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Fermi and Coulomb correlated relativistic local-density method for atoms
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A parameter-free local-density method called the = method was developed earlier for atoms [N.
Vaidehi and M. S. Gopinathan, Phys. Rev. A 29, 1679 (1984)]. This method, which considered only
the Fermi correlation in the potential, was shown to be close to Hartree-Fock accuracy. Its relativ-
istic extension [V. Selvaraj and M. S. Gopinathan, Phys. Rev. A 29, 3007 (1984)] was also shown to
give results that were close to Dirac-Hartree-Fock accuracy. In the present article, the relativistic
:- method is modified by incorporating the spin-orbit interaction term in the Hamiltonian and the
Coulomb correlation between the electrons of opposite spin. Using this fully correlated relativistic
method, total energy, expectation values of r" (n = —1,1,2), and spin-orbit parameters for various
atoms are calculated. Correlation energies for all the atoms in the Periodic Table are reported.
Ionization energy and electron a%nity of atoms are also discussed.

I. INTRODUCTION

A parameter-free local-density (LD) method, called the
:- method, ' was proposed earlier by Vaidehi and Gopi-
nathan for atomic structure calculations. In the
method, the exchange potential is separated into a self-
interaction potential which is evaluated exactly and a
pure exchange potential which is treated using a Fermi
hole formalism developed ' earlier. The " method was
shown' to be near Hartree-Fock (HF) accuracy by nu-
merical calculations of the total energy and orbital ener-
gies of various atoms. The relativistic extension of the =
method, called the R:" method, has been implemented
and shown to be close to Dirac-Hartree-Fock (DHF)
accuracy.

The most rigorous way of doing the relativistic calcula-
tions is the DHF method ' developed by Grant. In the
DHF method, the one-electron operator is the Dirac
one-electron Hamiltonian and the two-electron operator
is the same as in the nonrelativistic Hamiltonian. For
each set of quantum numbers n, l, and j there are two ra-
dial wave functions, called large and small components,
to be solved in the DHF method under the central-field
approximation. As in the nonrelativistic case, the DHF
nonlocal exchange potential can be approximated by
Slater's exchange potential. This method, called the
Dirac-Hartree-Fock-Slater (DHFS) method, ' is some-
what simpler than the DHF method. Xu, Rajagopal, and
Ramana" have developed a relativistic spin-density-
functional theory for the inhomogeneous electron gas.
Relativistic effects in atoms and molecules can be calcu-
lated from the Schrodinger wave function. This method
is called relativistic-Hartree-Fock (RHF) method. '

Cowan and Griffin' proposed a method in which the ma-
jor relativistic effects were included in the calculation
within the nonrelativistic model. Following the work of
Cowan and Griffin, Selvaraj and Gopinathan proposed a
relativistic = method for atomic structure calculations.

The HF (Ref. 18) theory for atoms and theories men-

tioned above incorporate Fermi correlation between elec-
trons of same spin but do not take into account the
Coulomb correlation between electrons of opposite spin.
The error due to the neglect of Coulomb correlation be-
comes serious when one considers small energy
differences between electronic states, as in the transition
energy and rotational barrier in molecules. The need to
go beyond the HF formalism has been recognized for
some time, and methods such as configuration interaction
(CI), ' power-series expansion, electron-pair theories, '

and many-body perturbation theory have been
developed to describe Coulomb correlation. However,
these methods become conceptually and computationally
tedious when applied to systems with a large number of
electrons. The local-density method, which expresses the
correlation as a function of the one-electron density has
been used to describe Coulomb correlation in atoms.
Such methods employ the uniform electron-gas model for
exchange-correlation potential and are often heavily
parametrized. The local-spin-density approximation pre-
dicts ' correlation energies for atoms that are about
twice the exact values. Keller and Gazquez ' and Manoli
and Whitehead derived a Coulomb correlation potential
on the basis of a certain shape for the Coulomb hole.
Gradient corrections to correlation energy have been pro-
posed by Langreth and co-workers and recently by
Perdew. Work on the local and nonlocal spin-density-
functional calculations of correlation energy has been re-
viewed by Carroll, Bader, and Voska. It has been estab-
lished ' that, to describe Coulomb correlation properly,
the wave function must satisfy Kato's cusp condition. '

It is also known ' that the cusp condition is not
satisfied by the limited CI wave function. Rajagopal,
Kimball, and Banerjee have, along the lines followed by
McWeeny, suggested the possibility of modeling the
pair correlation function so as to satisfy the cusp condi-
tion.

The formalism of the R:- method is deficient in the fol-
lowing aspects: (i) the spin-orbit interaction is treated as
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perturbation even though it is of order a (a being the
fine-structure constant), and (ii) correlation between elec-
trons of same spin is treated following the Fermi hole for-
malism but Coulomb hole correlation between electrons
of opposite spin is not included. In the present paper, we
modify the formalism to overcome both these
deficiencies. The spin-orbit interaction is incorporated in
the Hamiltonian and thus the modified R:- method dis-
tinguishes the spin-orbit levels for electrons with l&0,
unlike the R:" method. The modification of the R:-
method is presented in Sec. II. In Sec. III, we present the
derivation of Coulomb hole correlation potential within
the LD formalism such that it satisfies explicitly the cusp
condition on the density. Further, we choose to treat the
Coulomb hole separately from the Fermi hole so that the
known properties of the Coulomb hole can be explicitly
incorporated into the model and Coulomb correlation
effects can be isolated and studied. The separate treat-
ment of the Fermi hole and Coulomb hole is also suggest-
ed by Stoll, Golka, and Preuss, and Kemister and
Nordholm. In Sec. IV, the final self-consistent-field
(SCF) one-electron equations with relativistic and corre-
lation potential obtained by combining the modified R:"
method and the Coulomb correlation potential derived
on the basis of the variational theorem are presented.
Results of the present method, called the RC:- method,
for total energy, correlation energy, spin-orbit parameter,
expectation value of r" (n = —1, 1,2), ionization energy,
and electron aSnity for various atoms are discussed in
Sec. V.

II. MODIFIED I:- METHOD

Before we discuss the modification of the R:" method,
we recall the features of the = method. ' In the
method, the total energy for the atom or ion can be writ-
ten as (in rydberg units)

(E)= g f n;u; (r)f &u, (r)+ —,
' fp(r)p(r')g„, ,dr dr'

f &

= V 2Z—lr, —g„„,=2l~r r'~, —

pt(r)= gn;u (r)u, (r),
l, f

p(r) =p&(r) +p&(r),

(2)

(4)

with a similar expression for p&(r). V
&
(r) is the exchange

I

+ —,
' fpt(r) V

&
(r)dr+ —,

' fp&(r) V~ (r)dr, (1)

where n, is the ith orbital occupancy, u, is the spin orbit-
al, and

V'"(r)= —4m'~ (2'~ —1) +—1 1
—2/3

p,
'

T(r)pT (r)n, u,.(r)u,.(r)

with similar expressions for down-spin electrons. In Eq.
(7) p,'&(r) represents the density of electrons of up spin at
point r excluding the density of the up-spin electron in
the spin-orbital u; ( r )

[p,'&(r)]&= g n u'(r)u (r) .
j(wi) f

By variational minimization of the total energy of Eq.
(1) with respect to spin orbitals I u; I subject to their nor-
malization, we get a set of one-electron Schrodinger equa-
tions

[f&+v (r)+vt'(r)+v&" (r)][u, (r)]t=e;[u, (r)]&, (9)

where v (r), the Coulombic electron-electron repulsion
potential, is

u (r)= g n f u (r')u (r'), dr',2
J J J

7 IJ

v &'(r), the self-interaction potential, is

v
&

(r) = n, f u; (—r')u;(r'), dr',2

and v&" (r), the one-electron pure exchange potential in
the = method, is

potential at point r for the up-spin electrons, p&(r) is the
total charge density of the up-spin electrons, and p(r) is
the total charge density. The exchange potential is
separated into two parts: (i) a self-interaction part which
is evaluated exactly, and (ii) a pure exchange potential
which is approximated as using the Fermi hole formalism
of Ref. 1, without any adjustable parameter. For the up-
spin electron, the exchange potential can be written as

VT(r)= Vt'(r)+ V't" (r) .

The expressions for the self-interaction potential at point
r, V &'(r), and pure exchange potential at point r, V &" (r),
for up spin electrons are given as

(n;u;*(r)u, (r) f n; u, (r')u;(r')g„„dr'
V&'(r)= —g

I, f pT(r)

1 1v'"(r) = —4~' (2' —1) +—
—2/3

2p, (r)p& (r) —2pt (r) g n—, u,*(r)u, (r)p,'&(r)
'

l, f
(12)

Note that we denote the average potential in the total-
energy expression, Eq. (1), by V and the corresponding
variationally obtained potential of the one-electron equa-
tion, Eq. (9), by u.

We now discuss the modification of the R:- method.
In the R:- method, the major relativistic corrections,
namely, mass-velocity correction and Darwin correction
are included in the Hamiltonian, but the j-dependent
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spin-orbit interaction term, which is also of order of a
(fine-structure constant), was not included. We have
presently modified the R:- method by incorporating the
spin-orbit interaction term in the Hamiltonian. The one-
electron SCF equation used in the R:" method is

d l(1+ I)+ +u (r)+H (r)+HD(r) P„I(r)
Ar r

H (r) =K[e„l—v (r)]

and HD(r), the Darwin correction, is

du(r) d 1
HD r =KB

dr dr r

with

(15)

(16)

=E„IP„I(r), (13) A' CXK= — 8= 1+ [e —v(r)]
4 ~ 4 n1 (17)

where v (r), the central field potential, is

u(r)= 2—Z/r+u (r)+u
&

(r)+u&" (r),

H (r), the inass-velocity correction, is

(14)
Equation (13) is now modified by incorporating the spin-
orbit interaction term in the Hamiltionian, and thus the
one-electron equation of the modified R:- method be-
comes

d l(l+1)+ +v(r)+H (r)+HD(r)+H, (r) P„IJ(r)=e„I~P„&z(r),
dl r

where H, , (r), the spin-'orbit interaction term, is

H, , (r) =KBA dv(r) 1

dr r
(19)

where A is equal to 1+1 for j =l+ —,
' and it is —l for

j = l —
—,'. The approximate one-electron Hamiltonian,

given by Eq. (19), commutes with the operators J, I. ,
and S . The present method distinguishes between the
spin-orbit levels for electrons with l&0, making the wave
functions P„& (r) dependent on the quantum number j.

III. FORMULATION OF THE COULOMB-HOLE
POTENTIAL

We start with the total-energy expression, Eq. (1), of
the = method. With Coulomb correlation, the total ener-

gy can be written as

(E)= g f n, u, (r)f &u;(r)+ —,
' fp(r)p(r')g„„dr dr'

+ —,
' fp&(r) Vt (r)dr+ —,

' fp&(r)V&(r)dr

+ ,' fp&(r)V&"'(r)d—r+ ,' fp&(r)V& "(r—)dr,

(20)

where V&"'(r) is the Coulomb correlation potential act-
ing upon an up-spin electron, the potential being pro-
duced by all the down-spin electrons. Thus we have ex-
pressed the Coulomb correlation energy of the atom as

F-'"'=
—,
' fp&(r) V& "(r)dr+ —,

' fpi(r) V'~"'(r)dr . (21)

Variational minimization of the total energy of Eq. (20)
with respect to the spin orbitals Iu; I leads to the one-
electron equations similar to Eq. (9),

[f,+v (r)+usT (r)+v t"(r)+u t'"(r)][u, (r)]i

In Eq. (22), v &'"(r), the Coulomb correlation potential,
remains to be specified. Again note that we denote
VT""(r) as the correlation potential for an up-spin elec-
tron and u'&"'(r) as the corresponding correlation poten-
tial in the variationally derived one-electron equation. In
this section we proceed to derive an analytical expression
for u t'"(r).

The Coulomb correlation potential for an up-spin elec-
tron can be thought of as arising due to the removal of
charge of down-spin electrons from its vicinity. This de-
pletion of charge is usually called the Coulomb hole.
Knowledge of the shape and size of the Coulomb hole en-
ables one to derive the Coulomb correlation potential

carr
(

Two important properties of the Coulomb hole which
are of relevance to the present work are the following.

(i) The Coulomb-hole density should satisfy Kato's
cusp condition.

(ii) The total Coulomb charge is zero, i.e., the
Coulomb-hole density integrates to zero over the entire
range of the Coulomb hole.

Using these two properties we now proceed to derive
an expression for the Coulomb-hole density, p (r).

The differential form of Kato's cusp condition on the
wave function is equivalent to the integral form

%(r~, rz, r3p. . . pr ) 4(1)prfpr3p . , r„)(1+—,'r&z) (23)

for small r, z, where r, z
= ~r, rz ~. Squ—aring both sides of

Eq. (23) and neglecting higher powers of r, z, we get, for
small r)2,

(r],rz, r3, r ) P (ri rJ r3 r )(1 +lzr)

(24)

Integrating both sides of Eq. (24) over the coordinates of
all the electrons except electrons 1 and 2, we have

=E;[u, (r)]& . (22) II(ri, rz) =II(r&, r, )(1+r&z), (25)
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where II(r „rz ), the pair density function, is defined as

II(rl, rz ) n (n 1)I0 (rl rz, r3 r )d'r3df74 d r„'

(26)

The pair density can be generally broken down into its
spin components as

II(r„rz) =H&&(r, , rz )+II&&(r„rz)+H&&(r„rz)

+Hid(r„rz) .

Hence we set, using Eqs. (25) and (27),

H&t(ri, rz)=H&&(r&, r& )(1+riz)

(27)

with similar equations for the other spin components of
II(r, , rz).

Here we shall neglect Coulomb correlation between
electrons of like spin and consider the Coulomb correla-
tion between electrons of unlike spins only. This is
reasonable because Fermi correlation for electrons of like
spin keeps them apart in space and hence Coulomb corre-
lation between such electrons may be neglected to a good
approximation.

The pair density calculated using the correlated wave
function in Eq. (26) may be called the correlated pair den-
sity and we denote it as II""(r„rz) and that calculated
using the uncorrelated wave function may be called in-
dependent pair density denoted as II'" (r„rz). The rela-
tion between the two can be formally written in terms of
a correlation function f&&(r, , rz) as

(33)

II( ~"(r&,r')/pt(ri ) =H't'~"(ri, r, )(1+r')/p&(r~ ) .

Comparing Eqs. (32) and (34) we have

(34)

pi(r')[I+ f&z(r&, r')]=II(i'"(ri, r& )(1+r')/PT(r, ) .

(35)

The point (rc )
&

in Fig. 1 at which the Coulomb-hole den-
sity changes sign may be called the Coulomb-hole radius,
beyond which p (r') is positive. At (rc )

&
we have

For small values of r', the Coulomb-hole density is nega-
tive, which implies a negative f & &. However, the
Coulomb-hole density becomes positive at large r' in or-
der to satisfy property (ii) of the Coulomb hole mentioned
above, namely, that the total Coulomb-hole charge is
zero. This means that f & &

(r „r') becomes positive at
large r'. A schematic sketch of the Coulomb hole is
shown in Fig. 1.

A functional form for f&&(r„r') can be derived as fol-
lows. Equation (31), which we derived on the basis of the
cusp condition, can be rewritten by dividing both sides by
p&(r ~

) and changing over to the present notation as

H &'i"( r i, r z ) = H't"i ( r, , r z )[ 1 +f t &
( r, , r z )], (29) (a)

with similar expressions for other spin components. The
expression for the correlation function f&&(r„rz) has
been derived earlier' in the treatment of the Fermi corre-
lation by the = method. Here we are interested in the
derivation of an explicit form for f T &

( r, , r z ).
The independent pair density can be written as the

product of one-electron densities as

'c &)

H'~"t(r&, rz)=p&(r& )pi(rz) . (30)

For later convenience we fix the reference electron at r,
and take this to be the origin for interelectronic dis-
tances. The distance measured from r, is denoted as r'.
In this notation Eq. (29) is

H& &"(ri,r') =pt(r, )p&(r')[1+f & t(ri, r')], (31)

where Eq. (30) has been used. Thus the conditional prob-
ability of finding a down-spin electron at r' when an elec-
tron of up spin is known to be at r

&
can be written as

(b)

H&'&'"(r&, r')/p&(r& )=pi(r')+pi(r')f &&(ri, r') . (32)

The second term on the right-hand side of this equation
represents the amount by which the independent electron
density at r', viz. , p&(r') is affected by Coulomb correla-
tion. Therefore this term corresponds to the Coulomb-
hole density at r' which we denote as p&"(r') since it is
produced by an up-spin electron at r, . Thus

FIG. 1. (a) Variation of Coulomb-hole density p "(r') as a
function of the distance r' from the reference electron at r&. (b)
A view of the spherical Coulomb hole in the present model.
(r&) t is the radius of the Coulomb hole.
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pt "((rc)t)=p&((rc)&jfti(r, , (r )t )=0 .

Hence for r'=(rc ) t, Eq. (35) can be rewritten as

II&~"(r, , r, )=p&(r, )p&((r )t)[1+(r )&]

Substituting Eq. (37) into Eq. (35) we get

p, (r')f „(r„r')

(36)

(37)

V& "'(ri ) =4'I pt "(r')r'dr'

4~ pl r1 r' —rc ~
1+ rc

0

X exp[ —3r'/(rc )
&
]r'dr',

which on integration gives (in rydberg units)

V$'"'(», )= —(8~/27)(rc)t[l+(rc)$] 'pi(r] ) .

(46)

(47)

=pi((rc)t)(1+r )[I+(rc)t] —p&(r') . (38)

The left-hand side of Eq. (38) corresponds to the
Coulomb-hole density as defined by Eq. (33) and hence

pT"(r')=pi((rc)t j(1+r')[I+(rc)t] ' —pi(r') . (39)

For small values of r' we now assume that the indepen-
dent one-electron density p&(r, ) varies slowly so that we
may set

pt((rc)t )=pi(r')=pi(r, ),
and Eq. (39) becomes

pt "(r')=pi(r &

)[r' —(r&)&][1+(rc) t]

(40)

(41)

This equation gives the Coulomb-hole density p&
"(r') for

small values of r'. Notice that we have derived this from
the cusp condition for the exact wave function, imposing
the assumption of a slowly varying density as given by
Eq. (40). This is obviously not valid at large r' and the
Coulomb-hole density p& (r') of Eq. (41) varies linearly
with r' instead of vanishing at large r', as it should (see
Fig. 1). In order to correct for this wrong behavior at
large r', we introduce in an ad hoc manner the factor
exp( cr') in Eq. (41):—

pt (r') =p&(r
&

)[r' —(»c ) &][1+(rc ) &] 'exp( cr') . —

(42)

(rF )i = m.
1 1+ —pt(r, ) (48)

3.0—
Ar

Now the following comments may be made. The
Coulomb correlation potential of Eq. (47) is negative, as it
should be. Further, in the present LD formalism,
Vt""(r, ) is the same for all spin orbitals of the same spin
(1), as it depends only on p&(r, ) and (rc)& and not
specifically on [u, (r, )]t.

In order to completely specify V&""(r, ), we must
determine (rc ) t, the radius of the Coulomb hole. We no-
tice from Eq. (45) that the Coulomb-hole density for an
up-spin electron depends on the down-spin density at the
center of the hole. Therefore it is reasonable to expect
the radius of the Coulomb hole for an up-spin electron to
depend on the down-spin density. The relation between
the radius and density has been derived earlier for the
Fermi hole as

—1/3

=4~ p1 ~1 r' —rc ) 1+ rc

Xexp( cr')r' dr'=0, — (43)

where we have used Eq. (42). Carrying out the integra-
tion in Eq. (43) gives

The constant c can be determined from property (ii) of
the Coulomb hole. With the additional assumption that
the Coulomb hole is spherically symmetric, the proper-
ty (ii) that the Coulomb-hole charge is zero becomes

4' f pt "(r')r' dr'
K

2.0—
~ t.O

pu K
UJ

i

&.0

Si

c =3/(rc )t,
so that Eq. (42) yields

pt (r') =pi(r, )[r' —(rc) &][I+(rc ) &]

X exp[ —3r'/( rc ) t ] .

(44)

(45)

p I
~ a

03 pg 0.5 0.6 0.7 0.75 0.8
1

0.9 1.0

Using this expression for the Coulomb-hole density for
an up-spin electron, we now proceed to derive the corre-
sponding Coulomb correlation potential. For the spheri-
cal Coulomb hole, the potential at the center of the hole,
f'1, 1S

FIG. 2. Parametrization of the ratio x between Coulomb-
hole and Fermi-hole radii. ~ denotes the correlation energy
calculated by the present method for various x values for
different atoms. The horizontal line denotes the exact value of
the correlation energy calculated using Eq. (52) of text.
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We now assume the same functional dependence for
the radius of the Coulomb hole and set

(rc )t =x(rF )(=x 1T
1 1+ —p)(r, ) (49)

Vt""(r~ )= —8/27x vr
1 1+ —p&(ri)

X x 1 1+—p((r, )
n&

—1/3

where x, the ratio between the Coulomb- and Fermi-hole
radii, is introduced as a parameter. The determination of
x will be discussed later.

Substituting Eq. (49) in Eq. (47), we have

looks involved, it is simply a local-density expression and
is immediately computed once the densities p&(r) and
p((r) are given.

The specification of the potential terms in the one-
electron equations [Eq. (22)] is now complete through
Eqs. (10)—(12) and (51), along with Eq. (49), except for the
parameter x. The solutions of Eq. (22) are "fully correlat-
ed orbitals" in the sense that Fermi and Coulomb correla-
tions are now included explicitly and they are exactly
self-interaction corrected.

We now determine the parameter x occurring in Eq.
(49), which represents the ratio of the Coulomb- and
Fermi-hole radii by comparing the correlation energy cal-
culated by the present method using the Eq. (21) with the
"exact" correlation energy which is obtained by the fol-
lowing equation:

+1 p&(r, ), (50) Ecorr EexPt EDHF gE Lamb
exact (52)

We can use this expression for V&"'(r, ) in Eq. (20) for
total energy, together with a similar expression for
V &'"(r, ). The resulting expression for (E ) is then varia-
tionally minimized with respect to the spin orbitals I u; I

as described earlier. This gives the set of one-electron
equations of the form of Eq. (22) wherein the variational-
ly correct Coulomb correlation potential is now given by

4~ (rc ) t (r )c)

I+(rc)t 1+(rc)ip((r, ) +
—1/3

1 1+
ply 3

4x
+81 pt

' '(r, )p)(r))

[3(rc)(+2(rc)i]
X

2[1+(rc )(]
(51)

with a similar expression for u&'"(r, ). Here (rc)& is

given by Eq. (49). The terms in Eq. (51) arise from the
di6'erentiation of the fifth and the sixth terms of the
total-energy expression, Eq. (20) after the substitution for
V&'"(r& ) from Eq. (50). Though the expression, Eq. (51),

l

Here E""' is the experimental total energy, E " the
fu11y relativistic DHF total energy, and 5E"' b the
Lamb correction to the total energy. The value of x has
been presently determined for atoms Be, B, Mg, Si, P,
and Ar. Figure 2 shows a plot of the correlation energy
calculated by the present method versus x for these
atoms. The optimum value of x for which the calculated
value of correlation energy is equal to the exact correla-
tion energy of Eq. (52), is seen to be 0.85 for Be, but
quickly attains a value close to 0.75 for heavier atoms.
E",„,"„values for atoms with Z ) 18 do not seem to be
available in the literature. In view of the above trend we
have chosen to use a universal value of 0.75 for all atoms.

IV. FULLY CORRELATED RELATIVISTIC (RC:")
METHOD

In Sec. II we developed a method to incorporate all
major relativistic corrections in the = method and in Sec.
III we derived the Coulomb correlation potential to treat
the Coulomb hole. The fully correlated relativistic
method is obtained by combining these two methods.
The final one-electron SCF equation of the present spin-
polarized method can be given as

d + l(1+1)
y"

2

+u (r)+u ( (r)+ v,.'& (r)+ v &'""(r) — [E„I —v (r)]~

a2 CX

4 4
1+ [e„,, —u (r)] du (r) dP„0 (r)/dr

dr P„I.(r)

A

4
1+ [E„I —u (r)] du(r) 1

P«, (r)=E«P„I (r), (53)

where, u'& '"(r), the correlation potential, is given in Eq.
(51) and u (r), the central-field potential for the ith orbit-
al, is

u(r)= 2Z/r+v (r)+v
&

(—r)+[ '(ru)](+ t'"u(r) .

(54)

The set of fully correlated and relativistic one-electron
equations, Eq. (53), can be solved numerically for atoms
and ions using a modified Hermann-Skillman computer
program which performs spin-polarized calculations. '

Computationally, the present method is simple and rapid.
All the results reported here were computed on a tabletop
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PC AT 386 system, on which a heavy-atom such as
uranium, for instance, takes about 40 min for a complete
SCF calculation.

The orbitals Iu; I obtained by this method are not all
orthogonal since the orthogonality constraints on the
spin orbitals have not been included in the variational
minimization procedure in order to keep the formalism
simple. This defect of nonorthogonality of the orbitals is
known to be small for total energy and orbital energies.
However, since we are concerned with quantities of a
much smaller magnitude, like correlation energy, it is
considered necessary to orthogonalize the orbitals. This
is done using Lowdin's orthogonalization procedure at
each iteration of the SCF cycle.

V. RESULTS AND DISCUSSIONS

lated using the present method, and column 4, which
gives the total energy without the correlation energy, is
obtained by subtracting correlation energy (column 2)
from total energy (column 3) for the particular atom.
The absolute percentage of deviation of the average total
energy by the present method (without correlation) from
the average total energy of the DHF method is given in
column 5. It is seen that the deviation for light and medi-
um atoms is small and the deviation increases for heavy
atoms. This may be due to the neglect of the finite-
nuclear-size correction which is important for heavy
atoms and the neglect of the small-component wave func-
tion.

The relativistic correction EERC- to the total energy
for various atoms is calculated by using Eq. (55):

AERC:- =ERC:"—E'-" —ERC:- (55)
A. Total energy

The average total energy for light, medium, and heavy
atoms calculated by the present RC:- method is given in
Table I, along with DHF results. Eac'= (column 2)
represents the correlation energy calculated using Eq.
(21), ERc- (column 3) represents the total energy calcu-

where ERc- and ERc'- are defined earlier, and E'-"
represents the total energy by the = method. ' The rela-
tivistic correction by the DHF method is calculated as
the difference between the average DHF total energy and
the nonrelativistic HF average total energy ' for the
particular atom. The percentage of relativistic correction

TABLE I. Total energy (Ry).

Atom ERC:-
—ERC:-

Deviation of
column 4 from

DHF (%) tot d
EDHF

4Be
qO

lpNe

12Mg

14»
18Ar

22TI
q6Fe

3pZn

&6Kr

4qMo

4gCd

5pSn

54Xe
qpNd

64Gd

7pYb
74W

78Pt

8pHg

82Pb

86Rn
88Ra
92U

0.1284
0.4269
0.6686
0.8391
1.0294
1.4862
1.9164
2.4693
3.0787
3.8582
4.6202
5.5171
5.7731
6.3152
7.1674
7.8013
8.8462
9.4443

10.0655
10.3929
10.6674
11.2276
11.4638
12.0541

29.288
150.035
258.010
400.668
579.881

1058.808
1707.444
2544.929
3592.031
5581.349
8098.618

11 192.369
12 358.389
14 900.619
19 258.763
22 558.926
28 149.843
32 328.899
36 890.464
39 320.583
41 855.211
47 239.431
50 097.361
56 161.593

29.161
149.607
257.342
399.829
578.852

1057.321
1705.527
2542.459
3588.953
5577.491
8093.998

11 186.851
12 352.616
14 894.204
19251.596
22 551.125
28 140.996
32 319.455
36 880.398
39 310.189
41 844.543
47 228.203
50 085.897
56 149.539

0.031
0.029
0.016
0.010
0.012
0.004
0.007
0.013
0.008
0.004
0.004
0.002
0.003
0.003
0.007
0.012
0.019
0.022
0.029
0.032
0.041
0.041
0.059
0.079

29.152
149.650
257.383
399.869
578.924

1057.367
1705.639
2542.786
3589.236
5577.716
8094.287

11 186.652
12 353.274
14 893.801
19 250.273
22 548.394
28 135.439
32 312.259
36 869.734
39 297.706
41 827.389
47 203.956
50 056.074
56 105.041

'Correlation energy by the present method.
Total energy by the present method as the sum of correlation energy and the total energy of RC:- wave

function with HF Hamiltonian.
'Total energy without correlation (dift'erence between columns 3 and 2) by the present method.
Dirac-Hartree-Fock values taken from Ref. 7.
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FIG. 3. Percentage of relativistic correction to total energy by RC:" (present) and DHF methods.

to the total energy by the present RC:- and the DHF
methods is given in Fig. 3. It is evident from Fig. 3 that
the relativistic effects are well described by the present
method. However, the present method overestimates it
by about 0.03% for heavy atoms. This may again be due
to the neglect of the small-component wave function and
the finite-nuclear-size correction.

B. Correlation energy

As mentioned in Sec. II, the present RC:- method in-
corporates the Coulomb correlation explicitly. In order
to judge how well this method describes correlation, the
most direct method is to calculate the correlation energy
and compare it with the "exact" correlation energy,

1. 5

C0
0

0.5
C

L
LLI

o(

2
Atamic Number Z

I

14 18

FIG. 4. Error in the correlation energy (Ry) for atoms He to Ar by RC:- (this work), VWN (Voska, Wilkand, and Nusair, Refs. 30
and 38), and GCP (gradient correction due to Perdew, Refs. 37 and 38) metnods.
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TABLE II. Coulomb correlation energy (Ry) using the method presented in this paper.

Atom

2He

3Li

4Be

eC

9F

,„Ne

))Na

)2Mg

, 3Al

,4Si

]sP

„Cl

]9K
2pCa

2)Sc
22T1

V
24Cr

2sMn

2eFe
27CO

2,Ni

29CU

3pZn

3)Ga

„As
34Se

3sBr
,eKr

37Rb
3~Sr

39Y
4pZr

1s+

[He]2s ~

[He)2s ~

[He]2s'+ 2p '

[He]2s+ 2p

[He]2s ~ 2p ' 2p ~

[He]2s ~ 2p ' 2p ~

[He)2s ~ 2p' 2p ~

[He]2s'+2p' 2p i

[Ne]3s ~

[Ne]3s +

[Ne]3s'~ 3p
'

[Ne]3s+ 3p'

[Ne]3s+ 3p' 3p ~

[Ne]3s'+ 3p 3p ~

[Ne]3s'+ 3p' 3p'~

fNe] 3s 3p 3p

[Ar]4s '„

[Ar]4s 2+

[Ar]3d' 4s+
[Ar]3d' 4s'+
[Ar]3d' 4s ~
[Ar]3d 3d ~4s ~
[Ar) 3d 3d + 4s +
[Ar]3d 3d ~~ 4s ~
[Ar]3d 3d 4s+
[Ar]3d 3d4~ 4s ~
[Ar]3d 3d + 4s '+

[Ar]3d 3d ~ 4s ~
[Ar]3d 3d + 4s+
[Ar]3d' 3d6~4s ~
[Ar] 3d 3d + 4s +
[Ar]3d 3d+4s+
[Ar]3d 3d "+ 4s +
[Ar]3d 3d 4s+

4p 1

4p 2

4p 4p +
4p'-4p+
4p2 4p 3

4p 4p +

[Kr]5s ~
[Kr]5s ~~

[Kr]4d' Ss2~

[Kr]4d 5s +

Relativistic electronic
configuration'

0.0443
0.0840
0.0703
0.0892
0.1284
0.1860
0.1843
0.2444
0.2644
0.3182
0.3455
0.4072
0.4269
0.5090
0.5492
0.6192
0.6686
0.7468
0.7389
0.7522
0.8391
0.8324
0.9264
0.8910
1.0294
0.9676
1.1314
1.0428
1.2331
1.1624
1.3606
1.2924
1.4862
1.4156
1.5687
1.6745
1.7787
1.9164
2.0720
2.1793
2.3346
2.4693
2.6082
2.7667
2.9420
3.0781
3 ~ 1958
3.3253
3.4510
3.5751
3.7180
3.8582
3.8400'
4.0200"
3.9553
4.0730
4.1979
4.3251

Atom

4, Nb
42Mo

43T
44RU

4,Rh
4ePd

47Ag

4,Cd
49In

spSn

„Sb
s2Te
„I
s4Xe

ssCs
„Ba
s7La
sqCe

s~Pr
epNd

e, Pm
e2Sm

e3EU

e4Gd

esTb

e7Ho

e,Er
e~Trn

7pYb
7) LU

„Hf
73Ta
74W

,sRe
7e&s
77Ir
7gPt

79AU

8pHg
„Tl
,2Pb
83Bi

q4Po

f) sAt
~eRn
87Fr

„,)Ra
q9Ac

9pTh
9]Pa
~2U

,3Np
94Pu

9,Am
9eCm

[Kr]4d' Ss ~
[Kr]4d 5s +
[Kr]4d' 4d'
[Kr]4d' 4d ~
[Kr]4d' 4d ~
[Kr]4d' 4d'
[Kr]4d 4d 6+

[Kr]4d' 4d ~
[Kr]4d' 4d ~
[Kr]4d 4d +
[Kr]4d' 4d"
[Kr]4d' 4d "~

[Kr]4d 4d ~
[Kr]4d' 4d6~

Ss',
Ss',
Ss+

Ss'
5s ]

Ss+ 5p
Ss+. 5p
Ss'.+ 5p' 5p'+
Ss+ Sp 5p+
5s+ 5p2 Sp ~
Ss'-+ 5p Sp +

[Xe]6s '

[Xe]6s ',
[Xe]Sd' 6s'+

[Xe]4f-' 6s'
[Xe]4f' 6s ~
[Xe]4f' 6s ~

[Xe]4f' 6s'
[Xe]4f" 6s~
[Xe]4f"-4f '+ 6s'+
[Xe]4f' 4f'~6s ~
[Xe]4f" 4f ~ 6s ~
[Xe]4f' 4f ~6s'
[Xe]4f' 4f ~ 6s'
[Xe]4f" 4f ~ 6s',
[Xe]4f' 4f ~6s',
[Xe]4f' 4f"~ 6s ~
[Xe]4f" 4f g 5d '

[Xe)4f" 4f i 5d'
[Xe]4f' 4f ~Sd'
[Xe]4f' 4f gSd'
[Xe]4f' 4f gSd'
[Xe]4f' 4f"i 5d'
[Xe]4f' 4f ~5d'
[Xe]4f' 4f g 5d'
[Xe]4f' 4f g 5d"
[Xe]4f" 4f' 5d
[Xe]4f" 4f ~ Sd
[Xe]4f' 4f ' Sd
[Xe]4f" 4f ' 5d'
[Xe]4f" 4f'+ 5d
[Xe]4f' 4f" 5d'
[Xe)4f 4f + Sd
[Rn]7s ~
[Rn) 7s '
[Rn]6d' 7s',
[Rn]6d': 7s ~
[Rn]5f 6d' 7s+
[Rn]5f' 6d' 7s'+

[Rn]5f 6d' 7s ~
[Rn]Sf' 7s~
[Rn]5f ' 5f~ 7s '-

[Rn]5f 5f ~ 6d'

6s+
6s~

2

6s+
Sd + 6s'„
Sd+ 6s+
Sd'.,
Sd' 6s+
5d 6'
Sd+ 6s,
5d+ 6s+ 6p'
Sd+ 6s+ 6p
Sd+ 6s+ 6p 6p '+

Sd+ 6s+ 6p 6p+
Sd+6s+6p 6p „
5d+ 6s+ 6p 6p+

7s+

Relativistic electronic
configuration'

4.4823
4.6202
4.7587
4.8974
5.0597
5.2485
5.3771
5.5171
5.6396
5.7731
5.9022
6.0297
6.1738
6.3152
6.1400'
6.6200"
6.4171
6.5375
6.6651
6.8458
7.0145
7.1674
7.3332
7.4984
7.6629
7 ~ 8015
7.9904
8 ~ 1535
8.3280
8 ~ 5016
8.6743
8.8462
8.9891
9.1323
9.2894
9.4443
9.5969
9.7484
9.9385

10.0655
10.2439
10.3928
10.5257
10.6674
10.8012
10.9335
11.0821
11.2275
11.3378
11.4638
11.5939
11.6284
11.8993
12.0540
12.2228
12.4148
12.5797
12.7230
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TABLE II. (Continued. )

Atom

97Bk
9sCf
99Es

)ppFm

ip[Md

Relativistic electronic
configuration'

[Rn]5f 5f+ 7s +
[Rn]5f Sf 7s'
[Rn]5f 5f + 7s +
[Rn]5f' 5f + 7s +
[Rn]5f 5f '+ 7s 2+

12.9092
13.0737
13.2497
13.2801
13.3041

Atom

&p2No

]p3LW
104
105
106

Relativistic electronic
configuration'

[Rn]5f 5f + 7s+
[Rn]5f 5f+6d' 7s ~
[Rn]5f' 5f ~ 6d' 7s ~
[Rn]5f 5f+6d' 7s+
[Rn]5f 5f'+ 6d 7s~+

13.4778
13.6101
13.8743
14.0305
14.2008

'The symbol + means j = I +
2

and the symbol —means j = I —2.
The exact correlation energy using Eq. (52) of text is given below the present value wherever available.

'Values by the gradient correction method of Langreth (GCL), quoted in Ref. 37.
Values by the gradient correction method of Perdew (GCP) taken from Ref. 37.

which is calculated using Eq. (52), and with the values
calculated by other methods. Presently, correlation ener-
gy is calculated by using Eq. (21). The deviation of
correlation energy by the present RC:" method from the
exact correlation energy for first- and second-row atoms
is given in Fig. 4. The error in correlation energy by the
Voska, Wilk, and Nusair (VWN) method and by the
method of gradient correction due to Perdew ' (GCP)
is also given in Fig. 4. It is seen that the correlation ener-

gy calculated by Voska, Wilk, and Nusair is nearly about
two times higher than the exact energy. The present
method gives comparable correlation energies for first-
row elements (with an average of 80% recovery), with the
deviation being about 0.1 Ry. For the second-row ele-
ments, the RC:- method gives better values with an aver-
age of 90% recovery of correlation energy. It is evident

from the Fig. 4 that the present RC:" method gives a
reasonable correlation energy for atoms. Since correla-
tion energy is not generally available in the literature for
atoms with Z ) 18, we have calculated it for the first time
for all the atoms in the Periodic Table. These values are
given in Table II along with the relativistic electron
configuration. The available exact correlation energies
are also given in Table II. The variation of correlation
energy with atomic number is displayed in Fig. 5, which
shows a near linear relationship for the entire range of
the Periodic Table.

C. Spin-orbit parameter

In Table III, spin-orbit parameter values for various
orbitals of the uranium atom calculated using the present

]2

C0
0
4II
0
O

0
0 20 40 60

Atomic Number Z

80 ]00

FIG. 5. Variation of correlation energy (Ry) vs atomic number (2~ Z ~ 100) by the present RC:- method. Available values for
atoms Kr and Xe by GCL (gradient correction due to Langreth, Ref. 37) and GCP (gradient correction due to Perdew, Ref. 37) are
also indicated.
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TABLE III. Spin-orbit parameter (Ry) for uranium.

Orbital R:-' HFRb DHF' RC:- Expt. '

2p
3p
3d
4p
4d
4f
Sp
5d
Sf
6p
6d

192.670
43.989

5.364
11.355
1.253
0.227
2.687
0.239
0.017
0.431
0.014

199.100
46.200

5.330
11.980
1.264
0.221
2.701
0.230
0.017
0.427
0.014

187.800
43.72

5.290
11.540
1.288
0.250
2.763
0.334

0.539

187.708
43.178

5.261
11.299
1.247
0.234
2.726
0.246

0.477

185.300
43.000

5.170
11.200
1.230
0.230
3.200
0.260
0.016
0.490
0.019

'Tabulated values taken from Ref. 4.
Taken from Ref. 17.

'Dirac-Hartree-Fock values calculated using Eq. (56) of text.
Present work calculated using Eq. (56) of text.

'Experimental values quoted in Ref. 17.

RC:" method are compared with values obtained by the
DHF method, R:" method, and relativistic Hartree-
Fock (HFR) method, ' and with experimental results. '

The spin-orbit parameter in the earlier R:- method was
calculated by perturbation as the R:" method did not dis-

(56)

tinguish the spin-orbit levels with IAO. The spin-orbit
parameter values of the present method and the DHF
method are calculated using the equation

2
knl (2( + l )

enlj + enlj—

TABLE IV. Expectation values of r" (n = —1, 1, and 2) for uranium. RC:- denotes values from the
present work and DHF, the Dirac-Hartree-Fock values from Ref. 7.

Orbital'

1$+
2$+
2p
2p+
3$+
3p
3p+
3d
3d+
4$+
4p
4p+
4d
4d+
4f
4f+
5s+
Sp

5p+
5d
5d+
5f
6s+
6p
6p+
6d
7$+

RC:-

122.6458
28.9472
28.8703
22.8740
10.6670
10.5765
8.9604
8.8793
8.5320
4.6533
4.5477
3.9506
3.7787
3.6481
3.3903
3.3408
2.0997
1.9905
1.7515
1.5304
1.4778
0.9324
0.8952
0.7905
0.6810
0.4181
0.3164

DHF

122.4204
30.9612
30.8789
22.7759
11.2786
11.1748
9.0417
8.9245
8.4928
4.8202
4.7091
4.0003
3.8136
3.6629
3.3829
3.3265
2.1106
2.0009
1.7451
1.5223
1.4655
0.9359
0.8848
0.7898
0.6779
0.4104
0.2879

RC:-

0.0136
0.0572
0.0466
0.0558
0.1477
0.1389
0.1567
0.1351
0.1398
0.3203
0.3190
0.3550
0.3517
0.3622
0.3504
0.3553
0.6672
0.6953
0.7739
0.8757
0.8957
1.4344
1.4746
1.6554
1.8976
3.0989
4.0004

DHF

0.0137
0.0565
0.0485
0.0560
0.1471
0.1383
0.1565
0.1352
0.1406
0.3198
0.3184
0.3534
0.3506
0.3613
0.3514
0.3567
0.6719
0.6996
0.7747
0.8701
0.8979
1.4227
1.4969
1.6636
1.8976
3.1519
4.4314

RC:"

0.0003
0.0039
0.0027
0.0038
0.0249
0.0225
0.0285
0.0214
0.0228
0.1157
0.1158
0.1429
0.1424
0.1508
0.1435
0.1475
0.4975
0.5428
0.6717
0.8508
0.9108
2.5301
2.4297
3.0824
4.0615

11.3649
18.1521

DHF

0.0003
0.0039
0.0027
0.0038
0.0249
0.0224
0.0285
0.0215
0.0231
0.1156
0.1155
0.1419
0.1416
0.1502
0.1445
0.1487
0.5043
0.5492
0.6729
0.8597
0.9152
2.4954
2.5045
3.1137
4.0615

11.8269
21.4077

'Note that + means j= I +
2

and —means j = I —
—,'.
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FICx. 6. Deviation of the spin-orbit parameter values from the experimental values by the RC:- (this work) and DHF methods [cal-
culated using Eq. (56) of text], vs atomic number for (a) 2p orbitals, (b) 3p orbitals, and (c) 3d orbitals.
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FIG. 6. (Continued).

where the c, 's are the central-field eigenvalues in the
respective methods. All the values for various orbitals
calculated by the present method are better than that
given by the R:" method and HFR method, and are com-
parable to DHF results and experimental values (see
Table III). This shows that spin-orbit interaction is treat-
ed well in the present method. The deviation of the spin-
orbit parameter for orbitals 2p, 3p, and 3d in various
atoms by the present method and the DHF method, from
the experimental value, are given in Figs. 4(a) —4(c), re-
spectively. For 2p and 3d orbitals, the deviation by the
present method is almost the same as that by the DHF
method. For the 3p orbital, the values by the present
method are closer to experimental results. It is evident
from the Table III and the figures, that the spin-orbit in-
teraction is well described by the present RC:- method.

D. Expectation values of r" (n = —1, 1,2)

The expectation values of r ', r, and r for various or-
bitals of the uranium atom calculated by the present
method are given in Table IV. The DHF results are also
given for comparison. The expectation values by the
present method are seen to be in good agreement with the
DHF values.

E. Ionization energy

Using the ASCF procedure, the ionization energies for
the orbitals of some atoms, namely, Ar, Xe, and Hg are
computed by the present method and are given in Table
V. AE &'F'Hs represents the Breit interaction energy
correction to the ionization energy and is calculated as
the difference between the total Breit interaction energy

of the atom and ion using the DHFS method. The
Breit energy values of Huang et al. are assumed for the
present method. The contribution of the correlation en-
ergy to ionization energy, DER'c'-, given in column 1 of
Table V is calculated as the difference between the corre-
lation energy of the atom and its ion. The ionization en-
ergies by the present method are in good agreement with
the experimental ' as well as with the DHFS (b,SCF)
results. The close parallelism between the RC:- method
(single-component) and the DHFS (two-component) re-
sults indicates that a single-component wave function is
of sufhcient accuracy for calculating the ionization ener-
gy of atoms. It is seen that the contribution of correla-
tion energy to the ionization energy is comparatively
more than the Breit-interaction energy correction for the
valence shell (n shell) and the n —I shell. For the core
orbital ionization energy, the contribution of the correla-
tion energy is comparatively smaller than the Breit-
interaction correction and is almost a constant for atoms
given in Table V. To study the importance of correlation
energy for the valence orbital ionization energy (VOIE),
we have given the VOIE's for the first- and second-row
elements in Table VI. The values in column 2 are com-
puted by the = (b,SCF) method' (without correlation).
The values by the present RC:" (hSCF) method, which
includes Coulomb correlation are closer to the experi-
mental results than that calculated by the " and DHFS
methods, which do not include such a correlation. This
shows the importance of correlation to the VOIE's. This
is true for the heavy atoms also. In Fig. 7, the deviation
of the VOIE's by the present and DHFS methods from
the experimental results is shown. For the present
method, the deviation is comparatively smaller than that
for the DHFS method (see Fig. 7). We conclude that
correlation is important for valence orbital ionization and
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is less important for core orbital ionization.
It is known that the negative of the Hartree-Fock ei-

genvalues agrees well with the experimental ionization
energies for the valence-shell ionizations within the
Koopmans approximation. This has been attributed to

an error compensation between orbital relaxation and
correlation effects, which were supposed to be of similar
magnitude but opposite in sign. Even though the Koop-
mans approximation is strictly not valid for local-density
methods, we can study the relative importance of the

TABLE V. Orbital ionization energies (Ry) for Ar, Xe, and Hg.

Atom

Ar

Xe

Hg

Orbital'

1s+
2$+
2p
2p+
3$+
3p
3p+

1s+
2$+
2p
2p +.

3$+
3p
3p+
3d
3d+
4s+
4p
4p
4d
4d+
5s+
5p
Sp+

1s+
2$+
2p
2p+
3$+
3p
3p+
3d
3d+
4s+
4p
4p+
4d
4d+
4f
4f+
5s+
5p
5p+
5d
5d+
6s+

gEcorr b
RC:"

0.1039
0.0905
0.0912
0.0912
0.0747
0.0714
0.0713

0.0952
0.0897
0.0841
0.0835
0.0815
0.0820
0.0814
0.0820
0.0820
0.0743
0.0737
0.0732
0.0718
0.0712
0.0681
0.0644
0.0640

0.0909
0.0880
0.0882
0.0880
0.0874
0.0875
0.0873
0.0873
0.0873
0.0869
0.0868
0.0864
0.0861
0.0859
0.0842
0.0841
0.0788
0.0779
0.0768
0.0718
0.0710
0.0547

~EDH'FS '

0.2460
0.0136
0.0140
0.0079

9.1272
0.9536
0.9776
0.6618
0.0674
0.1466
0.0888
0.0468
0.0126
0.0078
0.0226
0.0110

0.0016

33.6666
4.2088
4.3540
2.6566
0.3554
0.7759
0.4708
0.3492
0.2276
0.0653
0.1619
0.0853
0.0456
0.0195

—0.0102
—0.0208

0.0082
0.0239
0.0099
0.0011

—0.0014
0.0006

IASCF d
RC:-

235.6605
24.0718
18.4530
18.2828
2.4755
1.7443
1.1587

2540.2940
401.3314
375.9375
352.1791

84.9411
73.9544
69.5656
50.8742
49.9183
16.6295
12.6681
11.7872
5.1812
5.0121
1.8751
1.0023
0.8730

6112.7229
1092.9593
1047.7023
904.1520
264.4569
242.4969
210.4565
178.2593
169.2885
60.2885
52.9224
44.6043
30.0364
28.4087

8.3412
7.9514
9.7887
6.6412
5.5234
1.2003
1.0597
0.7375

lbSCF e
DHFS

235.5898
24.0080
18.3700
18.2120
2.4400
1.0860
1.0720

2540.2800
401.2000
375.3400
351 ~ 8000
84.7000
73.8800
69.3200
50.6200
49.7000
16.1660
12.4140
11.5040
5.0180
4.8740
1.9500
0.9260
0.8280

6107.7600
1092.0000
1044.7000
903.2800
263.4000
241.9400
210.2200
175.8800
169.2200
60.1000
50.9600
43.2400
28.5200
27.0800

7.9840
7.6860
9.8200
6.7200
5.3700
1.1042
0.9752
0.6316

lexpt. e

235.6420
23.9840
18.4160
18.2620
2.1540
1.1710
1.1580

2540.3200
400.8200
375.4000
351.8800

84.4400
73.6600
69.1400
50.6400
49.7200
15.6700

10.6940

5.1080
4.9620
1.7120
0.9840
0.8920

6108.3800
1091.0200
1044.68(N3

903.2(Xe
262. 1200
241.3000
209.6000
175.6200
169.00(M
59.16(M
50.0800
42.30()0
28.1400
26.7800

7.8600
7.5800
9.1800
6.2400
4.5600
1.2280
1.0900
0.7680

'Note that the symbol + means j =1+
~

and the symbol —means j = I —
—,'.

Contribution of correlation energy to the ionization energy.
'Correction of Breit interaction energy to the ionization energy taken from Ref. 54.
Present work (with Breit-interaction correction).

'Taken from Ref. 54.
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TABLE VI. Valelence orbital ionization energy (Ry) ~

~ ~ ~

Atom

Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

IASCF a

0.3928
0.5894
0.5778
0.7172
0.8705
1.0686
1.2552
1.4436
0.3616
0.4855
0.4128
0.5214
0.6453
0.7803
0.7272
1.0798

IASCF b
RC:"

0.4011
0.6737
0.6217
0.7641
0.9288
1.0947
1.3322
1.5188
0.3841
0.5601
0.4468
0.5757
0.6994
0.8301
1.0057
1.1587

IASCF c
DHFS

0.3916
0.5869
0.5857
0.6968
0.9274
1.0812
1.2434
1.4262
0.3569
0.4828
0.4051
0.4987
0.6642
0.7794
0.9296
1.0721

Expt. d

0.3962
0.6851
0.6098
0.8279
1.0687
1.0011
1.2809
1.5847
0.3777
0.5619
0.4398
0.5991
0.8085
0.7613
0.9563
1.1581

'C 1 1 tdCalculated using the b SCF procedure b th
(without correlation; see Ref. 1).

y e " method

Present work (with correlation).
'Taken from Ref. 54.
dE e

xperimental values taken from Ref. 55.

three effects nam
istic

arne y, re1axation, correlation d 1am, , an re ativ-
ic effects on the ionization energy of valence and core

shells in the RC:- formalism.
The conontributions of relativistic effects AI"' of

Coulomb correlation AI"" and f b"to the
an o orbital relaxations' to the ionization of Ne and Kr atoms are calculat-

ed using Eqs. (57)—(59), respectively:

1 IhSCF IASCF gI corr (57)

(58)

(59)

b.IR'c= =ER'c'-(X+ ) —Eac'-(X),

where IAscF and Ib,scF

b the RC:-
Rc:-:- are ionization energy calcul t dae

ey Rc:- ) andC:- and = methods, respectivel ' E""-X
e a om and itsare correlation energies of the at d

'

ion calculated by present method; and e (HF —i

envaluegenva ue of the ith orbital calculated usin the "
function in

e using t e " wave
or e or italn t e Hartree-Fock expression' f th

eigenvalue. It is assumed that the AI'"'-" ie Rc- is the same for
the RC:- and:" methods. In Fi . 8 the th
ions to the ionization potential, given b E s. (57—

It is seen that the re'ativistic effect is dominant for th
core shell i'onization compared to correlation and 1

or e

tion effects for
ion an re axa-

e ec s or Kr, but it is less important for the lighter
atom, Ne. Relaxation energy is greater than correlation

the
energy for core shell ionization of N d K

ey do not cancel each other for core shell
'

is evident from the Fig. 8 that tha ere is no exact cancella-
tion between relaxation and corr 1 te a ion energies, even for
valence shell ionization of Ne and K I '

1n r. t is also interest-

the o
ing to note that the relativistic eff te ec is as important as

K
e ot er effects, even for valence h 11

'

r atom.
s e ionization of the

A)
~ Prese nt

1.2
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—0.4 I
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I
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I

60 80

FIG. 7. Deviation of the val
~ ~ ~ 0

valence orbital ionization ener ies (R
(Ref. 54) methods vs atom' bic num er.

gies y) from experimental results by th RC= h'ies
'

e = t is work) and DHFS
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8

~ Ne

0 Kr

~
MC) p Ia ~

O

LQ

lZ

O

4

-]2
1S

I

2s 2p
l I

35 3p
C&R BRUTAL S

l

3d
I

4s
l

4p

FIG. 8. Comparison of percentage of relativistic, correlation, and relaxation effects on ionization energy. ( ) denotes the per-
centage of relativistic effect, —- ——.represents the percentage of correlation effect, and . - denotes the percentage of relaxation
effect on ionization energy. Results for Ne and Kr are shown.

F. Electron affinity

The electron affinity of an atom is the difference be-
tween the total energies of the ground states of the atom
and its negative ion. The quantity is positive for a stable
negative ion and is zero or negative for unstable ions.
Since the electron affinity is of the order of a few eV it is
necessary to know the total energies of the atom and its
negative ion accurately. Therefore it is essential to in-
clude correlation explicitly in calculating total energies.
The electron affinity of various atoms has been calculated
by many theories such as configuration interaction,
solving two- and three-partic1e Bethe-Goldstone equa-
tions, electron-pair theories, and local-density
methods

Presently, the electron affinity of various atoms has
been calculated using the RC:- method and the
method' (without correlation). Electron affinities thus
obtained with correlation and without correlation are
shown in Table VII and compared with the experimental
values. ' The percentage change due to correlation is
given in parentheses. The negative ions of Li, 8, C, and
Na are predicted to be unstable by the = method, but the
RC:- method correctly predicts them to be stable. We
thus find that correlation is very important for predicting
the stability of the negative ions. Further, electron
affinity values are dramatically improved to the order of
several hundred percent by the inclusion of the Coulomb
correlation.

VI. CONCLUSIONS

In this paper, we have developed a fully correlated rel-
ativistic local-density method, called the RC:- method,
for atoms. All the major relativistic corrections and the
two types of correlations, namely, the Fermi and
Coulomb correlations, are explicitly incorporated in the
formalism. The method is exactly self-interaction
corrected. The Coulomb correlation is treated separately

Atom

Li
B
C
0
F
Na
Si
S
Cl
Br
I

—0.126
—0.837
—0.705

0.645
1.299

—0.082
0.214
1.683
2.809
0.133
3.401

RC:-

0.451
0.361
0.781
1.584
2.438
0.331
0.819
2.709
3.291
2.987
3.781

Change due to
correlation (%)

458
143
211
145
287
506
282

60
17

2154
11

Expt.

0.621
0.281
1.251
1.461
3.416
0.546
1.404
2.081
3.651
3.364
3.061

TABLE VII. Electron aKnity (eV), calculated using the =
method (:-, Ref. 1) and present method (RC:"); the percentage
change due to correlation and experimental values from Ref. 61
are also given.
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and the form of the Coulomb-hole potential is derived
from the cusp condition on the wave function, which is
important for the proper description of short-range
correlation. The present method has only a single univer-
sal parameter for all atoms, which represents the ratio of
the Coulomb- and Fermi-hole radii. Computationally,
the method is extremely simple and fast, and it has been
implemented on a desktop PC.

The correlation energies calculated by the present
method are in good agreement with available exact
values. We have presented the correlation energy for all

the atoms in the Periodic Table. The results for quanti-
ties such as total energy, expectation values of r"
(n =1,—1,2), and spin-orbit parameters are shown to be
of near DHF accuracy. The effect of relativistic correc-
tions and correlation on atomic properties such as ioniza-
tion energy and electron affinity is discussed. The single-
component RC:" wave functions are shown to be accu-
rate enough for ionization energy calculations. Coulomb
correlation is of extreme importance in predicting the
stability of negative ions and in obtaining reliable values
of electron affinity.
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