region in between where the
slope is again near N, the value of LOPT)v(0). This re-
gion is around q = 1 where most experiments have been
performed all of which yielded slopes near N. In spite of
that, one would rather conclude that experimental evi-
dence speaks against the applicability of a short-range
model to ATI phenomena. For in no case has the slope
of N+ 1 or N+2 predicted at low intensities by this mod-
el been observed. Moreover, experiments also seem to in-
dicate that the I dependence of the total ionization rate
persists up to higher intensities than found here. '
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APPENDIX

a
e

—in(t) (r) q(0)(r t )
at

(Al)

Above, in the calculation in Sec. IIC, the gauge phase
exp[ie A(t) r] cancelled due to the presence of the 5-
function potential. Its presence here makes the evalua-
tion much more cumbersome. For the field (2.18) we ex-
pand both exponentials in terms of Bessel functions and
perform the integration over time with the result

An integration by parts with respect to time led from
Eq. (2.8) to Eq. (2.10). The boundary terms at t =+00
safely vanish for a field pulse of finite duration. In Sec.
IIC, however, we evaluated Eq. (2.10) for the mono-
chromatic field (2.18), which is of infinite extent. It is not
quite clear in this case whether the equality of the expres-
sions (2.8) and (2.10) still holds. In this appendix we will,
therefore, reevaluate the matrix element M' ' using Eq.
(2.8).

From Eqs. (2.8) and (2.9), we have
T

M{K) ' d3r dt exp
' d~~2

P (2 )3/2 2m

M~ ' = — pdpdz dP, exp[ i(p, z+pp —c rsPo)]
lcov K exp[ —~(p +z )'~ ]

2m- (p +z )'

n, s

eapz-
X(s n)J, —J, „(eap)exp( in5)exp[i(n ——s)(P —m. )] .

mm

The integrations over z and P are readily done yielding
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p +(ea) .
&

eapT
Mz '= i 2cov'erg(s —n)5 + ~Eo~

—neo e '" J, f pdpK&[p(p, +x )'/ ]J, „(eap)J, „(pTp) .
n, s

The remaining integration with respect to p leads to

M' '= ——&erg(s n)—5 + ~Eo~ n—co e '" J, (z)(sc) p +(ea) 1

m 2m (n 2 z2)1/2
n, s

where z =eapT /ma1. This agrees with Eq. (2.19) provided that
/s —n/

oo
(

2 2)1/2
(n —z )'/ J„(z)=—g (s n—)J,(z)

n —(n —z )
2 2 1/2

holds. This formula is easily proven by using an integral representation for J, (z) on the right-hand side.
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