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Screening effects in nuclear fusion of hydrogen isotopes in dense media
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Nuclear-fusion rates of isotopic hydrogen nuclei embedded in dense screening media are calculat-
ed. We consider the cases of a uniform degenerate electron gas and the inhomogeneous electron
density in solids. We derive an exact wave function for the screened nuclear interaction and an
analytical expression for the barrier-penetration factor in the case of homogeneous screening. For
qualitative estimates of the screening in solids, we use a Thomas-Fermi description of the electron
density. A crossover of the fusion rates of the various isotopic pairs analyzed (p-d, d-d, p-t, and d-t)

is predicted for increasing screening length, velocity, or effective temperature of the medium. The
effects of variable screening length and local effective temperatures are considered for electron gases
in the range of metallic densities and compared with previous experimental and theoretical studies.

I. INTRODUCTION

As is well known, recent publications have reported ex-
periments that seemed to indicate the feasibility of
achieving cold-fusion reactions in electrochemical or
pressure cells, with metals containing large concentra-
tions of hydrogen isotopes. These findings, however, are
contradicted by recent careful experiments. Significant
experimental effort is currently in progress to check the
proposed schemes or other reaction channels and condi-
tions. At any rate, the necessity has been apparent to
reevaluate existing theoretical models of fusion reactions
of hydrogen isotopes in dense screening media. One
would like to understand and quantify, for instance, the
role played by the solid matrix where the eventually fus-
ing nuclei are thought to react. Also needed are predic-
tions for fusion rates under conditions not considered so
far in sufficient detail. On the other hand, electron
screening effects are also of interest for thermonuclear re-
actions occurring in astrophysical plasmas.

We present here a calculation of nuclear fusion rates of
hydrogen isotopes embedded in a uniform electron gas
and in the inhomogeneous electron distribution of a solid
matrix. In both cases, the screening due to the electron
background provides a means to overcome with higher
probability the repulsive Coulomb barrier between the
reacting isotopes.

First we analyze the effects of screening on the proba-
bility of tunneling through the repulsive barrier. We
treat the two-body screened interaction between the iso-
topes by means of a model repulsive potential that
renders itself to analytical evaluation for the s component
of the wave function.

The barrier-penetration factor is calculated for the
main hydrogenic fusion reactions in a homogeneous elec-
tron gas, with a screening parameter determined by the
density of the background electrons. To study fusion re-

actions in solids, and for order-of-magnitude estimates,
we use a Thomas-Fermi description of the electron densi-
ty, and furthermore assume statistical distributions of iso-
topes in phase space, with variable screening lengths
within the volume of the atomic cell. We discuss predic-
tions of the present model for d-d, p-d, p-t, and d-t reac-
tions in homogeneous screening media, and in nonhomo-
geneous electron gases at metallic densities.

II. FUSION RATES IN A HOMOGENEOUS
ELECTRON GAS

We start by analyzing the fusion probability of hydro-
genic nuclei immersed in a uniform screening medium
such as a homogeneous electron gas. The fusion rate be-
tween two nuclei can be calculated from

where E =pv /2, v is the relative velocity of the nuclei,
and p is their reduced mass.

In the following we shall consider a screened repulsive
interaction between the free nuclei, as given by the
Hulthen potential:

U(r)=
e qo

2

(e ' —l)
(3)

where the screening parameter qo will be specified below.

where I is the number of fusion processes occurring per
second, and 3 is a constant whose value depends on the
specific fusion reaction considered. The wave function
P(r) for the relative motion of the two fusible nuclei that
interact via a potential U(r) is determined from the
Schrodinger equation

V g(r)= — [E —U(r)]g(r),2p
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This potential permits to obtain analytical solutions for
the s-wave components of the wave function, and thus a1-
lows to derive an exact result for the probability density
at the origin ~g(0) ~, which occurs in Eq. (1). The poten-
tial in Eq. (3) was introduced by Hulthen to evaluate the
bound states of the neutron-proton system and was later
used to study the density enhancement factor in the
scattering of free electrons by the attractive potential of a
nucleus.

For the present case of a repulsive potential, Eq. (2)
can be written for s states in the form

As will become apparent below, the fusion rate in Eqs. (8)
or (9) shows a very strong dependence on the relative ve-
locity v and the screening parameter qo, due to the form
ofy(qo, v), Eq. (6).

It will be more convenient in the following to work in
atomic units (a.u. ), with e =m =))1=1. Lengths are then

0
measured in units of Bohr's radius ao =0.529 A, and tem-
peratures in Ry (27.2 eV or —3 X 10 K).

In the case of a degenerate (homogeneous) electron gas,
for instance, the so-called Thomas-Fermi screening con-
stant is given by

p"(g)+A, p(g)= g&(j) (4)
q, =&3

UF
(10)

with g=qor, P(g) =rP(r), and

Aqo
(4')

where g =2pe /A qo is twice the ratio of the screening
length to the Bohr radius for a system of reduced mass p.

After transforming the radial coordinate in Eq. (4) to
the variable z = 1 —e ~, we find that the solution for the s
state of the two isotopes takes the form

P(g)=(1 —e ~)exp( —ikg)F(a, P, 2, 1 —e &), (5)

where F(a,p, y, z) is the hypergeometric function, ' with
a= I +i( 5+A, ), P= 1 —i(5 —

A, ), and 5=(A, +g)' . The
parameters a and p are functions of the relative velocity v

and the screening constant qo [see Eq. (4')].
Taking the limits of the hypergeometric function' in

Eq. (5) for r =0 and r —oo, we find an exact expression
for the attenuation factor (or barrier-penetration factor)

which accounts for quantum-mechanical tunneling
across the repulsive nuclear barrier, i.e.,

y(qo, v)=
z

= G(A. ,5),~q(0) ~'

it)( oo )
~ fiv

where the Gamow factor 6 is exactly given by
—2n(5 —) )( 1

—4m)
)

G(A, , 5)=
( 1

—2'(5+A, ) )( 1
—2n(s —iL)

)

(6)

(7)

In the appropriate limit, qo
----. 0, the Gamow factor

reduces to the well-known result for a pure Coulomb
repulsive potential, "

1G(oo, oo)=
2'lTv p /v

where vo =e /A is Bohr's velocity.
From Eqs. (6) and (1), the fusion rate is

I = Ay(qo, v)n

(7')

y =I n = Ay(qo, v)n n (9)

where n = ~f( oo )~ is the density of nuclei in the medi-
um. We shall later let cr =p, d, or t, for protons, deute-
rons, or tritons, r'espectively.

Equation (8) gives the fusion rate, per scattering center,
for a Aux n v of nuclei. For a density n ~ of scattering
centers we calculate the fusion rate, per unit volume of
the medium embedding the isotopes, in the form

where co~=(4~n, )' and vF=(3m. n, )' are the plasma
frequency and the Fermi velocity, respectively, for an
electron gas of density n, .

The one-electron radius r, describing the electron den-
sity is defined from (4m/3)r, = I/n, ao Typi.cally r, is
-2 for metals (1.51 for solid Pd), —0.6 for the Jupiter
core, -0.3 for the plasma at the center of the Sun, and
-0.01 for white dwarfs.

We also note that for some astrophysical applications
one may need to account for the effects of partial degen-
eracy on the screening properties of the electron gas.
This can be accomplished by using a more general ex-
pression for the screening constant, as given for all tern-
peratures in Refs. 4 and 12.

In the high-electron-density limit, a relativistic correc-
tion to the screening constant must be introduced. From
the long-wavelength limit of the static dielectric con-
stant' one gets a correction factor (1+vF /c )' in the
right-hand side of Eq. (10). In the nonrelativistic range,
qo 1 56/"'1/2

In Fig. 1 we show the values of Ay(qo, v) for interact-
ing p-d and d-d pairs for various energies of relative
motion and for a range of screening parameters that in-
cludes the various r, of interest mentioned above. The
constant A was taken from Refs. 7 and 14. As can be ob-
served in Fig. 1, the fusion rates for p-d and d-d reactions
depend very strongly on the screening conditions and on
the collision energy. While p-d fusion rates are larger for
low screening and low energies, d-d fusion takes over in
the opposite limits. This crossover will be discussed
below. As expected, the screening of the charge of the
fusing nuclei by the electron gas can lead to differences in
the fusion rates of many orders of magnitude.

The highest values of qo (-200 a.u. ) correspond to
strongly screened interactions, as they would apply, for
instance, for bound p-p or d-p muonic systems' studied
in muon-catalyzed fusion reactions. In fact, and as one
could anticipate on physical grounds, the large variations
of y for various screening conditions are similar to those
found' ' for bound deuterium molecules, though using a
different approach pertinent to bound states of the react-
ing isotopes and, in Ref. 14, introducing a variable
effective electron mass.

We can estimate the fusion rates of different isotopic
pairs, for instance, p-d and d-d. Taking, for simplicity,
equal densities for each isotope, n =nd =no, and using



SCREENING EFFECTS IN NUCLEAR FUSION OF HYDROGEN . . 6875

1 101
-20

10 10'
0

I ~ T
1

I I ~ I

~ ae'

lo

u) -50
E

x
Q

0

-100

—-50
tfl

C

0

-lP

-20

200
2 5 10

q, (a.u.)
100 200

FIG. 1. Barrier-penetration factor y(qo, U) (weighted with the
nuclear reaction constant A) for a homogeneous electron gas,
Eq. (6), as a function of the reciprocal screening length qo or re-
lated electron-gas density (upper scale). E is the center-of-mass
energy of the fusing nuclei in a.u. Solid lines, d-d reactions;
dashed lines, p-d reactions.
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FIG. 2. Fusion rates from Eqs. (11a) and (11b) vs the relative
velocity v of the isotopes for reacting protons (p), deuterons (d),
and tritons (t) in a homogeneous electron gas with qo = 1.27 a.u.
(corresponding to solid Pd). The light-dashed curve is the p-d
fusion rate in the absence of screening.

Eq. (9), we define the following fusion rates, per isotopic
pair:

For simplicity of the discussion, we shall consider in
the following only p-d and d-d reactions. In Fig. 3 we
show fusion rates averaged over relative velocities, as-
suming a thermal (Maxwell-Boltzmann) distribution of

7pdI d= =Anno,
no

(1 la)
10

yddI dd
= =2Agn

no/2
(lib)

-10

In Fig. 2 we show fusion rates for the main isotopic
combinations, in a uniform electron gas of density corre-
sponding to that of solid Pd, as a function of the relative
velocity of the isotopes. We have taken an isotopic con-
centration no = 10 nuclei/cm, corresponding to aver-
age solid-state densities. A drastic increase in the fusion
rate (even in a log scale) is observed for increasing ener-
gies of the interacting nuclei. At low velocities, the mag-
nitude of the fusion rate is found to be larger the lower
the reduced mass p of the nuclei. In this velocity range
the tunneling probability, depending on the factor
y(qo, u) in Eqs. (6) and (7), is a strongly decreasing func-
tion of p. In the opposite limit of high velocities, y =-1

and the fusion rates reorder according to the values of
the reaction constant A, which increases with p.

The p-d fusion rate neglecting screening (qo=0),
shown as a light dashed curve in Fig. 2, indicates that
screening becomes increasingly important for U &0.1 a.u.
( —200 eV for p-d or d-d reactions).

-100 I I 1 I

1Q' 1 10
T (a.U)

1Q

FIG. 3. Fusion rates for p-d and d-d reactions in a homo-
geneous electron gas as a function of temperature T. qo is the
screening constant (in a.u. ) and n p

= 10 ' cm
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10 model to evaluate numerically the TF potential.
The fusion rate in Eq. (9) is now integrated over the

spatial and velocity distributions of the colliding nuclei to
yield

r..=W Jd'r Jd'v jd'u y(r, ~v
—v I)

Xn (r, u )n .(r, u ~ ), (12)

c 10'I-0

— 0.1
where u =

~

v —v .
~

is the relative velocity of the two iso-
topes having individual velocities v and v .. For the
presently considered nonhomogeneous screening, the at-
tenuation factor g in Eq. (12) is a function of position of
the isotope with respect to the matrix atom and of the
relative velocity of the interacting nuclei. The spatial
dependence arises because in our local-density approxi-
mation the screening parameter qo, Eq. (10), changes
with the position occupied by the isotope in the electron
cloud of the matrix atom.

The densities of the isotopes in phase space will be de-
scribed by a Maxwell-Boltzmann statistical distribution,
characterized by an effective temperature T,~, namely,

10-2 (

0
r (a.u)

t3 n (r, v )=C exp[ —[—,'m v +b, V(r)]/(kT, &)I (13)

FIG. 4. {a) Spatial profiles of electron density n„„screening
parameter qo, and the TF potential V for Pd. (b) Spatial profiles
of hydrogen isotopes within the %S cell defined by ro =2.88 a.u.
normalized to the same value of the concentration at the border
of the cell. T,& is the effective temperature (in a.u. ).

Where m is the nuclear mass, b, V(r)= V(r) —V(ro),
and C is a normalization constant.

Then, the two integrals over velocities, appearing in
Eq. (12), can be reduced to a single integration over the
relative velocity v, in the form

1 ~ =3 jd rn (r)n ~ (r) Jd vy(r, u)fMs(v)/v, h,

isotopes and for three values of the screening constant q0.
The largest effect of temperature on the fusion rates is
found for qo=-1 a.u. , which is a typical value of the
screening constant in metals.

(14)

where fMB is now the Maxwell-Boltzmann velocity dis-
tribution for a particle of mass p, u,„=(2kT,~/p)' is
the most probable thermal relative velocity, and n (r) is
obtained by integration of the density in Eq. (13) over all
velocities.

III. NONHOMOGENEOUS SYSTEMS

The previous analysis applies to the question of nuclear
fusion of hydrogen isotopes under the presence of screen-
ing effects in a dense, but otherwise homogeneous elec-
tron gas. To explore the possibility of fusion catalyzed by
solids, we need to consider additionally the effects of in-
homogeneities both in the spatial distribution of the iso-
topes and in the electron density in the solid. We apply
here a description based on the statistical Thomas-Fermi
(TF) model to represent the spatial variation of the elec-
tronic distributions and calculate fusion rates for
confined atomic systems in a solid. '

Consider a Wigner-Seitz (WS) cell of radius ro around
a lattice position in a solid, with an average interatomic
distance 1.61ro (with ro —2.88 a.u. for solid Pd). The
electron-density distribution n, (r) and the atomic poten-
tial V(r) generated around each matrix atom, are deter-
mined from the differential TF equation, d y/dx
=&p3~~x '~~, for the TF screening function y(x).
V(r)=Ze y(r/a)/r, a =0.8853Z ' in a.u. , Z is the
atomic number of the matrix atom, and
n, =(32Z /9m )[&p(x)/x) ~ . We use the confined-atom
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-100
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FIG. 5. Spatial dependence of the thermally averaged at-
tenuation factor y, Eq. (17), for a local TF model of solid Pd.
Solid lines, d-d reactions; dashed lines, p-d reactions. The pa-
rameter on the curves is the eft'ective temperature (in a.u. ).
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(y) = f d v y(r, v)fMB(v)/v, h . (17)

t

O

-10

-100

As shown in Fig. 5, the spatial dependence of this
velocity-averaged fusion rate is smooth, except for the
lowest temperatures. Again, just as we observed for a
homogeneous screening medium, the relative significance
of p-d or d-d reactions shifts at different temperature
ranges.

The same qualitative conclusion regarding the weight
of the p-d or the d-d reactions is obtained from a spatial
average of the fusion rate. Figure 6 shows the quantity

2

fMB(v)A f d r n (r)n (r)y(r, v),

1Q

(18)

which gives the contribution at each velocity to the total
fusion rate of Eq. (16),

(18')

FIG. 6. Velocity-dependent fusion rate I (U) defined by Eqs.
(18) and (18' ) for a TF model of solid Pd, where
U, h =(2kT,ff/p)' . Solid lines, d-d reactions; dashed lines, p-d
reactions. T,z is the effective temperature (in a.u. ).

In order to normalize the fusion rates in a standard
way, we calculate the number of p or d nuclei in the WS
cell,

N =fd rn (r), (15)

and finally obtain the average fusion rate per p-d or dd-
pair in the medium, as follows:

No
(16)

where No is the number of pairs. In the p-d case, No is
taken as the smallest of N and Nd (for a 50% mixture of
p and d, No =N =Nd ), while for the d dcase, -

NO =Nd /2.
We show in Fig. 4 the input quantities in the model,

n, (r), qo(r), V(r), n~(r) and nd(r). One sees that all the
quantities, except the screening parameter, undergo large
changes within the atomic cell in the solid. The largest
variations occur for the concentration of the isotopes,
especially at low temperatures.

Now we evaluate, for the present model, the attenua-
tion factor entering Eq. (14), averaged over the velocity
distribution, viz.

There is, at each temperature, a range of velocities
where the contribution to the fusion rate is maximum,
and this range broadens and shifts towards increasing ve-
locities for decreasing effective temperature. In all cases,
the maximum contribution to the fusion rates comes
from the high-velocity tails of the Maxwell-Boltzmann
distributions.

Table I shows integrated fusion rates for p-d and d-d
reactions, Eq. (18'), for no=10 nuclei/cm, and for
several temperatures T,ft;. In comparing the rates in
Table I one notes that at low temperatures the p-d reac-
tion is most probable, but for increasing T,ff the d-d reac-
tion becomes dominant for mixtures containing compara-
ble concentrations of isotopes. A similar crossing of the
fusion rates was predicted in Ref. 14 in terms of an
ad hoc variable effective mass for the electrons. The
transition from p-d to d-d favorable reaction occurs at
T,ff—=0.1 a.u. At low temperatures, the calculated fusion
rates are very much lower than the values estimated from
the experiments of Ref. 1. The rates predicted by the
present model are also smaller than those obtained' us-
ing a molecular description for bound hydrogenic iso-
topes. However, the existence and characteristics of
bound states, when the isotopes are immersed in a metal,
are currently subjects of investigation. Using a different
formalism' it was previously found that H2 is not bound
in jellium for r, (2, while recent calculations' show that
the distance between the hydrogen isotopes in a palladi-
um matrix becomes still larger than for molecular hydro-
gen in the gas phase.

TABLE I. Fusion rates (in s ') from Eq. (16) for no = 10 ' nuclei/cm' and several effective tempera-
tures T,ff. (Note: A temperature of 0.01 a.u. corresponds to kT,&-0.27 eV or T,&-3000 K.) The
dominant reaction at each temperature is marked with an asterisk.

T,ff (a.u. )

log10( ~ d )

log10( ~dd )

10

—84.0*
—94.0

—42.7*
—44.5

—18.2
—16.0*

10

—6.4
—2.5

10

—1.2
+3.6*



6878 ARISTA, GRAS-MARTI, AND BARAGIOLA

If one were to use the present xnodel to reach the cold-
fusion rates 10 —10 s ' claimed in Ref. 1, one
would require local temperatures of the order of 1 a.u. It
is not clear to us whether one could expect a significant
increase in local temperatures, or other kinetic effects,
under the conditions of these experiments.

IV. SUMMARY AND CONCLUSIONS

We have considered the calculation of nuclear fusion
rates of isotopic hydrogen nuclei in a dense screening
medium, in particular for a homogeneous electron gas
and for the inhomogeneous electron distributions in
solids. The effect of the screening is to increase the prob-
ability of barrier penetration for a repulsive potential and
is described by the attenuation factor y(qo, v) in Eq. (6).
An analytical calculation of g was performed for the
Hulthen repulsive potential. The variation of y(qo, v)
was studied for the main fusion reactions between pro-
tons, deuterons, and tritons for screening conditions cor-
responding to a dense electron gas in ranges of interest
for fusion studies in solids or astrophysical applications.

A crossover of the fusion rates for p-d, p-t, d-d, and d-t
reactions is predicted as a function of velocity, tempera-
ture, or screening conditions. For instance, the predicted
fusion rates for p-d reactions are larger at low tempera-
tures, while the d-d reaction rates become larger at high
temperatures. These results may be considered in quali-
tative agreement with the findings of Ref. 14. The main
difference between this and other models' ' is that our
approach considers the scattering of nearly free nuclei in

a dense screening medium, while the previous model'
was developed for the case of bound molecular states, as
they form in the gas phase. Hence the predictions of the
present model apply, in general terms, under conditions
that may be of interest for various physical or astrophysi-
cal fusion studies.

For the screening conditions in metals, the screening
effects become important for energies below -200 eV in
the p-d and d-d cases. Fusion rates of the order of those
reported in recent experiments' (10 —10 s ') can-
not be explained by the present model unless considerably
high effective temperatures are assumed. On the other
hand, the dramatic increase of the fusion rates with
effective temperature (cf. Table I) may encourage the use
of alternative techniques to try to achieve local heating of
the hydrogen isotopes embedded in solids. One can, for
instance, recall the intense heating effects occurring in
inertial-confinement fusion experiments. Thus, we con-
clude that the alternative model presented here, appropri-
ate for dense screening media, may be useful for fusion-
rate estimates in different experimental situations.
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