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Laser eKects in photoionization: Numerical solution for a one-dimensional 5 potential
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The time-dependent Schrodinger equation was solved numerically, in one spatial dimension, for
an electron bound initially (t (0) by a 6 potential, and acted upon by a single-frequency classical
electromagnetic field, turned on abruptly at t =0. The dipole approximation was invoked for the
laser field, and magnetic interactions were ignored. Characteristic photoionization times were
determined for a wide range of scaled laser intensities and scaled laser frequencies. The conditions
under which well-defined quiver motion of the ionizing electron appears were clarified, and a spec-
trum of radiation emitted during the ionization process was determined. Above-threshold-
ionization spectra of ionized electrons were also computed.

INTRODUCTION

The time-dependent Schrodinger equation was solved
numerically, in one spatial dimension, for an electron
bound initially (t )0) by a 5 potential, and acted upon by
a single-frequency classical electromagnetic field, turned
on abruptly at t =0. The dipole approximation was in-
voked for the laser field, and magnetic interactions were
ignored.

Values were obtained for the time-dependent photoion-
ization probability P;,„(t) and characteristic photoioniza-
tion time rp, over a wide range of laser intensities (Io )0)
and frequencies (coo) 0), and for a wide range of electron
binding energies (Eii )0). An exact scaling relationship
was applied which reduced these three parameters (Io,
coo, Eii) to just two (Io and ~0), where Io:Iol(SEB) a—nd
coo:cool(2Es) —Time and space variables were thereby
also scaled; e.g. 7 pi=(2Eii )~p[.

The conditions under which well-defined quiver motion
of the ionizing electron occurs were clarified, and the
spectral density of energy radiated during ionization was
computed. An above-threshold-ionization (ATI) spec-
trum of kinetic energies was also determined for the emit-
ted electrons, and ponderomotive shifts were observed.

Comparison of these explicit and computer intensive
calculations for ~p„with predictions made by three ap-
proximate and computationally very rapid methods, sug-
gested that if (1) Io &coo, and Io & 1, then the Reiss ap-
proximation' was adequate [that is, the analog of the
Reiss approximation, specific to the one-dimensional 6
potential; see Eq. (45)]; (2) Io ) 1, then a semiclassical
wave-packet description was successful; (3) ~o &Io &1,
then a field-ionization formula could be applied with
some success, particularly when coo ((Io, see Fig. 1.

The computational method, to be described, is
straightforward and generalizable to more complicated
systems. Elements of the method have been employed
previously by several groups for related purposes; see
especially the work reported in Ref. 2. Somewhat
different approaches to the problem of photoionization
by intense lasers have also been described recently.

The modeling, by use of the plasma-kinetics codes such
as ZAP (Ref. 9) used at Los Alamos National Laboratory

(LANL), of the interaction of atomic gases with short-
pulse, high-intensity lasers, requires detailed knowledge
of photoionization rates for a wide range of laser intensi-
ties and frequencies, and electron binding energies. In a
typical pulse of the LANL Bright Source KrF laser, ' '"
intensities in excess of 10' W/cm are reached, for times
of the order of 1 psec, at a wavelength of -250 nm. Un-
der such conditions, target gas atoms are stripped to high
stages of ionization, presumably via sequential' (outer
shells first) direct multiphoton absorption.

Impact ionization of an inner-shell electron via col-
lision with a rapidly quivering outer-shell electron is pos-
sible, in principle, at very high laser intensities. ' Also,
direct inner-shell multiphoton photoionization might
occur. For the high-intensity KrF laser, however, these
processes have not been observed. "

Presently, a generally accurate predictor of high-
intensity laser-induced photoionization rates is unavail-
able. The sometimes applied Reiss' formula (or its ana-
log) has been shown to be reliable only over a limited re-
gion of parameter (Io, coo, Eii ) space. ''

The goal of the present study was to obtain rough esti-
mates of the characteristic time for direct photoioniza-
tion of a bound electron ~p& as a function of Io, coo, and

E&, for as large a range of Io, coo, and Ez as possible. In
a plasma-kinetics code, ~p, affects the population of a
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FIG. 1. coo vs A o. Regions of parameter space: numbers 1 —3
correspond to cases in the Results section, also see the Discus-
sion section.
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given atomic or ionic bound-electronic level according to

dNt/(t)/dt = —(1/rp, )Nt/+

where N//(t) is the population, at time t, of the bound lev-
el labeled by B, and terms involving depletion (or repopu-
lation) mechanisms other than direct photoionization are
denoted by the ellipsis. The cumulative photoionization
probability P;,„(t) is related to the instantaneous level
population N//(t) via

1 —Z5(x) —s P(x) =0,
dx

(6)

with bound solution

Recall that the vector potential can only be defined up to
an arbitrary constant. We chose this constant to be equal
to zero; i.e., A (0)=0.

~ith this choice of initial value for A ( t), the
Schrodinger equation for t (0 may be written as

N//(t) =N//(0)[1 P;,„—( t) ]=N//(0)Pt/(t),
P//(x) = C&exp( —Z~x ), (7)

where P//(t)=1 P,,„—(t) is the probability of remaining
in the bound level labeled by B.

It may be that the roll-off' of Ps(t) is not very well de-
scribed by just a single exponential factor, or by any finite
combination of exponential factors. For example, when
Ip )) 1 it can happen that Pt/(t) —1/t, so that Eq. (1) will
hold only in a rough qualitative sense. This point will be
discussed further in the Results section (case 2).

For the application described, we have assumed that
the dominant bound-state characteristic affecting lpga in
Coulomb systems is the binding energy Ez. Moreover,
we have assumed that results obtained for the one-
dimensional 5 potential will provide an order of magni-
tude estimate of the corresponding rates for electrons
bound by real three-dimensional (3D) ions, when acted
upon lasers with linear polarization. In certain cases, this
may be a poor assumption; e.g. , near photoionization
thresholds. See further remarks in the Discussion sec-
tion.

FORMALISM

The Schrodinger equation, for the system of an elec-
tron bound initially (t (0) by a 5 potential, and acted
upon for t «0 by a single-frequency classical electromag-
netic field is, in atomic units (a.u. ) and in the k A gauge,

Z5(x) i A—(t) +——,
' A (t)—1 d . d 2 id

2 dx2 dx 2 dt

eigenvalue s//= —Z /2 (Ez =——E//), and normalization
constant C// [Eq. (12)]. The continuum solutions of Eq.
(6) were chosen such that

and the continuum wave vectors k have the values

k =n~/L, (10)

where n is an integer (either positive or negative, but not
zero). As given in Eq. (8), the continua are normalized in
the momentum scale; i.e.,

f dx yk (x)yk(x) =2775kk

where the range of the integral extends from —L to L,
and where 5kk. is the Kronecker delta. For Z ~0, the /}/k

go over into box-normalized plane waves. In a box of
length 2L, the bound state [Eq. (7)] normalization con-
stant is given by

Pk (x ) = Ck I exp(ikx )

—(Z/k)[1/(1+Z k )' ]sin(k~x~)

+[1/(1+Z /k )'i —1]cos(kx)I,

with eigenvalues c.j, =k /2 and normalized in a box of
length 2L, centered at the origin. Under these condi-
tions, the continuum normalization constant C& is in-
dependent of k; viz. ,

Ck = 1/&2L

X +(x, t ) =0, (3) Z /( 1
—2zL

)
& /2 (12)

where the coupling constant, Z )0, measures the
strength of the static (binding) potential. The vector po-
tential was taken to be

so that Cz=Z, if ZL ))1.
For t )0, the wave function solution of Eq. (3) was ex-

panded in eigenstates of Eq. (6) according to
A (t) = Ap[sin(cppt+ P) —sing]6(t), (4) 0'(x, t ) =a//(t)P//(x)exp( —iE//t )

where P is an arbitrarily chosen phase and 6(t) is the
unit step function [6(t)=1 for t 0, 6(t)=0 for t (0].
In Eq. (3), the dipole approximation has been made for
the electromagnetic (EM) field, and magnetic interactions
have been ignored. The time-averaged laser irradiance Io
is related to the amplitude of the vector potential A„by
Ip = A p2 tile. (1 a.u. of time-averaged irradiance equals
3.54X10' W/cm .)

The vector potential A (t) is related to the laser electric
field strength E(t) by

+gak(t)kk(x)exp( 'Ekt ) (13)

da, (t) =g U,,'(t)a,'(t),
dt

(14)

Then, upon substitution of Eq. (13) into Eq. (3), the
Schrodinger equation transformed into a set of coupled
first-order ordinary linear differential equations for the
time-dependent coefficients a//(t) and ak(t), which we
write concisely as

E(t)= — = —A a/ cos(cp t +P) 6(t) .
dA(t) where j enumerates both the bound and continuum

states, and subject to the initial conditions
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la, (0)l =I,
ak(0)=0 for all k .

The U '(t) are given by

U '(t) = —A (t)exp[i(e E—J')t ]

X f dx P'(x)(d/dx )P,'(x)

i—,' A-(t)5

(15)

(16)

since the electron absorbs energy from the laser, and (b)
the minimum k value (rt/L) must be decreased, in order
to prevent the most rapidly moving components of the
electron wave function from reaching the end of the
"box." In the worst case, when both Io &&coo and I, «1,
then the e6'ects cited in both a and b lead to severe com-
putational loading, since now photoionization proceeds
very slowly, yet large time-varying electron-quiver ener-
gies, A (t)/2, are generated, mandating very small time
steps.

and satisfy the symmetry (anti-hermiticity) relationship

U,, (t)+ U,
*
,(t.) =0

while the a (t) obey the time-independent normalization
J

condition

& la, (t) I'= I . (18)

Equation (14) was solved numerically for the a (t), sub-
ject to the initial conditions of Eq. (15). Then the proba-
bility of remaining in the bound state, for any t 0, was
found by projecting the full wave function qi(x, t) onto
the bound solution of Eq. (6), obtained for zero electric
field

2
Ps(t) = f dx P (s)xexp[i Ax(t)]+( xt) (19)

while the probability of appearing in a continuum state
was given by

Pk(t) = f dx P ( k)exxp[i Ax(t)]%( xt) (20)

Note that a zero of the electric field is not generally
synonornous with a zero of the vector potential. There-
fore, the solutions of Eq. (6), obtained for A(t)=0 [Eqs.
(7) and (8)], must all be multipled by the phase factor
exp[ ixA(t—)], wherever either Ps(t) or Pk(t) is to be
determined. That is, the true basis states in k. A gauge,
for any time t ~0, are not given by the solutions of Eq.
(6), but are the solutions of Eq. (3), with A (t) treated as a
constant. See Ref. 15 and the following section (Gauge
Dependence) for further information.

The spectrum of emitted electron energies, Pk(t) in Eq.
(20), oscillates in time with frequency coo, with the proba-
bilities corresponding to positive and negative k values
being out of phase by m.. Laboratory experiments' in
which such spectra have been measured detect electrons
in a region of space where the laser has zero intensity.
For comparison with such experiments, Pk(t) should be
evaluated at the times t =2fpl7T/coo where m is any posi-
tive integer (but t ))rp, ); i.e. , the times at which
A(t) =0.

We note that the nominal basis described in this sec-
tion [solutions of Eq. (6}] is most appropriate when the
laser intensity is low. Generally, as the laser intensity in-
creases, one expects that the amount of mixing among
the continuua [Eq. (8)] will increase, since the laser dis-
torts those continua. See the Volkov State Basis section
for further discussion of this point. Other difficulties
which occur at high intensities are (a) the range of k
values [maximum n value, in Eq. (10)] must be increased,

GAUGE DEPENDENCE

A gauge (unitary) transformation' can be applied to
Eq. (3), changing the form of the interaction between
electron and EM field from the k. A to the x.E gauge.
From Eqs. (3) and (4), the Schrodinger equation becomes,
in x.E gauge,

Z5(x)+xE—(t) i —qi(x, t ) =0,1 d . d

dx dt
(21)

where E(t) appears in Eq. (5). The wave function in the
x E gauge, +, is related to the wave function in the k A
gauge, +, by

V(x, t ):exp—[ixA (t)]%(x,t ) . (22)

Obviously, one has for the probability density dP/dx
that

—= l4(x, t)l'= le(x, t)l', (23)

+pa ( t )P„(x)exp( —i E„t ) .
k

The analog of Eq. (14) is then

(24)

(25)

where

U~ (t}=iAocoocos(coot+/)e(t)exp[i(e —
E,')t]

dx
~

xx x

while the U-' satisfy the relationship

U,,'(t)+ U,*,(t) =0 .

(26)

(27)

The probability of remaining in the bound state [Eq. (19)]
can now be written as

2
Ps(t)= f dx Ps(x)ql(x, t) = las(t)l (28)

while the probability of occupying a continuum level [Eq.
(20)] becomes

independent of gauge, for all x and t.
In analogy to Eq. (13), one may expand the solution of

Eq. (21}as

4(x, t ) =as(t)Ps(x)exp( i est)—
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2

Pi, (t) = Idx Pk(x)4'(x, t )
TABLE I. Values of ~p, obtained for case (3), when Z =1, 2,

and 3. AD=8. 0, cot=0.04, and /=0. 0.

(29) Z c& (eV) I (W/cm ) ~p, (fsec)

Thus, once having obtained 4, the computation of Pti(t)
is more expeditious in the x-E gauge than in the k- A
gauge; i.e., only a knowledge of ati(t) is required. How-
ever, as will be discussed, a computation of 4 is usually
more time consuming than one of %', for an identical
choice of laser parameters. Note that, generally,
~as(t) ~

W ~ati(t) ~, and ~a&(t) W ~a&(t)
~

.

—13.6
—54.4

—122.5

1.1
4.4
9.8

3.6 X 10"
2.3 X10"
2.6X 10'

0.23
0.059
0.026

time was rp, =9.7, we compiled the entires of Table I. (1
a.u. , of time equals 2.42X10 ' sec. )

VOLKOV STATE BASIS

SCALING

The solutions of Eq. (3) depend formally on the param-
eters Ao, ~o, and Z. However, the Z dependence can be
scaled away. That is, after dividing all terms on the
right-hand-side of Eq. (3) by Z, one is left with a Z in-

dependent equation, in the k A gauge, of the form

—5(x') —i A'(t')1 d t

2 dx dx

When the laser intensity is high, then the basis de-
scribed in the Formalism section [eigenstates of Eq. (6)]
may be inappropriate. As the laser intensity increases,
distortion of the continuum solutions of Eq. (6) will in-

crease. Therefore, the range of k values over which im-
portant continuum-continuum coupling occurs will also
increase [range of j' sum in Eq. (14)]. The required com-
puter time thereby increases very rapidly.

To facilitate the description of such cases, we invoked
a basis of modified Volkov (nonrelativistic) states. '

These are the solutions of

+ —,
' A' (t') —i, p~( 'x, t'),

dt
(30) d d . d

i A (t) — i —A( xt) =0,
2 dx2 dx dt

(33)

Ao= Ao/Z,

~o=~o~Z

x =Zx

t'=Z2t .

(31)

The scaled eigenvalues of the unperturbed time-
independent Schrodinger equation [Eq. (6)] are

where the scaled quantities, denoted by primes, are
defined by

labeled by k according to

A& (x, t ) = ( I /&2L )exp Iik [x —xo(t) ]—k2t /2I (34)

and normalized in a box of length 2L. Then, k takes on
the discrete values given by Eq. (10). The "trajectory
function" xo(t) appears in Eq. (47). As defined, the basis
of modified Volkov states is orthornormal and complete
on the interval —L x ~L.

The solution of Eq. (3) (k A gauge) is expanded in the
Ak aS

Cg
t ]

(32)

P(x, t ) =gA.„(t)A„(x, t )

k

(35)

EI, =k' /2=k /(2Z ), and, in the usual way, an equation for the A, k is obtained,

where k values are still given by Eq. (10).
In practice, Eq. (30) or its analog in the x.E gauge was

solved for a range of 3 p and cup values. Solutions of Eq.
(30) correspond directly to solutions of Eq. (3) when
Z=1. For other values of Z, recourse was had to the
scaling relations of Eq. (31). Through these scaling rela-
tions, solutions for any Ao, coo, and Z combination could
be derived from results obtained over a range of 3 o and

t
COp.

To illustrate, from data described in the Results sec-
tion, obtained for AD=8. 0 and no=0. 04 [case (3)], and
for which the computed characteristic photoionization

dA, t, (t)
(36)

The V«. are give~ by

V«, (t) =i (Z/2L )exp[i(k —k')xo(t)

+i(k —k' )t/2]6(t)

i ,' A (t)ok„—— (37)

In the modified Volkov basis, the probability of remain-
ing in the bound state is
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2

P~(t) = f dxPtt(x)exp[ix A (t)]%'(x, t )

=(Z/2L) gXk (t)exp( i—k' t/2) f dx exp( —Z~x~)exp[ik'[x —xo(t)]+i'(t)]
k'

(38)

=(2Z /L) gXt, (t)exp[ ik—'xo(t) ik—' t/2](1/[Z +[k'+ A(t)] ] )

where the bound-state wave function Ptt(x) is given by
Eq. (7), and terms of order e are ignored.

Since one has that, initially,

units, by

(42)

Ptt(x) =(1/&2L )gkk (0)exp(ik'x ),
k'

(39) where the energy-conserving k ' value satisfies

k' =2(coo——' —3' /4) (43)
then the initial values of the A.k(t) are given by

Ak(0) =(2Z /L )' [1/(Z +k )]

up to terms of order e

(40)

RESUI.TS

Case (1): Reiss approximation (Io & 1 and Io & coo )

We further divide this region into three parts, as fol-
lows

Case 1(a): If coo & 0. 5

Here, one photon may suffice to produce ionization,
provided that Io is small enough. "Small enough" means
generally that the ponderomotive shift, ' when added to
the binding energy should not exceed the photon energy.
In scaled units, this implies that

mo) —,'+ Ao /4 . (41)

We are now in the region of validity of the first Born ap-
proximation (FBA); i.e., when the coupling between the
electron and the laser field acts only once, although the
electron interacts with the binding potential to all orders.
A transition is induced between this exact bound state
[Eq. (7)] and an exact continuum state [Eq. (8)] via one-
photon absorption. The FBA is the limit, for coo) 0.5
and 3 o ~0, of the one-dimensional Reiss approximation;
see case 1 (b).

For ionization of the initially bound state, the charac-
teristic transition time is given in the FBA, and in scaled

An exhaustive set of calculations of Ptt(t'), as defined
in Eq. (28) and based on Eq. (30), for a wide range of
3 o )0 and coo) 0 values has shown that photoionization
behavior may usefully be divided, into three regions of
(Iti, coo) parameter space. These regions are (1) Io & 1 and

Io &coo, where the Reiss approximation' [Eq. (45)] was

adequate; (2) Io & 1, where a semiclassical wave-packet
description sufficed; (3) Io & 1 and Io &coo, where a field

ionization formula could be applied; see Fig. 1. We will

now consider each of these regions of parameter space in
turn. Unless otherwise specified, calculations reported in
this section, have all been performed with the phase / =0
[Eq. (4)]. Also, recall that Io= Ao coo.

As an example, we display in Fig. 2 the results of a cal-
culation of Pz(t') versus t', based on Eq. (28), and for
A ii

=0.25 and coo=0. 6. In the FBA [Eq. (42)], the pre-
dicted value of the ionization time is ~p&=26, while from
Fig. 2, Ptt(t') = 1/e, when t' =32. The —25% discrepan-
cy between the FBA value of ~ „and the "measured"
value decreases as 3 o decreases.

The corresponding spectrum of emitted electrons
[Pk (t') versus k' /2], for t'=28 tr/co o&rp, , appears in

Fig. 3. The most likely energy, k' /2-0. 08, is consistent
with Eq. (43) which predicts k ' /2 =0.084. Smaller
peaks in the emitted-electron spectrum occur also at
k' /2 —0.68, 1.28, and 1.88. These are the so-called ATI
peaks, ' which appear here even at these low field intensi-
ties. (But, note that the ordinate scale is logarithmic. )

In Fig. 4, we plot the probability density
~

q( lx', t'
~)

versus x' [see Eq. (23)] for t'=0, 50, 100, and 150. Note
that, for this choice of 3 o and coo, the electron is emitted
with almost equal probability in both the positive and
negative x' directions. (There is a slight excess of proba-
bility in the negative x direction, as indicated by the
average x' value at this time. ) Now, the center of the
wave packet, on each side of the origin, is seen to have
moved -45—50 a.u. of distance from the origin, in 150
a.u. of time. This implies a kinetic energy of
-0.045 —0.056 a.u. which is less than the most likely en-

ergy of -0.08, appearing in Fig. 3. However, in making

0.8—

0.6—
Ql

0.4—

0.2—

I I I I I

20 40 60 80 100 120 140
t' (a.u.)

FIG. 2. Ps(t'} vs t', for A O=0. 25, coo=0 6, and /=0. .
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V
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K'k B.L1.

0
I

20
I I I

40 60 80
t' (a.u.)

I I

100 120 140

FIG. 3. P,(k') vs k' /2, at t'=28'/coo, conditions as in

Fig. 2.

= fdx'I'*(x', t')x'4(x', t') . (44)

Notice that for t'&rp, , (x')(t') undergoes oscillations
with period -2'/coo and amplitude —Ao/coo, while
drifting toward negative x' values with a nearly constant
velocity. Concerning this drift, see the remarks following
Eq. (56).

Case (Ib): 0. I & too & 0.5

In this case, multiphoton processes will occur in lead-
ing order. However, the field intensity is still low, so that
ionization is "slow;" i.e., rp, ))2n/coo. A generalization
of the nth Born approximation, developed by Reiss, ' was
observed to hold under these circumstances. In the Reiss
approach, the electron first absorbs one photon, making a

0.10

this comparison one must take into account the "delay
time" which transpires before emission, which is of the
order of ~,„-32 a.u. Consequently, the electron has ac-
tually been "moving" in the continuum for a time of the
order of 120 a.u. The estimated kinetic energy is now
indeed -0.08 a.u.

In Fig. 5, we plot the expectation value of the electron
coordinate x' at t', i.e. ,

(x')(t')= f d x%*( x't') x%( x't')

FIG. 5. (x')(t') vs t'; conditions as in Fig. 2.

(45)

for the 5 potential, where Jt is the ordinary Bessel func-
tion of order 1 (l is a real and positive integer), and

(kt') =2[leon —
—,
' —(3o) /4] . (46)

The sum in Eq. (45) begins with the smallest integer lo
such that the right-hand side of Eq. (46) is positive. In
Eq. (45), it is tacitly assumed that r'p, )&2~/coo; i.e. , that
Ao is not "too large. " If Ao && l, and coo&0. 5 then the
Reiss approximation reduces to the FBA.

As an example, in Fig. 6 we plot P~(t') versus t' for
the case An=0. 5 and coo=0. 4. P~(t') falls to 1/e for
t' —130, while Eq. (45) predicts rp, = 140. The corre-
sponding spectrum of emitted electron energies appears
in Fig. 7. The leading order in the spectrum (lowest con-
tinuum energy) occurs for I = lo =2, and has a value

transition from the bound state [Eq. (7)] into the plane-

wave continuum. Subsequently, additional photons are
absorbed but the electron is forced to remain throughout
in the same plane-wave continuum state. This is tan-

tamount to the electron's making a direct transition from
the bound state into a (nonrelativistic) Volkov state. '

The predicted decay time for this process is given by

I/rpt = g~g' y (I/Ikt'
I
){1/[I+(kl')']']~('( Ik('I ~ o /~o)

1() lo)

0.08— I~s
II
I~
I*

tI
~

IsII
~sI

I
~

I
~

I
~ ~

II
II

t
~I

I I

I
~

I
~ I

I
~

'I ~

0.06—
0

0.04—

0,02—

0.00

x' (a.u.)

~ t 1
I

. li

I I 1 l I

—100—75 —50 —25 0 25 50 75 100

0.8—

0.6—

0.2—

0
0

0.4—

I I I l I I

25 50 75 100 125 150 175 200

FIG. 4. I'II(x', t')I' vs x' for t'=0( ), 50( ———),
100( ), and 150( ———); conditions as in Fig. 2.

t.' (a.u.)

FIG. 6. Ps(t') vs t', for 20=0.5, coo=0 4, and /=0. .
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10

0—

0 3 4 5
a.u.

6
10

0 20 40 60 80 100 120 140 160 180 200
t' (a.u.)

FIG. 7. P„,(k') vs k'/2, at t'=26m. /~o; conditions as in

Fig. 6.

k„' /2=0. 23, consistent with Eq. (46), which predicts
k' /2=0. 24. ATI peaks are visible at k' /2=0. 63, 1.03,
and 1.43.

In Fig. 8, we plot the probability density I+(x' t')I
versus x' for t'=200& rp, . As in case (la), the probabili-
ty of electron emission is almost symmetrical about
x' =0, with a slight excess of probability in the negative
x' direction. In Fig. 9, we plot the expectation value of
x' at t', i.e., from Eq. (44). Again as in case (la), one sees
that, for t' & r„p( x)(t') undergoes oscillations with
period —2m/coo and amplitude —Ao/coo, while drifting
toward negative x' values with a nearly constant velocity.

Case (1c): coo&0. 1

In this case, values of spy as determined by the Reiss
formula [Eq. (45)], become very large, typically exceeding
1 sec, and are thereby uninteresting from a laser-plasma
modeling point of view. We propose to regard such elec-
trons as bound (rpt~ ~).

Case (2): Semiclassical approximation (Io & 1)

Choosing 3 0
=30 and co0 =5, one has the result

displayed in Fig. 10, for Ps(t') versus t' Ionization . is
"slow, " in that rp, &2'/coo. The envelope of the Ptt(t')
curve falls to 1/e in a time t' —35. However, the falloff is
not exponential.

0.05

FIG. 9. (x')(t') vs t', conditions as in Fig. 6.

x'(t') =( ~,'/~,')[I—cos(~,'t')]e(t') . (47)

That is, the electron moves almost as a classical particle,
satisfying the (Newtonian) equation of motion

d~x'(t')/dt'~= E'(t') = 3—ocoocos(coot')e(t'),

subject to the initial condition x'(0) =0 and

(48)

dx'(t')
dt' r'=0

=0 (for /=0) .

The drift toward negative (x') values observed in
cases (1) and (2) occurs here also, but is much less ap-
parent. This observable drift, in cases (1) and (2), is pecu-
liar to our choice of phase (/=0) at t'=0. For example,
if the phase were chosen instead to be ~, then drift to-

1

0.8—

In this strongly coupled case, pronounced dipole
charge-density oscillations occur. In Fig. 11, we plot
values of the probability density I+( x', t')I versus x', for
t'=0, m/coo, and 2m/coo. As t' increases further the wave
packet spreads. Finally, in Fig. 12, we plot values of the
expectation value of x' versus t'. It is clear from Figs. 11
and 12 that, to a good approximation, for all t') 0, the
electron oscillates between x'=0 and x'= A0/~0, with
period 2'/coo, according to the law
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FIG. 8. I%'(x', t')I vs x', for t'=200; conditions as in Fig. 6. FIG. 10. Ps(t') vs t', for 2 o
= 30, coo= 5, and / =0.
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where P=rr/2, instead of Eq. (47), which pertained only
for / =0. The trajectory described by Eq. (54) moves rap-
idly away from the origin, with a "drift" velocity given

by

vd 'ft
—A os'n(t (55)

The probability of remaining in the bound state Ptt(t ) is
no longer periodic, but decays monotonically; see Fig. 16.

The classical drift velocity, described by Eq. (55), and
clearly depicted in Fig. 15, is, however, not synonomous
with the drifts appearing in Figs. 5, 9, and 12 (when
/=0). Rather, we hypothesize that those drifts arise
from a lag between the time of laser turn on, and the time
at which the electron arrives in the continuum; i.e., a lag
time comparable to ~p&. Indeed, assuming a classical
equation of motion, modified by a "switching" function,
of the form

laser parameters.
It would be misleading, however, to suppose that ion-

ization always proceeds slowly in the semiclassical re-
gion; i.e., that Ptt(t')-1/t'. In fact, this is only so if we
make the choice /=0. On the contrary, for /%0, ioniza-
tion can be very rapid, occurring in much less than a
quarter of a laser cycle. We point out that the reason
that ionization is so "slow, "when /=0, is that the elec-
tron returns periodically to the origin with essentially
zero velocity; i.e., just the value of (average) velocity it
had at t=0. The initial bound state is thereby almost
completely recomposed at the end of each half cycle, ex-
cept for a between-times spreading of the wave packet.

To illustrate the ionization behavior when /%0, we
plot in Fig. 14 computed values of probability density
versus x ', for several t ' values, when P =m /2 (and
Ao =30, coo=5). The corresponding values of (x'}(t')
versus t' appear in Fig. 15. The expectation value of x',
as well as the probability density, now mimic the more
general classical trajectory described by

x'(t') =( A o/coo)[cosP cos(r—oot') wot'si—ng]B(t'),

(54)

40

20—

0—

—40
0 0.1 OZ 0.3 0.4 0.5 0.6 O.V 0.8 0.9 1

t (a.u.)

FIG. 15. (x')(t') vs t', conditions as in Fig. 14.

d x'(t') = —[1—exp( —t'/wpi)] A otoocos(root')B(t')

(56)

Case (3): Field-ionization approximation

Io &1 and Io/ago ) 1)

Now ionization occurred "rapidly, " rpt&2n/coo. As
an example of this case, in Fig. 18 we plot Ptt (t') versus t'
when Ao =8.0 and coo=0.04.

This case could be understood by having recourse to
the theory of static-field ionization. 's The characteristic
time for tunneling was determined to be, for a 5 potential,

I/r,', =exp( —-', A oooo) (57)

[instead of Eq. (48)], one computes a classical trajectory
x'(t') which is generally closely sinular to the quantum
expectation value, (x'}(t'), even for small Ao. In Fig.
17, we plot values of (x'}(t') versus t' obtained for
A o =0.25 and too=0. 6 (identical to Fig. 5), and the clas-
sical trajectory implied by Eq. (56), for the same choice of
laser parameters, when ~p&

=32.
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FIG. 16. P&(t') vs t', conditions as in Fig. 14.
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FIG. 19. ~%(x', t')~' vs x', for t'=0(
30(. ~ . ); conditions as in Fig. 18.
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For the choice of parameters in this example, the tunnel-
ing time from Eq. (57) is ~p, =8.0 to be compared with
the "measured" value, from Fig. 18, of 9.7. This descrip-
tion becomes more accurate as coo becomes smaller and

Ao becomes larger, so that ionization occurs in just a
small fraction of a laser cycle (provided that Io (1). As
coo becomes larger and Ao becomes sma11er, a generaliza-
tion of Eq. (57), for time-varying fields, may have some
applicability. '

To further illustrate this case, in Fig. 19 we plot values
of the probability density ~'fix', t')~ versus x', for three
t' values. Figure 19 should be compared with its analog
(Fig. 4), for Ao ( l. In Fig. 20, we plot the expectation
value of x' versus t' Contrast. ing with cases (la), (lb),
and (2), now oscillations in (x')(t') are not well

developed.
We emphasize that all of the results described in this

section were obtained via calculations performed in both
the k A and x E gauges. Consistency of results was
achieved in every case, and constituted a check on the
calculation. It is worth pointing out, however, that cal-
culations were typically much more time consuming in

the x.E gauge. The extent of continuum-continuum cou-
pling required for convergence in the xE gauge was usu-

ally very large, whereas coupling in the k. A gauge could
almost always be limited to a band of -200 continua; i.e.,
in Eq. (14), the range of n' could usually be restricted to
n —100~n'~n+100, where n &1 enumerates the con-
tinua [see Eq. (10)]. Calculations of (x')(t') were partic-
ularly sensitive in this regard, the necessary range tend-
ing to grow with t'. The extent of continuum-continuum
coupling, required to produce convergence, is a measure
of the failure of the Reiss formula [Eq. (45)], which im-

plies no such coupling.
Generally, when A 0 ( 1,k A gauge calculations of

4(x', t') could be performed very quickly in a basis of
eigenstates of the 5 potential. However, when Ao & 1,
then extensive continuum-continuum coupling acted to
slow the calculation in this basis. If Ao) 1 and coo& 1,
then the basis of modified Volkov states led to a very rap-
id calculation. The worst case was for A o ) 1 and coo & 1,
where both bases yielded very slow calculations.

The maximum number of states included in our calcu-
lations was 801. Positive and negative k' values were al-

ways included for each ~k'~. Generally, as Ao increased,
the range of required k ' also increased. Equally
significant, at large Ao, was the small time step required
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FIG. 18. P~ ( t' ) vs t ', for 3 o
=8.0, coo =0.04, and P =0. FIG. 20. (x')(t') vs t', conditions as in Fig. 18.
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to generate the numerical solution.
We note that for each Ao, coo combination, the total

number of k' values included, and the minimum k' value
[~/L', from Eq. (10)] employed, were selected such that
(a) the range of k' values generated, with appreciable
probability via coupling in Eq. (3) [or Eq. (14)], was
spanned and (b) there was never any appreciable proba-
bility generated near the end of the box; i.e., for a given
maximum t', L' was "large enough. " In practice, these
conditions were all satisfied only after having made
several preliminary trial-and-error calculations.

DISCUSSION
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FICs. 21. P~ ( t') vs t', for 3 o =0.5 and coo =0.6.

The results described in the preceding section are typi-
cal of calculations we performed for a broad range of pa-
rameter (Io, coo) choices. As mentioned, calculated values
of the characteristic ionization time ~p& could often be
well approximated by having recourse to one of three
simple methods, depending on the region of parameter
space involved: The Reiss approximation [case (1)]; the
semiclassical approximation [case (2)]; or the static-field-
ionization formula [case (3)]. These conclusions are sum-
marized schematically in Fig. 1, where the regions la-
beled 1 —3 correspond to the same numbers from the Re-
sults section.

Region 4, of Fig. 1, labels a range of parameters
(Io, coo) where the semiclassical approach is clearly in-

valid, and both the Reiss and static-field-ionization for-
mulas are questionable. Worse still, both Reiss and field
ionization based predictions of ~p, in this region typically
exceed several tens of thousand a.u. , so that complete nu-
merical computations based on Eq. (3) are probably un-
feasible here, at present. This assumption was verified by
performing incomplete calculations, out to several
thousand a.u. of time, for these cases.

Unfortunately, region 4 represents a range of (Io, coo)

values which is very interesting for laser-plasma model-
ing. For example, at a laser irradiance of Io = 10'
W/cm and photon energy coo=5 eV, we compute, based2

on the Reiss formula [Eq. (45)], a value of
7 p~

=7. 1 X 10 ' sec, for the characteristic photoioniza-

0

FIG. 22. S(Q') vs 0', conditions as in Fig. 18.

tion time of a ls electron in Ar' + (hydrogenlike argon).
For this choice of parameters (Io, coo, and Z=18), one
has that AO=5. 08 a.u. and coo=0.000567 a.u. ; i.e., this
point lies in region 4. The predicted photoionization
time, in scaled units, is spy=9. 1X10 a.u. But, since the
maximum quiver energies generated in this case are of
the order of 10 a.u. , the step size required in a numerical
solution of Eq. 3 must be very much smaller than 0.1.
The severity of the numerical problem, in this region, is
obvious.

We should point out that there is currently no empiri-
cal evidence of a ponderomotive shift [last term on the
right-hand side of Eq. (46)] for ionization occurring un-
der these "exotic" conditions (large Ao, but small coo).

But the prediction of the Reiss formula [Eq. (45)] can be
very sensitive to the assumption that such a shift exists.
For instance, if this shift is omitted from Eq. (46), then
Eq. (45) predicts a value of the characteristic photoion-
ization time of 7"p~=0.21X10 ' sec, for the conditions
outlined in the preceding paragraph.

In the vicinity of an energy threshold, the detailed nu-
merical results showed a sometimes drastic slowing down
of ionization, not usually well represented by any of the
approximations. This slowing down of ionization near a
threshold, is evidently typical of short-range potentials.
The Coulomb potential, of course, does not show a slow-
ing down. For example, in Fig. 21 we plot values of
Ps (t') versus t' for the case 2 o =0.5, coo=0. 6.

From the present vantage point, it seems worthwhile to
reconsider briefly the topic of indirect photoionization.
In a multielectron atom or ion, collision between a deeply
bound electron and an outer-shell or weakly bound elec-
tron which is quivering in the laser field may conceivably
result in an enhanced ionization rate. "' Based on our
results, we propose that such an effect will occur most
readily when both Ao &&1 and ~o»1. This is for two
reasons: (a) The (maximum) ponderomotive energy
Ao /2, is the maximum energy transferable in a (single)
collision. Consequently, Ao must be large, albeit not so
large that the collision cross section becomes small. If in-
stead A o & 1, then quiver motion is inherently low energy
even though, if coo(&1, it could have large amplitude.
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[From Eq. (47), the amplitude is A o/coo. ] (2) If both
Ao ))1 and coo&&1, then quiver motion, in the form of
dipole charge-density oscillations, will be well developed
throughout the ionization process [see case (2) of the Re-
sults section]. On the other hand, if 3 o )) 1 but coo«1,
then dipole charge-density oscillations are ill formed dur-
ing ionization [see case (3) of Results section]. If A o ( 1,
then although ( x')(t') oscillates as a function of t', the
probability density is almost symmetrical about x'=0;
i.e., dipole charge-density oscillations are poorly formed
during ionization, and the electron has a vanishingly
small probability of remaining in the vicinity of the ori-
gin.

It may be useful to remark' ' that, during and after
ionization, a "classical" electron entrained in the laser
field will radiate electromagnetic energy at the rate '

P(t')=(2a /3) ~d x'(t')/dt'
~ (58)

in a.u. where a is the fine-structure constant and P is the
power. If the electron were "free" and completely nonre-
lativistic, then all emitted radiation would be (Thomson)
scattered at the fundamental laser frequency. ' In our ex-
ample, however, radiation at other than the fundamental
frequency is induced by both the transient ionization be-
havior and the abrupt turn on of the laser.

In this paper, we have described the quantum-
mechanical motion of an initially bound electron being
ionized by a laser field. Ignoring radiation damping, we
take the spectral density of energy radiated classically by
such an electron to be, ' in a.u. , and with scaled vari-
ables,

2S(Q')=(a /3w) f dt'exp(iQ't')d (x')(t')/dt'
2=(a /3tr) f dt'exp(if''t')

I dA '(t')/dt'+ ( [[H',x'],H') )(t') I

2=(a /3') f dt'exp(iQ't')[ Aocuocos(coot') —d~+( xt')~ /dx'~ (59)

having twice used the fact that dO /dt
=i [H, O]+r)O/r)t, where 0 is any operator, and [H, O]
is the commutator of 0 with the full Hamiltonian H ap-
pearing in Eq. (3) (k A gauge). The units of S(II') are
energy per unit energy per ionization event. Radiation
damping can be ignored whenever a ~,'( 1.

From Eq. (59), we computed the spectral density of ra-
diation emitted by an initially bound electron moving in a
laser field with parameters Ho=8. 0 and coo=0.04; the
choice of parameters corresponds to case (3) of the Re-
sults section. The generated spectrum appears in Fig. 22
(solid curve). For comparison, a spectrum corresponding
to the purely classical trajectory of Eq. (47), with
0~t'~40, is also plotted (dotted line). In both curves,
the most rapid oscillations are due to the sharp cutoff in
the time record at t',„=40 (and the sharp turn on at
t'=0; i.e., those oscillations with period 2~/t', „=0.16.

More importantly, in the classical case (dotted curve),
the slow falloff of S(Q') with increasing 0' can be shown
to be due solely to the abrupt turn on of the laser. From
this fact, and the similarity of the two curves, we con-
clude that, in the quantal calculation, the effect of tran-
sient ionization behavior on S(Q') must be small, at large
0', for this choice of laser parameters. Of course, in any
real experiment, in which laser turnon would not be
abrupt, S(A') would decrease more rapidly, with increas-
ing 0', than implied by Fig. 22.

SUMMARY

In this paper, we have described the effect of a classical
single-frequency laser field on the quantum-mechanical
motion of an electron, moving in the field of a 6 potential
and bound initially by that potential. A characteristic
time for photoionization ~p& was computed for the elec-
tron, over a wide range of scaled laser parameters, Io and
~0, where Io =Io/Z and ~0=No/Z, and —Z /2 is the
bound-state energy. Values of 7pi obtained from these de-
tailed calculations were compared with predictions made
by three different approximations. ATI spectra of the
ionized electron were computed, as well as the spectral
density of emitted radiation. The conditions under which
well-defined electron quiver motion appears were
clarified.
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