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Anomalous singularities in the complex Kohn variational principle of quantum scattering theory
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Variational principles for symmetric complex scattering matrices (e.g. , the S matrix or the T ma-
trix) based on the Kohn variational principle have been thought to be free from anomalous singular-
ities. We demonstrate that singularities do exist for these variational principles by considering sin-

gle and multichannel model problems based on exponential interaction potentials. The singularities
are found by considering simultaneous variations in two nonlinear parameters in the variational cal-
culation (e.g. , the energy and the cutoff function for the irregular continuum functions). The singu-
larities are found when the cutoff function for the irregular continuum functions extends over a
range of the radial coordinate where the square-integrable basis set does not have sufficient flexibili-

ty. Effects of these singularities generally should not appear in applications of the complex Kohn
method where a fixed variational basis set is considered and only the energy is varied.

I. INTRODUCTION

The use of variational principles can be a very powerful
approach for solving the equations of quantum scattering
theory. Variational principles can be constructed for a
wide variety of quantities of interest, including the
scattering wave function, the scattering amplitudes, and
any overlap matrix element with the scattering wave
function. In molecular physics, variational principles
have been applied to electron-atom and electron-
molecule ' scattering and to chemical reaction dynam-
ics.

Variational principles have been based both on the
difFerential and integral forms of the Schrodinger equa-
tion. Each approach has its own advantages and disad-
vantages for numerical computations based on the ease of
implementation, computation time required, numerical
stability, and the occurrence of anomalous features.

One of the earliest methods to be used in significant
computational studies was the Kohn method which is
based on the differential equation form of the
Schrodinger equation. As was discovered by Schwartz,
this method has severe problems with anomalous singu-
larities. For a given choice of variational basis set, the E
matrix obtained from the Kohn method contains a series
of anomalous singularities, and the number of these
singularities increases as the size of the basis set in-
creases, although the width of the singularities becomes
smaller as the number of basis functions increases. Nes-
bet and co-workers have developed a variety of ap-
proaches for circumventing these anomalous singularities
including the optimized anomaly-free (OAF), minimum
norm (MN), and restricted interpolated anomaly-free
(RIAF) methods. These methods are successful in avoid-
ing singularities but are not particularly satisfying solu-
tions to the problem due to their ad hoc nature. Several
of these methods are based on the observation that by
employing different asymptotic boundary conditions in
the variational trial function, the singularities could be
shifted to different energies. Thus by choosing different

boundary conditions at different energies, the anomalous
singularities could be avoided.

It was subsequently noted that by choosing complex
boundary conditions, the singularities could be shifted to
complex energies and thus could be avoided for scatter-
ing calculations at real energies. ' This observation
forms the basis for an alternative approach for employing
the Kohn principle, which is based on the use of bound-
ary conditions appropriate for the S matrix or T ma-
trix. '" These methods involve the inversion of com-
plex symmetric matrices instead of real symmetric ma-
trices as in traditional Kohn-based methods which em-
ploy standing-wave boundary conditions. It has been
shown that these methods generally are free from singu-
larities of the type associated with the Kohn variational
principle. Thus, for a given choice of variational basis
set, no anomalous singularities are found as variations in
the energy are considered.

A second type of variational principle is the
Schwinger-type variational principle. ' These variation-
al methods are based on the integral equation form of the
Schrodinger equation. These methods include the
asymptotic boundary conditions through the use of a
Green's function. It can be shown that the results ob-
tained from these principles for a given interaction poten-
tial are identical to those obtained from the exact solu-
tion of a corresponding model-separable-potential prob-
lem. Then, as long as the model potential is free of anom-
alous features, the corresponding results from the varia-
tional principle will also be free of anomalous features.
However, as has been demonstrated by Apagyi et al. ,

' if
a poor choice of variational basis set is made, the
Schwinger variational principle will yield anomalous re-
sults. ' One disadvantage of the Schwinger-type varia-
tional principles is that matrix elements of the Green's
function are often more difficult to compute than the
Hamiltonian matrix elements which are required in the
Kohn-type methods.

In this paper we will examine anomalous features in
the complex Kohn methods by considering a model-
potential scattering problem. We have considered both a
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one-channel problem with an attractive exponential po-
tential and a five-channel problem where all diagonal and
off-diagonal coupling potentials are exponential but with
different strengths. This multichannel model potential is
similar to the Huck problem, which has been used previ-
ously to test variational principles, ' ' but does not con-
tain the discontinuity in the potential which complicates
the variational basis needed in Kohn-type methods. ' We
will show that anomalous features exist in the complex
Kohn method, but that they are not found when reason-
able variational trial functions are chosen.

II. COMPLEX KOHN VARIATIONAL PRINCIPLES

A variety of Kohn-type variational principles can be
obtained by imposing different boundary conditions on
the trial variational function. Using a notation similar to
that of Nesbet, we will write state functions as ~1(&'+'&

where this state function is expanded in terms of radial
channel function tt&'+'(r) for q = 1, . . . , N, where X is the
number of channels. The asymptotic form of state func-
tion ~tt&'+'& is then (using atomic units)

&"(r }f'-+&~q("}L-

M„.= & @„IH—E le.&,

M„„,= & ~„IH—E ly, &,

M,& =&y, lH Ely»—,

(9)

(10)

and where the radial functions are not complex conjugat-
ed for the functions on the left sides of these integrals. A
variety of different L's can be computed by making
different choices for u. For example,

L=K for u = 1 0
0 1

(12)

0 1L=K ' for u=

2 T —1
(moo —m, ~m» m, o),

detu

where the superscript T stands for matrix transpose and
where the matrix elements of the matrices m, - are defined
by

(m;&)~q =Mp&q —g g M, „(M)„„'M„,
p v

where

where P, (r) are radial functions which are regular at the
origin and which behave asymptotically as i —1L=S for u=

i 1
(14)

$0 (r}—k ' [uoosinB (r}+uo&cosB (r)],
$,~(r) —k~

'
[ ,usioBn(r)+u„cosB (r)],

(2)
and

1 0

W(go&, g&z ) —uo& u &0
—uoou» = —detu (4)

Now a variational estimate of the elements of the ma-
trix L can be obtained from a Kohn-type variational prin-
ciple with trial functions

~ P
'+ ' ) and

~ P
'+ '

& of the form
—L[~q(+)& ~q(+)&]

&gI, 'IH —EI1(I+'&,

where Lqz gives the asymptotic form of ~p'+'
& in terms

of appropriately defined radial functions and the radial
functions of ~1f&' '& are just the complex conjugates of
the radial functions of ~gq+'&. Equation (5) can be
turned into a matrix variational expression by expanding
the trial functions as linear combinations of basis func-
tions of the form

~1(,'+'& =y c„,~e„&+~y,
' &+y ~y,

' &L„,
P S

where the radial functions of the functions ~Pz & are given

by P,'z(r)=5, P, (r) and where ~4„& is a square-
integrable function, so that its radial functions go to zero
asymptotically. Then, requiring the matrix elements of L
to be variationally stable with respect to the expansion
coefficients c„and L, yields the following expression for
L:

(6)

where B (r)=k r —
—,'I qr when the potentials die more

rapidly than 1/r as r ~ ~ and where k and I are the
asymptotic momentum and angular momentum of the
pth channel. Note that asymptotically the Wronskian of
Po (r) and P, (r) is given by

L= —~T for u= (15)

After a particular scattering matrix L has been comput-
ed, the corresponding K matrix can be obtained using

K = ( uo, + u „L)(uoo+ u, oL ) (16)

III. SINGULARITIES IN KOHN-TYPE
VARIATIONAI. EXPRESSIONS

As has been shown by Nesbet anomalous singularities
will occur in L when detm» =0 not when detM„=O.
Thus different choices of u will yield singularities at
different values of the scattering energy or of the parame-
ters of the variational basis set. For methods based on a
choice for u where all of its matrix elements are real,
detm» will also be a real number. Then sets of parame-
ters (e.g. , nonlinear parameters in the basis sets and the
scattering energy) which yield detm

& &

=0 can be found by
varying only one parameter. Thus for a given basis set in
the K-matrix Kohn method, anomalous singularities can
be found by varying only the energy. In fact, it can be
shown that there will be a singularity at some energy be-
tween each successive pair of energies where detM„=O.

When complex Kohn variational principles are used,
such as the T-matrix or S-matrix versions given above,
the matrix m

&&
becomes a complex symmetric matrix. In

general, there is no reason why a complex symmetric ma-
trix cannot have a zero determinant, although the deter-
minant will usually be a complex number. Thus one
would expect detm» to have zeros but that the zeros of
detm i& would only be found when two parameters are
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varied at the same time, since both the real and imagi-
nary parts of detm» must be zero at the same time.
Then for a given choice of basis set and cutoff function,
one would not expect to find singularities in the complex
Kohn method when only variations in the energy are
considered. One however would expect to find singulari-
ties when two parameters are varied, e.g. , energy and
cutoff parameter. As an example, consider the S-matrix
Kohn method, where m» is given by

' '=(m' ' —m' ')+i(m' '+rn' ')m» —m» —
mpp r mp] mip (17)

and where m, '- ' are the matrices obtained with u =1.
Then in a one-channel problem, the S-matrix Kohn
method will be singular when m'„'=m~[' and my~'
= —m ip

' simultaneously.

IV. MODEL-POTENTIAL CALCULATIONS

where

V, (r)= A, e (1.9)

The square-integrable variational basis set is composed of
the functions {~@~ ):A,=l, . . . , M and j=I, . . . , NJ,
where M is the number of functions in each channel, and
where the radial wave functions are of the form

r) =g rxe ar
V LJ

The continuum trial functions ~P ) have radial functions
given by

P,'z(r)=5,&kz
' [u,osink r+u, &(1 —e ~")cosk r),

(21)

We have chosen a simple model scattering problem to
investigate singularities in the complex Kohn method.
The differential equation for the radial wave function of

~ g~ ) in channel q is

1 d N

+(E Eq) Qqp(r)+ g V q(r)gq(r)=0,
2 r2 s=l

(18)

interaction potential to be y = 1.
For a given model potential and fixed basis set size, i.e.,

for fixed N, M, 2, y, and E, there are then three free pa-
rameters a, P, and E in our calculation. From the discus-
sion given in Sec. III we would then expect to be able to
locate zeros of detm» and thus singularities in L by vary-
ing any two of these parameters and keeping the other
parameter fixed.

We will investigate the singularities in the complex
Kohn method by considering the behavior of the S-
matrix Kohn method. Unless otherwise noted, all results
presented here will be obtained with the S-matrix Kohn
method. Note that the T-matrix Kohn method will have
singularities at the same values of a, P, and E as does the
S-matrix method since m, ~

is the same for both methods.
In Fig. 1 we present the value of I/~detm „~ as a func-

tion of P and E with a =2 for the N= 1 and M=2 model.
In the region of parameter space presented in Fig. 1, we
find one zero in detm» which is located at (E=0.562,
P=0.188). The other feature present in this figure is the
zero in I/~detm»

~

which occurs at around E=0.32.
This energy corresponds to an energy where detM„„=O.
The location of the singularities of the S-matrix Kohn
method forms lines in the three-dimensional parameter
space with coordinates a, P, and E. In Fig. 2 we plot the
projection of the line of singularities onto the P versus E
plane. We can see that the position of the singularities
remains restricted to relatively small values of P, and thus
if a larger value of P were chosen, e.g., P= 1, then there
would not be a value of E and a for which there is a
singularity in S.

To examine the effects of the zero in detm» on the S
matrix in the one-channel problem, we will consider the
phase shift 6 and the amplitude cr of the S matrix ele-
ment, where

(24)

where the channel momentum is given by

k =[2(E E)]'— (22)

For this study we will consider both a one-channel
(N =1) problem with A» = —1 and E, =0, i.e., an at-
tractive exponential potential, and a five-channel problem
(N =5) with the potential coupling coeIIicients given by

—2.00 0.40 0.30 0.20 0. 10
0.40
O. 30
0.20
0. 10

0.40
0.30
0.20
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—1.25 0.40
0.40 —1.00

—1.75 0.40 0.30 0.20

OO0

(23)

and E=(—1, —0.75, —0.5, —0.25, 0). For all model po-
tentials considered here, we will take the exponent in the

FIG. 1. Singularity in I/~detm„~ of the S-matrix Kohn
method when considered as a function of E and P with N= 1,
M=2, and a=2. The values near the singularities have been
truncated at I/~detm „~= 10.
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FICi. 2. Position of the singularity in 1/~detm„~ of the S-
matrix Kohn method in the P vs E plane as a function of a with
N=1 and M=2. The value of a is indicated at representative
points along the curve.

In Fig. 3 we present the value of 6 as a function of E and
p with a=2. We see that exactly on the singularity,
P=0.188, there is a jump in phase of ~/2 which is just
what would be expected if I/S were to pass through the
origin. We can also see that the singularity in S is not
highly localized with respect to variations in E or p.

In Fig. 4 we present the results of a calculation using
the K-matrix Kohn method, the S-matrix Kohn, and the
interpolated anomaly-free (IAF) method of Nesbet for
the N= 1, M=2 model with a=2 and p=0. 188. This
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I
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E

I
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choice of parameters forces the S-matrix Kohn result to
go through the singularity at E=0.562. We can see that
the K-matrix Kohn method is not affected by the singu-
larity in the S-matrix method, however the IAF method
gives results which are very close to the S-matrix method,
including having a singularity at the same value of the en-
ergy.

In the IAF method for a one-channel problem, the ma-
trix u, is given by

FIG. 4. Phase shift for the N= 1 model potential with M=2,
P=0.188, and a =2 using different variational methods.

S-matrix Kohn; —.——-, IAF Kohn; -, K-
matrix Kohn;, accurate values obtained with the S-matrix
Kohn method using P= 1 and M= 8.

cosy sing
—sing cosy (25)
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FIG. 3. Phase shift for the N=1 model potential near the
E=0.562, P=0.188 singularity of the S-matrix Kohn method
with the M=2 basis set. ———,P=0.188, M=2; ——.—,
P=0.22, M=2; . , P=0.30, M=2;, accurate value
obtained with P= 1 and M=8. For all curves a=2.

Then the angle y is chosen to maximize ~detm&&~. For
the one-channel case this can be done analytically to yield

(K) + {K)
mpt m )p

(&) (&)
mpp m )I

(26)

Thus the IAF will be indeterminate and thus have a
discontinuity as seen in Fig. 4 under exactly the same
conditions as when S-matrix method is singular, i.e.,
when m'&& '=mpp' and mp&

' = —m'&p' simultaneously.
From Fig. 4 we can conclude that there is nothing in-

trinsically wrong with choosing p=0. 188 and a=2 since
the K-matrix Kohn method gives good results with these
same parameters in the region of the singularities in the
S-matrix and IAF methods. However, the K-matrix
Kohn method does exhibit a singularity of the usual
Kohn type at a different energy. It seems that for these
parameters, neither the S-matrix Kohn method nor the
IAF method yields the best choice for the transformation
matrix u near E=0.562.

One method for detecting the presence of singularities
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in the S matrix is by checking the unitarity of the S ma-
trix, or in our model one-channel case, by examining the
difference between o and 1. In Fig. 5 we plot the
( I /c7) —1 and the error in 5 as a function of E. The error
in the unitarity of S is certainly evident near the singular-
ity; however, away from the singular energy, S becomes
nearly unitary again. In Fig. 6 we consider the depen-
dence on P of the error in cr and 5. As was indicated in
Fig. 3, we see that as the value of P becomes larger, the S
matrix becomes unitary and the phase shift becomes
correct.

The occurrence of a singularity with P=0.188 when
the exponent of the square-integrable basis functions is
+=2.0 would seem to indicate that singularities occur
when the cutoff function and the basis set span different
regions of the radial coordinate. To test this hypothesis,
we searched for singularities when P))a. We found
such a singularity at P=30.50, E=0.361, and a=2. In
Fig. 7 we present the phase shift as a function of E and P
for large values of P near this singularity. The results are
very similar to those presented in Fig. 3, with the effects
of the singularity slowly decaying away as P approaches
values which bring the cutoff function into a region of
coordinate space which is covered by the square-
integrable basis set.

The location and number of singularities is also depen-
dent on the size of the square-integrable basis set. In Fig.
8 we present a plot of I/~ detm»

~
as a function of E and P

with o. =2 for the one-channel problem with eight basis
functions, i.e., M=8. Three singularities were found in
this region of parameter space (0 P ~ 1 and 0 ~ E ~ 1) at
E=0.060, P=0.079; E=0.252, P=0.075; and E=0.635,
P=0.073. In comparison to Fig. 1, we see that with
M= 8 there are more singularities, there are more ener-
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FIG. 6. Error in the S-matrix element obtained from the S-

matrix Kohn method for N= 1, M= 2, a =2, E=0.562 as a
function of /3. , error 1/o", ———,error in 5. In both
cases the error is defined as the difference between the value cal-
culated using M=2 and the indicated P and the value obtained
with M= 8 and P= l.
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gies where detM„=O, and the values of p for which
there are singularities have also become smaller. In Fig.
9 we see the effect of these singularities on the computed
phase shift. From these results we conclude that improv-
ing the basis set moves the singularities further from a re-
gion of parameter space in which a typical calculation
would be performed. Also, improving the basis set does
not make the resonances narrower with respect to any of
the parameters. This is in contrast to the behavior of the
singularities in the K-matrix Kohn method which become
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FIG. 5. Error in the S-matrix element obtained from the S-
matrix Kohn method for N= 1, M=2, a=2, and P=0.188 as a
function of E. , error in 1/o', ———,error in 5. In both
cases the error is defined as the difference between the value cal-
culated using M=2 and P=0.188 and the value obtained with
M= 8 and P= 1.
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FIG. 7. Phase shift for the N=1 model potential near the
E=0.361, P=30.50 singularity of the S-matrix Kohn method
with the M=2 basis set. ———,P=30.50, M=2;
P=15, M=2;, P=10, M=2;, accurate value ob-
tained with P= 1 and M=8. For all curves a=2.
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V. CONCLUSIONS

We have seen that singularities do occur in the com-
plex Kohn method. These singularities have a noticeable
e6'ect over substantial ranges of the nonlinear variational
parameters and of the energy. In the model problems we
have studied here, the singularities occur when the values
of the nonlinear variational parameters were such that
the cutoff function on the irregular function did not cover
the same region of coordinate space as did the square-
integrable variational functions. As more channels are
introduced the singularities become more numerous, but
they remain in the same region parameter space.

The results have at least two implications for applica-
tions of the complex Kohn method to more dificult
scattering problems. First, the existence of singularities
should highlight the fact that one should always consider

the effects of changes in the nonlinear variational param-
eters on the results of the variational principle. Second,
the unitarity of the S matrix should be checked for each
energy considered in a given calculation. Thus, with a
judicious choice of variational basis set and with care in
checking the unitarity of S, the complex Kohn method
should not be troubled by anomalous singularities.
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