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Higher-order adiabatic approximations for classical evolution
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The higher-order adiabatic approximation method of solving the Schrodinger equation for slowly
transported quantum systems, which contains Berry's improved adiabatic theorem as its zeroth-
order step, is generalized to solve evolution equations for a wide class of slowly transported classical
systems. It is shown how the adiabatic condition is broken and transitions between di6'erent modes
take place. Selection rules for such transitions are shown to be a topological property of the evolu-
tion path in parameter space.

I. INTRODUCTION II. CLASSICAL EVOLUTION EQUATIONS

The geometrical phase factor found by Berry in his
study of the quantum adiabatic theorem has attracted
great attention among both theoretical and experimental
physicists. '

Hannay and Berry have studied the analogous classical
holonomy effect. ' For more quantal systems that are
transported less slowly, a few higher-order adiabatic ap-
proximation (HOAA) methods have been proposed. In
an earlier paper the author developed a formalism which
provided a general method of solving the Schrodinger
equation for slowly (not necessarily extremely slowly)
transported systems. By using it, one can calculate the
evolution operator to any degree of accuracy, provided
the eigenvalues and the eigenvectors of the slowly chang-
ing Hamiltonian are known. Its zeroth-order approxima-
tion gives Berry's improved quantal adiabatic theorem.
The validity of this HOAA method is mathematically re-
lated to the hermiticity of the slowly changing Hamil-
tonian which appears in the Schrodinger equation.
Therefore if a classical evolution equation can be reduced
to the following form:

Let us start by examining an undamped linear oscillat-
ing system with X degrees of freedom. Suppose the sys-
tem is slowly transported. Its motion equation is

P(r) =M(r)Y(r),

we rewrite the motion equation as follows:

(4)

Y(&)

P(t)
0 [M(r)]
K(r) —0

Y(r)
P(r)

It is easy to prove that the 2N X 2N matrix

0 [M(r)]
—K(r) 0

[M(r) Y(t)]= K(r)Y(—r),
dt

where Y(t) is the N X 1 displacement vector, M(t) is the
N X N mass matrix, and E ( t) is the N X N rigidity matrix.
M(t) and K (t) are both real symmetric positively definite
matrices. Introducing the N X 1 momentum vector

X(r) = A (t)X(t),
dt

where X(t) is a vector and A (t) is anti-Hermitian opera-
tor changing slowly with time, then the above HOAA
method can be used to solve it. However, most classical
evolution equations cannot be reduced to the form (1). In
the following we will show that a wide class of classical
evolution equations can be written as

d X(r)=S(r)X(r),
dt

where S(t) is a slowly changing matrix similar to an
anti-Hermitian one, or equivalently, a slowly changing
operator satisfying the following conditions.

(i) All its eigenvalues are purely imaginary.
(ii) Its eigenvectors span the whole space.

In this case, the above HOAA method applies with some
modification being made.

is similar to an anti-Hermitian one, or equivalently,
satisfies the above conditions (i) and (ii). From the
eigenequation

0 [M(t)]
—K(r) 0

Y(r)
P(r) (6)

it follows that

[M (r)]'P (t) = A(r) Y(r),
—K(r)Y(r)=A(r)P(r) .

Hence

—K(r) Y(r) =A2(r)M(t) Y(i),
—Y(r) K (r) Y(r) =A'(r) Y(r) M(r) Y(t) .

Considering that K(t) and M(t) are positive definite, we
conclude that X (t) is real and negative. Therefore A(t) is
purely imaginary. Now let us prove the completeness of
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the eigenvector set. There exists a real symmetric posi-
tive definite N X N matrix L ( t) such that

[L (r)]'=M(t} .

Equation (7) can be rewritten as follows:

[L—(r)] 'K(r)[L(r)] 'L(r)Y(r)=A. '(t)L(r)Y(t) .

The NXN matrix [L(t)] ' K(t)[L(t)] ' is real sym-
metric positive definite, so it has N real normalized eigen-
vectors orthogonal to each other:

Z (&)Z„(r)=& „,
[L (t)] 'K(r)[L (r)] 'Z„(t) =co2(t)Z„(r),

where eigenvalues co„(t) are positive real numbers. It can
be seen that the N linearly independent vectors

[L (&)] 'Z„(&)==Y„(t)

satisfy Eq. (7),

K(r)Y„(r)=co'„(r)M(r)Y„(t) .

the natural oscillation periods of the system. Symbolical-
ly,

S=S(R„.. . , R~) =s(R),
R =R (t) (q = I, . . . , F) .

Let r=t/T. dR /dr= T(dR /dt) are not very large.
Suppose that the eigenequation of S (R ),

S (R )X„(R) =ice„(R)X„(R)

is nondegenerate. We expand the X(t) in Eq. (2) in terms
of X„(R):

X(t)=pc„(t)x„(R(t))exp i f cu„(t')dt'
n 0

Substituting the above expression into Eq. (2), we obtain

g c„(t)X„(R(t))exp i f co„(t')dt'
n Q

= —g c„(t)X„(R(t))exp i f co„(t')dt'
n 0

Let

P„(t)=+ice„(t)M(t}Y„(t).

Notice that the eigenvectors of S(R) are not necessarily
orthonormal, for S (R ) is not necessarily anti-Hermitian.
We have to construct the dual basis IX (R) I, such that

0 [M(r)]
K(t) —0

Y„(E)

P„+(t)—
Direct calculation shows

Y„(t)
=+ico„(t}

n

(x (R),X„(R))=5

Using the dual basis we get
(9)

c (r)=g (x (R(r)),X„(R(&)))
These 2N eigenvectors, each of which has 2N com-
ponents, are linearly independent. In fact, suppose

Y„(t) Y„(t)

L

=0.

This is a 2NX1 matrix equality. The upper N com-
ponents being zero requires that

a„+b„=O for n =1,2, . . . , N,
and the lower N components being zero requires that

a„—b„=O for n =1,2, . . . , N,

Xexp i co „(R(r'))dt' c„(t),
fl

Q

where

co „(R(t))=co„(R(t)) co (R (t)) .—

Changing to the new variable ~, we obtain

=x(x (R), x„(R)l
r

Xexp iT m ~' dw' c
TQ

or in the matrix form,

(10)

so that all the 2N coefficients a„and b„are zeros.
From the above typical example, one would be con-

vinced that unlike the quantal case where the
Schrodinger equations for all slowly transported systems
have the form (2), not all the classical evolution equations
for slowly transported classical systems can be reduced to
the form (2). However, a wide class of classical evolution
equations can be reduced to the form (2). Undamped
linear oscillating systems with slowly changing parame-
ters are met frequently in classical physics and engineer-
ing.

=K( )C( )
dv

where K(r) is a matrix with elements

X „(r)=(X (R), X„(R) exp (TJ ~ „(e')de'd 7

d7. TQ

(12)

Now what we need to do is just to follow the same steps
in (8). Divide K(r) into two parts,

III. FORMALISM
K(r)=d(r)+O(r) . (13)

Suppose the S (t} in Eq. (2) depends on a set of real pa-
rameters IR, ,R2, . . . , R~] which vary with time slowly.
Let T be a quantity of time dimension much greater than

D(r) is the diagonal part of K(r), of which the elements
do not oscillate, while O(r) inherits the off-diagonal ele-
ments which oscillate. 0 „(r}themselves are not neces-
sarily small, but they give small integrals when being
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multiplied by a nonresonant function of ~ and integrated
over a finite interval. Introducing the evolution operator
U(r, ro), we have

dU(r, ro) = [D (r)+ O(r)] U(r, ro),

(n =+1,+2, . . . )

and

The eigenvalues and eigenvectors are
1/2

. nm. v . nor E
a(t) a(t) p

U(ro, ro)=1 .

Expand U(r, ro) into a perturbation series

U(r, r, ) = U"'(r, ~, )+ U" '(r, r, )+
+ U'"'(r, r, )+. . . , (14)

X„(x,t) =
. nn
a(t)

The dual basis is

n m[x b(—t)]
a (t)

(21)

where U'"'(r, ro) stands for the processes containing n

transitions between different energy levels. The results
are

U' '(r, ro)= Texp f D(r')dr'
7p

X (x, t)=

such that

I /a(t)
l

m n-v'Ep

mm[x b(t—)]sin a(t

where T stands for the chronological product, or

U' ' (r, ro)=exp f D (r')dr'
7p

and

U'"'(r)ro)= f dr'U' '( r, r') 0( r')U'" "(r', ro) .
7 p

(17)

(X (t),x„(t))= f dx[X (x, t)]'X„(x,t)
b(r)

We have

0 if m=n,
It is notable what when S(R) is not anti-Hermitian, the
U ( 7 7 p ) is not unitary. This does not cause any trouble.
Because the X(t) here is not a state vector, and we do not
need probability conservation. In addition, an undamped
oscillating system with changing parameters is no longer
a closed and conservative system.

X (a, b), X„(a,b)'
Ba

( —I) +"n

( m n)a—otherwise,

—1 ifm= —n,
2a

(22)

IV. VIBRATION OF A STRING

Denote by u (x, t) the displacement of point x at time t,
and vr(x, t) the conjugate momentum density. The canon-
ical motion equation is

u(x, t) 0
m.(x, t)

p '(x, t) u (x, t)
vr(x, t)E(x, t)

a a

for b(t) &x &b(t)+a(t), (18)

with

Let us study the vibration of a string with two slowly
moving "fixed" ends at

x =b(t),
x =b(t)+a(t) .

and

(x (a, b), X„(a,b) )
a

0 if m —n =0(mod2),
2n

(m n)a—otherwise .
(23)

Considering (12), (13), and (15), we conclude that in the
case at hand

D (r) =0,
and hence

U' '(r, ro)=1 .

The Berry phase factors here are all zeros. From (17) we
see

8
ax Bx

p
' u(x, t) u (x, t)

m(x, t) m(x, t)(t),
for b (t) &x & b(t)+a(t) . (20)

u(b(t), t )= u(b (t)+a (t), t ) =0,
where p(x, t) is the density and E(x, t) Young's modulus.
For simplicity we suppose that p(x, t) and E (x, t) are con-
stants. Consider the eigenequation

U"'(~, ro)= f O(r')dr' .
0

Let us consider the following process:

ao if t (0,
a(t)= (i a+ot/T) if 0&t & T,

2ao if T(t,
b(t)=0 .

(24)
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We obtain

and for /m[W/n[,

iT2n n. /ao '(/ E/p

1+~o

i T(4n m. /ao) 1/E/p

U(1) ( 0) ( 1 )m +n&
iTt(n —m)77/ao)'(/ E/p

1+~o

(n —m)lT
ao

1/2
E
p

Suppose the initial condition is

2 sin(ex /ao )

X(0)= 0 =X, (ao, 0)—X,(ao, 0) .

Then at the zeroth-order approximation, we have

i m a v pn +7 —i n a v pn +~

It shows that the system remains in the fundamental mode, when T(1/ao)VE/p~ ~. As T(1/ao&E/p) becomes
smaller (but still much greater than 1), we have to take account of the first-order approximation. Then the portion of
the mth harmonic is given by

T

[U"I(r,o) —U"', (r, o)]X (t)exp iT
ao p

1/2

ln(1+r)
' 1/2

+ [ U ) (7,0)—U'"
) (r, o)]X ( t)exp —iT — ln( 1 +v)

ao p

The two terms above are a complex conjugate to each other. They give a real sum

2~t o sinO( m )
—sing( 1 ) sinO( m ) + sing( 1 )

Tn+E /p (1 —m) (1+m)

(
—1) +'2mp cosg(m) —cosg(l) cosg(m)+ —cosg(1)

T(1+ )r (1 —m) (1+m)

m vr(x —ao)
sin ao(1+r)

(25)

where

1/2

O(m) = T — ln(1+r) .mm E
ao p

Let us consider another process:

0 if t&0,
a(t)=ao, b(t)= . aot/T if 0&t&T,

ao if T(t .

We have, for m —n =—1(mod 2),

U"„'(~,0)= —2n exp i T (n —m)n.

ao

1/2
E
p

1/2

(m —n)iT (n —m)m E
ao p

(26)

and for 4m —n —= O(mod 2),

UI'„'(r, o) =o .

Here we see a new kind of selection rule. When the
representative point of the system moves slowly along a
curve C in the parameter space, the transition from
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X (R), X„(R)ldR =0 (27)

eigenvibration n to eigenvibration m(Wn) cannot take
place if the differential form

is zero on C. This selection rule is a topological property,
which has nothing to do with the duration of the
representative point on C, provided it moves slowly
enough.
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