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Logarithmic mean excitation energies: Hydrogen and helium
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The four logarithmic mean excitation energies I(v) for v= —1, . . . , 2 have been calculated for
hydrogen and helium by the method introduced a few years ago [S. Rosendorff and A. Birman,
Phys. Rev. A 31, 612 (1985)]. At that time a parametrization procedure was used for helium that
yielded up to +10%%uo accuracy. It is estimated that for a given wave function the present method of
calculation yields an accuracy for I(v) of 1 part in 10 . For helium three dift'erent Hartree-Fock-
type wave functions were used. Correlation e6'ects were thus not included.

I. INTRODUCTION

A few years ago a method was introduced' to calcu-
late the four logarithmic mean excitation energies I(v),
defined by

lnI(v)=L(v)IS(v), v= —1, . . . , 2 .

The logarithmic sums L (v) are given by

L(v) =g I «lz ln & l'(E„—Eo)'+'»IE. —Eo I, (2)

and the sum S(v) is given by

S(v)

=pl�(olz

ln & l
(E„—Eo)'+'

Here E„—Eo are the excitation and deexcitation energies
measured from the energy Eo of the initial state. The
sums are over the complete set of energy eigenstates of
the atom, and z is the z component of the total dipole mo-
ment operator of the electrons of the atom. The four
mean energies I(v)appear in the expressions for (i) total
cross section of particle-atom collisions, (ii) atomic stop-
ping power, (iii) straggling effect, and (iv) Lamb shift of
atomic energy levels, respectively.

The numerical values of these sums are often obtained
by fitting the theory to experimental data. Our method,
on the other hand, is based entirely on first principles, the
sole input being the wave function of the initial state.
Knowledge of other entities, such as matrix elements or
energy levels, is unnecessary. In this approach an opera-
tor F is introduced which enables one to perform the
summation over the whole energy spectrum by closure
relation. For the present, our program is to calculate the
excitation energies I(v) for the ground states of all atoms

II. THE METHOD

Take the identity

—ln(E„Eo)=lim —J dA.

0 A, +E„—Eo
—lnA, (4)

then L(v), Eq. (2) becomes

from hydrogen to neon. The operator F is determined by
a certain inhomogeneous differential equation which de-
pends functionally on the initial wave function of the
atom. We therefore get F's for ls, 2s, and 2p states (and
higher excited states for atoms with Z ) 10). The
mathematical treatment of the corresponding equations,
as well as the evaluation of the above sums, differs
significantly from case to case.

In this paper we report results for hydrogen and heli-
um only. These atoms have already been dealt with in
Ref 1 (hereafter referred to as paper I). However, in that
paper the helium sums were evaluated by a certain pa-
rametrization procedure which, as it turned out, was
quite inaccurate. In this paper we show that solving the
equation for F by computer yields, for a given wave func-
tion, an accuracy for I(v) of 1 part in 10 . The computer
calculation is therefore very satisfactory. The discrepan-
cy between the results of this paper and that of paper I is
up to +10%. Three different Hartree-Fock wave func-
tions have been used which give rise to a maximum devi-
ation of 1% for I(v). Correlation effects have not been
included.

The cases of 2s states (Li, Be), and 2p states
(B, . . . , Ne) are planned to be reported in the near future.

Energies are measured in Rydberg units; all other
quantities in atomic units.

0 2

L(v)= lim f d—Xg (E„—Eo)"+'—(lnA)g l(0lzln &l (E„—Eo)'+'
o „I,+E„Eo—
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Define an operator F by the equation

[Hp F]gp+XFgp:zgp

For hydrogen the function g has been calculated analyti-
cally in paper I. Its integral representation, after a simple
transformation, is

Here Hp is the Hamiltonian of the atom, and Pp is the
wave function of the ground state. Equation (5) thus be-
comes

AL(—v)= lim f S dA, —S(v)lnA
A~oo . 0

g(x, k, , 1)

1 —1/t(2r)2+ i/t

( i + 1 )3+ i /t fp

2+ 1/t

where S(v) is given by Eq. (3), and

S =g (0~zin &(E„E—) '(nIFI0& . (8)

X Xy+—2 1 —y
t t —1

1 — y2t

—(t —1)(1—y)x~e dy,

These sums can be evaluated by the expressions given in
the Appendix of paper I.

We assume that F depends only on the coordinates r;
of the electrons but not on the momenta. Thus we have
F=F(r, r~;A, ). If we introduce the function

(15)

with t =&A, + 1.
Next, for helium we put z =z, +z2, and for the

ground-state wave function

P=Fg
then Eq. (6) becomes

(9)
(16)

If we put F(1,2)=F(1)+F(2), then Eq. (6) separates
into two identical one-particle equations given by

(Hp Ep+ A, )—V=zgp . (10)

Thus the quantum-mechanical behavior of the system is
determined by X It is a p state for s electrons, and a su-
perposition of s and d states for p electrons. The homo-
geneous (reduced) equation of Eq. (10) describes eigen-
states with energy eigenvalues E0 —A.. If A, is such that
E0 —A, is a physical eigenvalue of H0, the solution of Eq.
(10) might have a divergency because in this case the
operator H0 —E0+X has no inverse.

It has been shown that in the framework of perturba-
tion theory the function 9 is equal to the first-order
correction to the wave function t)'jp, for A, =0, and v= —1.
It follows that the operator F should be finite everywhere
in the physical region of r, and that at infinity it should
not diverge exponentially.

III. HYDROGEN AND HEI.IUM

we obtain from Eq. (6) the radial equation for g:

xg" +(4—2Zx)g' —(2Z+A, x)g = —x .

We get, by a simple scaling procedure,

g(x, A, ;Z)= g(x', A, ';1),1

(12)

(13)

We have only s electrons. Therefore 7 is a p state. We
first consider F for a hydrogenlike ion, thus the wave
function gp ~ exp( —Zx) where Z is the charge of the nu-
cleus. Setting

F=zg (x, A, ;Z),

A '

xg + 4+2x g + 2 AX g= X (17)

We have considered three different wave functions which
consist of two basic functions:

(18)

TABLE I. The coefBcients of the one-particle, ground-state
wave functions P„Pz,P, and the corresponding ionization po-
tentials I, and diamagnetic susceptibilities g.

The coeKcients Z, , Z2, and n, together with their corre-
sponding ionization potentials I in units of Ry, and the
diamagnetic susceptibilities g, in units of 10 cm mol
are listed in Table I. P2 is our fit to the function of
Clementi. The value of g, as quoted in the literature, is
—1.88 in above units. Thus the calculated values based
on the three functions g, , are excellent. We should point
out that the screened hydrogenic wave function
Pp ~ exp( —Zpx) with Zp = 1.6875 yields a rather poor re-
sult for g (13%%uo too low). The three functions P, give rise
to a charge distribution which is less contracted than the
one due to Pp. As the diamagnetic susceptibility is pro-
portional to the mean square radius of the charge distri-
bution it is plausible that the P s, yield the correct distri-
bution away from the nucleus (where most of the contri-
bution to y comes from). The same functions P; give rise
to ionization potentials which are reasonable but not ex-
cellent (the measured value of I is 1.807 Ry). The ener-

where

x'=Zx, g'=/Z2 . (13')

lnI(v) =in[ [I(v)]HZ (14)

The mean excitation energies I(v) for hydrogenlike ions
are related to those for hydrogen by

ZI
Z2

I

(Ref. 4)

1.4558
2.9116
0.6
1.7191
1.870

1.4257
2.7132
0.7478
1.7232
1 ~ 866

3

(Ref. 5)

1.41
2.61
0.799
1.7676
1.880
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gies are quite sensitive to the charge distribution near the
nucleus, where correlation effects show most of their
influence. Obviously, these effects have not been taken
into account in this paper. This may be the main reason
for the above-mentioned discrepancy (about 2% for P3).
Our logarithmic mean excitation energies I(v) are prob-
ably less affected by-correlation effects.

For each electron the expressions of S„(A,), Eq. (8), in
terms of the function g(x, A, ) of Eq. (17) are given by

S,(k)= f $ g(x, A. )x dx,
0

S0(A, ) = — f PP'g (x, A, )x dx,
3 0

(20)

S2(A, )= Z 2f (P )'g(x, A, )dx
3 . 0

+ 3g (0, A. )[P(0)]2 (22)

where Z is the nucleus charge. To obtain S(v), Eq. (3),
one simply puts g = 1 in the above expressions (for details
the reader is referred to paper I). For hydrogen, P is the
ground-state wave function exp( x)/&rr, and —Z = 1.

Finally, the numerical values of the sums L(v) are
determined, according to Eq. (7), by

—L(v)= f 's„(X)dc+f" s.(z)—
0 1

(23)

In order to test the convergence of the second integral,
we have evaluated, for hydrogen, the behavior of
T (1,) =(S —S(v)/X) for A, ~ ~. We found for the
three cases v= —1,0, 1 that T„(A,) behaves as I /A, ; how-
ever for the Lamb shift it behaves as 1/A, ; thus for the
latter case the convergence is very slow.

IV. NUMERICAL CALCULATION AND RESULTS

The diff'erential equation for g (x, A, ), Eq. (17) was
solved by computer for a 1arge range of x, k ~ 0. Our first
task was to solve the hydrogen problem. The appropriate
equation is Eq. (17) with P'/P= —1, or Eq. (12) with
Z=1. This provided a very strict test of our numerical
procedure because for hydrogen the function g(x, A) is
given analytically by the integral representation, Eq. (15).

The function g and its derivative g' were calculated at
(x+Ax) by

and

3

g (x +bx) = g, (bx)"g'"'(x)
0 nl

1g'(x+bx)= g (bx)"g'" "(x) .
p

nl

(24)

(25)

The second derivative of g is given by Eq. (17); the third
derivative of g follows from this equation by simple alge-

S, (k. )= f [—(P')'+2x8+x'0']g(x, A. )x dx,
3 0

(21)

where 8=$ (P'/P )'. Obviously, for hydrogenic wave
functions, 0=0 because ( P' /P ) =const:

bra, and also can be expressed in terms of g and g'. To
complete the picture we are in need of g and g' at x =0.
Call g (O, A, ) =a0, then

g'(0)= a0,
2 p

(26)

which follows from expanding g in powers of x. The A, 's

are the expansion coefficients of the wave function

P(x)=+A;x' . (27)

Hence in the region where 2tx ))1, we find the deviation
of g from its exact value to be

(t+1)x
hg =6q

I (2 —1/r )(2rx)'+'" (29)

where we have made use of the asymptotic expression of
,F, . Thus if this expression is of order 10, as pointed
out above, assuming q not to be smaller than about
10 ', and x,„—10, then even for small values of k this
equation cannot be satisfied. We therefore used a step-
by-step method. The first iteration was from x =0 to
some x, , the second iteration from x, to some x2, etc. ,
the lengths of the successive steps were such that Eq. (29)
was easily satisfied. In this way we got g (x, A, ) for

To facilitate the computation we have also made use of
g" and g"' at the origin. They too are simple functions
of the 3 s, and are linear in ap.

For given A, , the coefficient ap determines the value of g
at every x because all the derivatives of g at the origin de-
pend uniquely on ap. As it turns out, g at large x in-
creases or decreases if ap increases or decreases, respec-
tively. The coefficient apis not known a priori. On the
other hand, g(x, A, ) is known very accurately for
x )x „;for the case of helium x,

„

is about 10, this will
be explained below. Therefore the computational pro-
cedure adopted was as follows. We assumed an initial
value of ap and calculated g by the above procedure. If
the calculated value of g at x,„was too high a lower
value of ap was chosen, and if g was too low at x,„a
higher value of ap was chosen. We found that this itera-
tion procedure was a very effective one. We demanded a
matching accuracy of the values of g at x,„ofabout one
part in 10 which was easily attained.

We should, however, point out that g at large x has an
extremely sensitive dependence on ap. This is due to the
solutions of the homogeneous equations of Eqs. (17) and
(12). For hydrogen the two independent solutions of the
homogeneous equations are &F

&
(2 —1/t; 4; 2tx ) and

U(2 —I/t; 4; 2tx), both multiplied by exp[ —(t —1)x].
The theoretical exact solution of Eq. (12) was obtained by
imposing the conditions that g would be finite in the
physical region of x, and that at infinity it would not
diverge exponentially [for details see paper I, Eq. (24)].
Now it is easily shown that if ap deviates from its exact
value by rl, then g (x, k) becomes

g (x, A, ) = [g (x, A, ) ],„„,+ge " "",F, (2 —I /t;4; 2tx ) .

(28)
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TABLE II. lnI( v) for hydrogen and helium. For helium the three wave functions $„$2,P3 of Table I
have been used.

Direct
numerical
calculat.

Hydrogen

Analytical
calculat.

Computer
calculat.

Helium

—1

0
1

2

—0.073 253
0.096 98
0.570 87
2.984 12

—0.073 254
0.096 981
0.570 87
2.983 97

—0.073 254
0.096 982
0.570 97
2.98408

0.825 24
1.0718
1.7250
4.3294

0.823 84
1.0773
1.7286
4.3112

0.81662
1.0691
1.7117
4.2804

O~x ~10, and O~A, ~10 very accurately. The devia-
tions from the analytical calculated g of Eq. (15), valid for
hydrogen, never exceeded one part in 10 . It is very
reasonable to assume that g derived from Eq. (17) for
helium has comparable accuracy as the one above for hy-
drogen.

The reason the differential equation, Eq. (17), for heli-
um was solved by computer only for x ~ 10 is as follows.
The logarithmic derivatives P,'/P, , i =1,2, 3 of the wave
function for x )) 1 assume the form

Z2 Z]
Z] Q

a+exp[(Zz —Z, )x]
(30)

For x & x,„,where exp [(Z2 —Z, )x,„]»a, the
second term is of the order of 10 . Therefore, in this re-
gion of x the outer electron "sees" the nuclear effective
charge Z& due to the screening of the inner electron.
Now if P /P is constant the function g(x, A, ) is simply
given by the integral representation, Eq. (15), together
with Eqs. (13) and (13'), and Z =Z&.

Our results for hydrogen and helium are listed in Table

For hydrogen, InI(v) has been calculated by three
different methods.

(i) Direct numerical calculation: This is based on the
fact that for hydrogen all the matrix elements for the
transition 1s~np to the discrete and the continuum
states are known exactly.

(ii) Analytical calculation: g (x, A, ) was calculated
analytically; it is given by the integral representation, Eq.
(15). L(v) was obtained from Eq. (23), via Eqs. (19)—(22)
by two integrations over y from 0 to 1, and over A, from 0
to 10' . These double integrals were evaluated by com-
puter. The reason for the extremely high value of A. need-
ed was the very slow convergence of the second integral
of Eq. (23) for v=2.

(iii) Computer calculation: The differential equation,
Eq. (12) with Z = 1, was solved by computer for
0 x ~10 and 0 A, 10. The deviation of g from the
analytically calculated g never exceeded one part in 10 .
For x ) 10, g (x, A, ) was evaluated by Eq. (15). For
A, ) 103, and x & 0. 1 the asymptotic expansion of g (x, A. )
was used (see paper I). The rest of the calculation was as
in (ii).

We see that the results in these three columns are
essentially identical, as they should. This is a convincing
proof that our computer calculation was indeed sound.
(That the analytical calculated g was correct had already
been shown in paper I.)

In the last three columns are listed the results of lnI(v)
for helium, calculated for the three wave functions given
by Eq. (18) and Table I. The function g(x, A. ) was calcu-
lated by computer for O~x (10 from Eq. (17), and by
Eqs. (15), (13), and (13') with Z =Z, for x & 10. For
k&10, the asymptotic expansion of g was used again.
We have also evaluated InI(v) for the screened hydrogen
wave function Po, which constituted a very good test of
the method because of its connection with hydrogen,
given by Eq. (14). The results obtained for InI(v) were
rather poor, as expected.

We see that the [InI(v)]'s derived from P, , i =1,2, 3,
are very similar to each other. The maximum difference
between them is about 1%. The mean excitation energies
are thus slightly less sensitive to the quality of the wave
function than the corresponding ionization potentials. It
is, however, not possible to decide which of the three
functions yields the best result. If to judge by the ioniza-
tion potentials, obviously P3 is the best of the three func-
tions under consideration. But from this it does not
necessarily follow that P3 yields the best value for lnI(v).
To obtain the best wave function from the lnI(v) point of
view it would be necessary to solve a different variational
principle. We are, however, fairly confident that our
values of lnI(v) for helium are quite accurate. This
makes sense in view of the fact that our P s yield excel-
lent values for the diamagnetic susceptibilities g and
reasonable good values for the ionization potentials I. In
our approach, the correlation effects between the two
electrons have been neglected. Most probably this effect
will increase our values only by about 1%. For the lamb
shift (v=2)lnI has been approximately calculated' "by
variational methods, yielding lnI =4.366. This is higher
by about 1% than our result in which correlation effects
have not been accounted for. The inhuence of the corre-
lation effects on InI(v) for v= —1,0, 1, is most probably
of the same order of magnitude.

Another method' ' which has been employed to cal-
culate I(v) for helium and other atoms is based on the re-
lation L(v)=dS(v)/dv assuming v to be a continuous
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variable, and S(v) to be well known in the neighborhood
of v= —1,0, . . . . The function S(v) is determined by in-
terpolating techniques, which is a somewhat dubious pro-
cedure as S(v) is a rapidly varying functions; this is true,
in particular, in the neighborhood of v=2. Thus for the
Lamb shift this procedure yields very poor results.
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