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High-energy beam transport in crystal channels
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The transport of high-energy accelerating charged particles in channeling conditions in a crystal-
line solid is considered by means of a Fokker-Planck model. Multiple scattering on electrons, ap-
propriate to the channeling of positive particles, and radiation damping due to the emission of chan-
neling radiation are also included. Analytic solutions have been obtained for the case of a harmonic
channeling potential. Without acceleration, diff'usion due to multiple scattering occurs. With ac-
celeration, the adiabatic damping retards this, although the reduction in critical channeling angle
with increasing energy eventually competes. For light particles (positrons), the emission of channel-

ing radiation can lead to a steady state. Implications for crystal accelerator schemes are discussed.

I. INTRODUCTION

The phenomenon of channeling' of energetic charged
particles along axes and planes of high symmetry in crys-
talline solids has prompted several investigators to
suggest schemes for accelerating particles in solid matter.
The lattice fields are exploited to play the role of the mag-
netic transport in conventional accelerators. It is in this

0
regard interesting to note that an electric field of 1 V/A is
equivalent to a magnetic field of 30 T. Different schemes
have been proposed for obtaining the accelerating gra-
dient. Recent work ' has suggested that gradients from
1 to 100 GeV/cm might be possible. Here, we do not ad-
dress any particular concept, but consider an idealized
generic situation in which the particle is subject to a uni-
form accelerating field. This could be construed to model
part of a synchronous accelerating wave. We wish to un-
derstand the limits of possibility by obtaining the basic
scaling laws for the particle transport. No scheme is even
close to a level of maturity to warrant a more sophisticat-
ed treatment. However, interest is stimulated in thinking
about acceleration lying beyond the superconducting su-
percollider (SCC).

Setting the issue of accelerating field sources aside (al-
though it is a formidable one which must be solved—
stimulated channeling radiation is interesting but as yet
only suggested theoretically ), it was recognized that the
crucial question for crystal accelerator schemes is that of
the multiple scattering of the beam. This is so despite its
reduction for positive particles under channeling condi-
tions. For negative particles, channeling increases the
multiple scattering over that in the amorphous solid and
the application of crystal accelerator schemes to such
particles is probably limited. The accelerating gradient
has a positive effect as well. The essential question we
examine here is the additional effect of the radiation
damping due to the emission of channeling radiation.
Radiation damping of channeled particles has been con-
sidered before and, while early investigations suggested
this would occur, ' subsequent research concluded the ra-
diative damping would always be dominated by the mul-
tiple scattering. " This result does not apply in the case

of an accelerating particle and it seems reasonable to ask
if a process analogous to the radiation damping in, for ex-
ample, a storage ring may take place. We will find this to
be so for light particles although the practical conse-
quences are problematic in that it occurs for the most
ambitious accelerating gradients. In the absence of ac-
celeration, our results are consistent with the conclusions
of Ref. 11.

In the next section, we will describe the basic equation
of our model and discuss its solution in general terms. In
Sec. III, we will present our results in specific cases. Sec-
tion IV will comprise a summary of our conclusions.

II. FOKKER-PLANCK TRANSPORT MODEL

U„ t)f df
p BO t)p

1 af af af af0—— +0 + +E

a(ef) 1 a (ag') af
ae 2 ae at ae

Here and throughout, momenta have been expressed in
terms of the projectile rest momentum mlc, and energy in
units of the rest energy. The first five terms arise from
the convective derivative in phase space; the fourth and

We have adopted a one-dimensional Fokker-Planck
treatment for the distribution function of the charged
particle beam in the crystal accelerator. In the case of
planar channeling, the problem is one-dimensional
a priori. For axial channeling, this describes the evolu-
tion of the projected-angle distribution function' in a ra-
dial plane. A11 of these are equivalent in an axisymmetric
channel. This is justified for particles of very low trans-
verse energy which are confined to the region near the
center of the channel; essentially the proper-channeled
particles. We will return to this point when we discuss
our results in the next section. Furthermore, because we
are interested in highly relativistic particles, we make a
paraxial approximation, p~/p~~ ((1, p, =p &&1, and re-
tain the pitch angle 0 only to lowest order: O=p~/p.
With these assumptions, the Fokker-Planck equation be-
comes
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fifth terms are due to the accelerating field (taken to be in
the z direction) and the channel force, respectively. The
next term accounts for energy losses such as bremsstrah-
lung, channeling radiation, or collisional ionization. The
remaining terms are due to radiation damping from the
emission of channeling radiation and momentum-space
diffusion due to multiple scattering. An equation of this
kind without the acceleration or energy-loss term has
been used to investigate channeling of relativistic parti-
cles at small depths in Ref. 11. A boundary-value prob-
lem with data independent of time is appropriate, and we
therefore look for steady-state solutions, df /re =0.

Analytic solutions can be obtained when the channel-
ing potential is harmonic. In axial channeling, this also
implies proper-channeled particles. A weakly anharmon-
ic case has been treated in Ref. 13. The additional phase
mixing which occurs would not impact the results we will
find here. The potential then takes the form

d~ =ds,
CX

dx
0

=ds

dS

(6)

dz =ds,
where a =E —p. In the general solution of this system of
equations, three integration constants appear. Denoting
these by g, q, g, the solution defines a transformation of
variables (z,p, x, 0)~(s, g, il, g). Applying this to the
first-order operator of Eq. (1) reduces it to the single par-
tial differential 8/Bs. The entire equation is cast in the
form

V0xU=
2mlc'-

and the force

(2) Qg2 a2 a2 a2X — P2( )
X +2Pg X +f2( )

X
as 2 ~r

'
q„ a~ay

(10)

U„=—V0x
2

= —kx 7

mrc
(3)

where V0 is the channel well curvature. Its precise value
depends on the model one chooses for the ion-atom po-
tential. ' It is typically on the order of a few times 10'
eV/cm . An exact number is not very important here ei-
ther. For this channel force, the radiation damping
coefficient P~ takes the form

p~ = ', r, k, - (4)

where r, is the classical electron radius and k is defined in

Eq. (3). In the channeling of positive particles, the multi-
ple scattering is dominated by the electrons in the medi-
um. For this case, we use for the momentum-space
diffusion coefficient'

dt92 4~ 2

2
me DL~=-

7

Logarithmic dependencies on the particle energy are
neglected throughout; they are represented by Lz, which
is taken to be constant with typical value =10. The
number density of the solid is X and Z„& is the number of
valence electrons. We are, in general, interested in the
case in which the energy losses are dominated by the ac-
celeration and will typically neglect that term in Eq. (1).

We solve Eq. (1) by introducing the characteristics of
the first-order operator and then use a result due to Chan-
drasekhar. ' The Pz f term can be —handled trivially by—p~z
introducing y=e f. This has no effect on the statisti-
cal averages over the distribution function. The charac-
teristics are defined by a system of first-order ordinary
differential equations that are just the single-particle
equations of motion. Parametrizing the solution curves
by s, we have

With the diffusion coefficient given in Eq. (5) only a func-
tion of p =p(s), the Green's-function solution (5-function
initial data) follows immediately from lemma II of Ref.
14:

—exp[ —(aq +2hgr)+bj ) j26],1

2~&S

where

a =2f P (s')ds',
0

b =2I P (s')ds',

h = —2 I Q(5ds',
0

(12)

(13)

(14)

A=ah —h

III. SOLUTIONS OF THE FOKKER-PLANCK
EQUATION

In this section, we will describe the solution of the
Fokker-Planck equation, Eq. (1}, including radiation
damping and acceleration. We are interested in the case
in which the acceleration dominates the energy loss P.
The equation for p, Eq. (6), decouples and we have

p(s)=as+/ . (16)

The functions g, P depend on the specific problem. The
statistical properties of interest such as (x ),(0 ) do
also. (The angular brackets denote averages over the dis-
tribution function. ) They are calculated from those of

In the next section, we will present the solution for
the specific case of a radiation-damped accelerating chan-
neled particle. Some other solutions will be brieAy de-
scribed as well.
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The remaining pair of equations are equivalent to the
second-order equation of motion,

z=s

p =as+/, (19)
d x dx kx

ds cps s

where

k=, s =P~(s+g/2) .k

(17) x=e '/ [gM- (s)+gW — ( —s)],
p

—$/2

8 [)1M k+)/z o(s )
s

i(1+—k)gW (k+, /2) o(
—s)] .

(20)

(21)

This equation can be transformed into Whittaker's equa-
tion. The solution basis we choose is denoted'

Mk )/2(
—s), W k )/2(

—s). These are linearly indepen-
$

dent for k )0. The solution of the system, Eqs. (6)—(9)
becomes

Attention must be paid to the argument of —1, which
we have taken to be ~. These define the transformation
(z,p, x, 8)~(s,g, ri, g) and the inverse. By taking rno-
ments of these, we find the moments of x and 8 in terms
of moments of g and g. Thus

'(M„-, &g &+2M„-, W~, &g &), (22)

[Mk o & g &
—2i(1+k )Mk o W (k+, /2) o & gg &

—(1+k ) W (k+ ) /2) o & g & ],
s

pRe '
k + ( /2, 0 k, 1 /2 ) [ —k + ) /2 k + ) /2, 0 k + ) /2 —( k + ) /2 ),0 ]

(23)

t(1 +—k ) W k»z W (k+ ) n) o & ($ & I (24)

and

&&'&=b=, I-'(1+k)j ' d. '", W „„,( —.),
R

(25)

—
pR z 1/2

&x'& = ' 1+
ak po
—PRz

z, az/po (1
2kpo

(28a)

(2gb)

I 1+k Q

P a' nk'/' (.' «u'

b
D I (1+k)e"= —b=

p~ a' v'2~ k"

(26)

(27)
and

—PRz

apo 1+
po

13„

z, az/po & 1
2p0

1+
po

' 1/2
—1 (29a)

(29b)

We can obtain explicit analytic expressions for these by
noting that typically k ))1. The large-parameter asymp-
totic expansions of the Whittaker's functions can be used.
This is essentially the WKB limit of Eq. (17). In more
general situations, the asymptotic solution of the
difFerential equation would have to be constructed from
scratch. Physically, this reAects the fact that, even at the
largest accelerating gradients one might contemplate, the
transverse motion in the channel well is adiabatic. The
asymptotic expansions of the Whittaker's functions are
inserted in Eqs. (21)—(23) and in the integrals in Eqs.
(12)—(14). These integrals have been approximately eval-
uated in two cases: pzz (1 and p„z ) 1. The evaluation
of the integrals is outlined in an Appendix.

The results we have obtained for the mean-square ra-
dius and mean-square angle of scattering are

&x'&= D

2PzPo 1+
po

'2

2PzPo 1+
po

2

«1D az
2pRpo

D az «1
2PzP o

D az ))1
2kPR az '

Po

(30a)

(30b)

(30c)

(31a)

(31b)
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D czz »1
'-/3ga'z' Po

(31c)

for the cases P~z & 1 and Pzz ) 1, respectively. The ini-
tial momentum is po. To the order of approximation re-
tained, the correlation, & x 9), vanishes in both cases.—p~zThe factor e which appears in the results for Pzz & 1

has been displayed as it stands. One must be careful to
note that this does not imply these moments decay ex-
ponentially in z. The expressions are only valid to
0(/3~z) and we are only entitled to retain terms to this
order in the small-argument expansion of the exponen-
tial; the exponential factor is really a "shorthand" for
(1 —Phiz). This is underscored by the following observa-
tion: when a//3&po «1, az/po can be less than 1 in
both of the cases Pz z & 1 and PR z & 1. Then, the mo-
ments in the two cases pass continuously into each other
for PRz =1 provided (1—/3+z+. . . )~1, where the el-

lipsis represents higher-order terms.
We see then, for small z, the mean-square radius and

mean-square angle of scatter increase with z. This is un-
derstandable. The solution we have obtained is the
Green's function; the solution for a 5-function boundary
state for both x and 0. In order for there to be any radia-
tive effects, the particles first must pick up some trans-
verse energy by scattering. The solution for an arbitrari-
ly specified boundary distribution can be constructed
from the Green's function in the usual way. However, we
can, from our results, infer the behavior of the statistical
properties of such a distribution without doing this.

In considering the qualitative behavior of a channeled
beam, it is helpful to consider two cases a/giipo & 1 and

a/P~po ) 1. We refer to these as the radiation-
dominated and acceleration-dominated cases, respective-
ly. In either case, the injected beam is assumed to be
su%ciently cool that the rms angle of scatter is much
smaller than tt„where i/, is the critical angle for chan-
neling. '' In our notation, i/, =a, (2k/p)'~, where a, is

the effective channel size. In the radiation-dominated
case, a very cold beam will heat until z =/3R ', when the
rms angle reaches its maximum & 0 ) =D/2po/3z.
Equating this value of the rms angle to i/, defines a criti-
cal initial momentum:

4P~ a, k
(32)

A beam whose initial momentum exceeds p, and whose
rms angle is smaller than i/, will propagate with little loss
of flux by virtue of the radiation damping and accelera-
tion. Here the rms angle of scatter diminishes with dis-
tance faster than does g, , which is decreasing due to the
acceleration. Saturation is reached when the channeling
radiation in a unit distance carries off as much energy as
the accelerating gradient is providing. The channeling
radiation rate is a strong function of the particle momen-
tum, ' proportional to p . Altogether, the constraints
imposed on the radiation-dominated regime are severe.
For example, for positrons in Si, using Eqs. (4), (5), and
(32), we find the critical momentum is approximately 250
GeV/c. At this energy, the particle radiates about 5%%uo of

its energy per. centimeter. Accelerating gradients which
exceed this are inconsistent with the radiation-dominated
regime, a//3~po &1. However, it is important to recall
that a is the net gradient. We have been considering the
situation in which the accelerating gradient dominates
losses. We can consider the case in which the accelerat-
ing gradient just balances the radiative energy loss,
storage "ring" fashion. Then a=0 and Eqs. (28) —(30) are
valid in this limit. The results just reflect the radiation-
dominated case we have been discussing. This is a
steady-state configuration with the heating due to scatter-
ing balanced by the radiation damping and the energy
loss restored by the accelerating gradient. This might be
interesting in applications to y-ray sources or QED
effects in solids. '

In the acceleration-dominated case, the rms scattering
angle initially increases with distance just as in the
radiation-dominated case. Here, however, it can reach its
extreme value before the radiation has had time to cool
the beam. This is further complicated by the reduction in

as the particle momentum increases during the ac-
celeration. We would like to get into the radiatively
cooled regime before the rms angle of scatter exceeds i/j, .
From Eq. (28a) and the definition of i/t„we have

g2

& e')
2a, ko, 1

( I+az/po)'~ —1
(33)

When az/po»1, this is a decreasing function of z and
eventually all the beam particles will dechannel. We will
return to a discussion of this situation later. To obtain a
criterion that the particles do not appreciably dechannel
before they enter the radiative regime, we put z =@~ ' in
Eq. (33) and equate it to unity. This defines a threshold
initial momentum for a given gradient, a:

0!
PT

1

2 2
2o.,ko;

1+ —1
D

(34)

&e') D (az/po)'
2ka, a

(35)

This scaling is more pessimistic than that of Ref. 3. As
o.z in this approximation is the final momentum, this
defined a maximum momentum in terms of the accelerat-
ing gradient and channel properties:

Because we also require for consistency a/PRPT & 1,
this implies 2aoko. /D )0.4. This sets a lower bound on
the accelerating gradient. When these conditions are
satisfied, the beam behavior essentially will be as in the
radiation-dominated case discussed earlier. Because of
the strong dependence of /3z on the particle mass, satisfy-
ing these conditions for particles heavier than the elec-
tron is beyond contemplation; for muons, for example,
the threshold momentum is approximately 8 PeV/c.

For heavy particles, the radiation damping is negligi-
ble. If P~ =0 in Eq. (29), we recover results obtained pre-
viously by direct calculation. ' (The solution can be ex-
pressed in terms of Bessel functions. ) In this case, for
az/po) 1, we have
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pmax

po

2
2ka, u

D
(36)

Evaluating this for protons at an initial momentum of 20
TeV/c, an accelerating gradient of 100 GeV/cm, and

0
with k = 3 eV/A, a reasonable value for proper-
channeled particle, we have pf —-2000 TeV/c. It would
take about 200 m of crystal to do this.

Insofar as the mean-square radius, Eq. (28) and Eq.
(30), is concerned, when its value becomes comparable to
or greater than the radius at which the channel potential
deviates significantly from a harmonic well, the theory is,
strictly speaking, no longer valid. However, as the radius
of a proper-channeled particle increases due to scattering,
it remains channeled until its rms angle exceeds g, al-
though it may have crossed into an adjacent channel
(x )' )a, . Therefore, it might be expected that the ex-
pressions we have obtained for the mean-square scatter-
ing angle are relatively insensitive to the channeling po-
tential shape. There is some evidence to support this
contention. If we put p~ =0 in Eq. (29) and take E =0 as
well, we obtain the mean-square scattering angle in the
case of no acceleration but energy-loss consistent with
that for a relativistic heavy particle. We find, for 15-
GeV/c protons channeling in 4 mm of Ge, an rms angle
of about 0.03 mrad. This is smaller than observed values
of about 0.1 mrad. The discrepancy may be due to the
neglect of nuclear scattering. The data on the scattering
under channeling conditions in cooled crystals in Ref. 20
appear to support this. For heavy particles in strong gra-
dients such that az/po& 1, this issue is not significant.
From Eq. (28), we find, for the case considered earlier of
20-TeV/c protons, the final rms radius of 4 A. This is
consistent with the assumptions made in the theory.

some of these issues is in progress. Should these prove
to satisfactorily channel particles, they may also be of in-
terest in the problem of the production of stimulated
channeling radiation as well. Here it has been demon-
strated theoretically that channels with radii somewhat
larger than the naturally occurring ones are advanta-
geous.

Lastly, we observe that the theory can be extended in a
straightforward way to treat the problem of particle
transport in curved crystal channeling. We plan to
present our results for this in a subsequent paper.
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IV. SUMMARY AND CONCLUSIONS

In this paper, we have developed a Fokker-Planck
transport model of particle transport in a generic crystal
accelerator. The principal motivation was to determine if
the channeling radiation damping might be sufhcient to
overcome the multiple scattering under the condition of
particle accleration in analogy with the radiative cooling
in conventional accelerators or ionization cooling
schemes. ' For light particles the cooling can occur but a
radiation barrier is soon reached. Nevertheless, there
may be some interesting applications. For heavy parti-
cles, the radiation is not important and the transport does
not appear to be a problem to energies of perhaps 2000
TeV although substantial crystal accelerating gradients
are required. The results are a consequence of the strong
multiple scattering and the stringent requirements on the
beam emittance imposed by the channeling. Reducing
the multiple scattering relaxes constraints; in particular,
the acclerating gradient can be reduced proportionally.
To this end, we have been considering the properties of
some novel materials in order to access their potential in
this application. One of these, porous Si, appears promis-
ing, but presently little is known about its properties as
they pertain to particle channeling. Research to address

I~ =4ie dw
0

2
e W

(w+2k '~
)

=4le 4k4
~

0

I~~ ~1
e

—w /dw

w0 dw w +2k 1/2 (A5)

where

wo=i+so+2k '"
and

wi =&Qs& +2k

So

(A6)

(A7)

4 ~ 4k
2

e

w~ 2k w0
+2f 'dwe-"

W0

Wl W

+2k ' dw
w+2k ' (A8)

We want to evaluate this in two limits: pzz (1 and

P~z) 1.
For pz z ) 1, we change variables and then integrate by

parts:
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The second term is the difference of two error functions
and its asymptotic expansion is known. To evaluate the
last integral, rewrite the integrand:

The lowest-order terms cancel and the surviving dom-
inant contribution gives

2
e W

w

1 LU

2w(w+2k '~
) dw

(A9)
eI~ =+

+4($ k) +s
1 1

s,
(A13)

—
( %2k '~ +i1/s )

e 1

i'1/ $)

Q1 Q2

k k1/2 (A 10)

and

Then integrate by parts and repeat this procedure. In
this way, a pair of asymptotic expansions of the form The next-order terms are smaller by ($) /4k )', which is

just the small parameter in the expansion of the
Whittaker's function. Thus to proceed to higher order
would require the inclusion of the higher-order terms of
the asymptotic expansion of the Whittaker's function.

For small pRz, two integrals must be evaluated:

ik $1 $2

—
( %2k '~ +i1/s( )

+ + (A 1 1)
popo/a+pgz e u . — ]/2I +4i(ku )

~~po/ 3/2u e (A 1')

1

i'1/ $(

1

EQ $+(2k
1 1

i +$, 1+i /2($, /k )'~

are obtained. Because of the exponential factor and
pR z » 1, the contribution from the upper end point is
dominant. We have

I~ = 4ie—"exp I
—[4k +4(k$, )'~ —$, ] J

and

—2
~"po/a—2e

~RPO 1+ az
Po

~& pp/a+P& z
I0= du

~R pp/a 3/2

i3Rpo« ~i(' (1+u+u /2+ )du
0 3/2

1/2

1/2

(A 13')

(A14)

2k '~ e exp{ —[4k+4(k$, )'~ —$, ]I
4ks,

(A12)
Similarly

(A15)

p / ~R po +~R z 24i ( ku )

P, ia 3/2

Rpo [P&po /a( 1+az /k ) } +4i(ky )

(~~pp/ )" 3'

aI~—-2
~RPO 1+az /P0

Writing y = —d (1/y)/dy and integrating by parts, we have

1/2 1/2 +4i f kpg po/a(1+az/pp )1
P& po/a 44~'(kP& pp/a)

e e

(A16)

(A17)

+g)'k 1 /2e ~R Po E +4 ~

1/2
kPR po k~Rpo—E1 +4i 1+a Po

1/2

(A18)

+4i( k p& po /a)
e

a
16k (/2P

(A19)
(1+az/p() )

where E, is the exponential integral. For all cases of interest kpRpo/a =kpo/a » 1, so these can be expanded further:

+4i [kpg pQ /a(1+ az/pQ )]
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