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We demonstrate that the Bargmann representation of quantum mechanics is ideally suited for
semiclassical analysis, using as an example the WKB method applied to the bound-state problem in

a single well of one degree of freedom. While the WKB expansion formulas are basically the usual

ones, in this representation they describe approximations that are uniform and nonsingular in the
classically allowed region of phase space because no turning points appear there. The quantization
of energy levels relies on a complex contour integral that tests the eigenfunction for analyticity. For
the harmonic oscillator, this WKB method trivially give& the exact eigenfunctions in addition to the
exact eigenvalues. For an anharmonic well, a self-consistent variational choice of the representation
greatly improves the accuracy of the semiclassical ground state. Also, a simple change of scale il-

luminates the relationship of semiclassical versus linear perturbative expansions, allowing a variety
of multidimensional extensions. All in all, the Bargmann representation appears to combine the ad-

vantages of a linear description and of a phase-space representation of the quantum state vectors.

INTRODUCTION

The purpose of this paper is to provide a self-contained
presentation of certain results and formulas selected from
one of our previous unpublished works. ' This will be a
selection of these results which pertain to the usefulness
of combining WKB techniques with Bargmann's repre-
sentation of quantum mechanics. While we are adding
here no basically new result to Ref. 1, we have stream-
lined the presentation and included more recent refer-
ences on related topics.

A recurrent problem in semiclassical analysis is the
construction of global uniform approximations to the
wave functions. This difticulty is fully present in bound
states, where it is the major obstacle in the derivation of
quantization formulas for the discrete energy levels.
While WKB wave forms are very simple and powerful
approximations, they fail at the caustics and require extra
matching procedures to be developed. Phase-space
methods in quantum mechanics eliminate the caustic
singularities on physical grounds, but they are "bilinear"
in the wave functions; the local phases of the wave func-
tions are very hard to recover, and energy quantization
crucially depends on this type of information.

Bargmann has introduced a representation of quan-
tum mechanics where a creation operator, typically
(Q —iP ) /&2, is diagonalized. In this representation,
wave functions are holomorphic (entire) functions of the
complex variable z =(q —ip)/&2 If we write. and solve
the Schrodinger equation directly in this representation,
we combine the advantages of a linear method (presence
of a wave equation, explicit phase information in the
wave function), and the benefits of a phase-space method
(inasmuch as the complex z variable acts as a phase-space
coordinate). The genuine difiiculties in the physical inter-
pretation of the Bargmann theory are irrelevant here: we

only use this representation as a computational device.
The purpose of this article is to describe various advan-
tages of doing WKB analysis directly in Bargmann space.
The WKB solutions are automatically global and uniform
over connected trajectories; no matching is required. The
Bohr-Sommerfeld loop integral for energy quantization
can be explained in terms of analytic function theory.
The transition toward low quantum numbers and down
to the ground state can be more neatly described, allow-
ing for an actual numerical improvement of the method
in that region of the spectrum.

While the interest of the Bargmann representation for
semiclassical analysis has been recognized elsewhere, it
was with emphasis on time-evolution problems and espe-
cially on the Feynman path integral.

I. GENERALITIES AND NOTATIONS

We shall confine our interest to the bound-state prob-
lem for the Schrodinger equation in one degree of free-
dom (the real line),

HQ=Ettt .

(However, scattering or time-dependent problems could
also benefit from the methods to be described. )

We recall first some general facts about the semiclassi-
cal analysis of such a problem, giving the notations at the
same time. Two successive stages are involved: the equa-
tion must have a classical analog in the limit A~O, and
the implied restrictions on the observable H must be stat-
ed; solutions can then be sought as functions of the pa-
rameter A becoming asymptotically correct as A~O.

A. Semiclassical observables

The first question is often answered implicitly by speci-
alizing the Hamiltonian, e.g. , H = —A 6+ V(q). Howev-
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er, we shall need later broad canonical invariance proper-
ties. (Moreover, in view of higher-dimensional exten-
sions, additional constants of the motion must be taken
into account, which do not have this form. ) For these
reasons we prefer a formalism which allows the Hamil-
tonian to be a rather general observable.

In classical mechanics an observable like the Hamil-
tonian is a smooth function h (q,p) on phase space (the
plane). A quantization map associates to h (q,p) an
operator function H =h (q,p) subject to a particular or-
dering rule of the operator arguments Q and P (which are
the standard ones, obeying [q,P]=i%). The inverse
transformation maps H to a classical function h, which is
then called the symbol of the operator H, h =H&. The
central idea in semiclassical analysis is to manipulate
quantum operators entirely through their symbols. The
basic requirements are thus (1) that the quantization map
should be linear, and invertible (on suitable subspaces) so
that the inverse symbol map be well defined, and (2) that
attention should be restricted to these quantum observ-
ables H which have an admissible behavior in the semi-
classical limit, e.g. ,

(1.2)

and it is covariant under translations and linear canonical
transformations of phase space.

The normal symbol, by contrast, depends on the choice
of a reference harmonic oscillator, or equivalently of a
complex coordinate z to represent the two-dimensional
phase space. In suitable coordinates, we have

z =(q —ip)I&2, z'=(q +ip)/&2,

giving the reference harmonic oscillator as

h (q,p)=z*z =
—,'(q'+p )= —,

'
llx ll

(1.4)

(1.5)

Here, however, we have sacrificed the full linear canoni-
cal invariance, keeping only rotational (and always
translational) invariance. This sacrifice will be in fact
profitable for certain purposes, see Sec. IV B.

The normal symbol of the operator H is then the ex-
pectation value

(1.6)

where lQOO) is the normalized ground state of the refer-

where expansion coefficients H„(x) are smooth functions
of the point x=(q,p) in phase space. The leading term
Ho(x) gives the classical limit (as an observable) of H; the
remaining terms allow for quantum corrections of any or-
der in A to be present.

Two quantization orderings will be especially con-
venient for us: Weyl (symmetric), and Wick (normal) or-
dering. The inverse maps respectively associate with an
operator H the Weyl symbol Hii, (Refs. 4—6 and 1) and
the normal symbol H~. ' The Weyl symbol is

Hii, (fi;q,p)= f &q
—r/2la(fi)lq+r/2)e'i'" "dr,

(1.3)

ence harmonic oscillator (1.5) quantized and lQ ) is ob-
tained by displacing lQoo) to the phase-space location
(q,p) according to

lfl ) =exp —
(pQ —qp)lIIoo) . (1.7)

The inverse quantization, or mapping from the func-
tion Hz(q, p) to the operator H, is simply normal order-
ing with respect to the operators z and (z*) =z, which
are, respectively, the quantum creation and destruction
operators for the harmonic oscillator h. If the normal
symbo1 is expressed in terms of the complex coordinates,

= z+z'
H~(z, z*)=H~ q = —,p = z*—z

i&2

then the quantum operator is

a =a„(z,z ') (1.9)

d d
H~(A';x) —exp ——+

4 dq' dp' Hii, (iri;x) .

B. Semielassiea1 states

The next question is that of understanding how the
solutions of Eq. (1.1) (the eigenfunctions and eigenvalues)
reAect the limiting classical dynamics in their dependence
on the parameter A when A-~0: we want to describe the
quantum eigenstates semiclassically.

To study a quantum state vector litt), we inay apply a
symbol map to the projector onto it, lp) & pl. The result-
ing Weyl symbol (lg) &Pl)ir is also called the Wigner
function of the state, and the normal symbol,

(lq) &ql)~(~;q, p)= I&II (1.12)

is also called the Husimi function. Either of them pro-
vides a convenient phase-space representation of the
quantum state, endowed with a nice semiclassical behav-
ior: as A~O, they must tend to a classical phase-space
distribution, which can even be sometimes determined.
In general, however (i.e., in more than one degree of free-
dom), this information is not sufficient to reconstruct the
wave function itself. The quantum phase, which controls
the fast oscillations of the symbol, is obliterated in the
limiting process and cannot be regenerated easily. Hence
the fine details of eigenstates and of the eigenvalue spec-
trum are often not known in any explicit form (case of
classically chaotic systems). Some more regular cases
will admit some semic1assical wave functions, but the ex-
plicit forms of these depend on idiosyncrasies of the clas-

with z operators systematically ordered to the right of
all z operators.

For a given quantum operator H, its normal symbol
can also be obtained by a Gaussian smearing in phase
space of its Weyl symbol

H~(iri, x) = fHii (iri;x')(iriri) 'e '" *1 'dx' . (1.10)

This operation can also be expanded order by order in A,

giving
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The complex phase-space variables z =(q —ip)/&2,
z*=(q+ip)/&2 are also canonically conjugate to each
other (up to a factor i ) This. holds both classically,

{z,z*I =i ( {q,p ) =1)
and quantum mechanically,

[z,z ]= fi ([q,P—]=i') .

(2. 1)

(2.2)

Now, the Schrodinger representation of quantum states
diagonalizes the position operator Q, expressing pure
states as wave functions P(q), with P = ibid/dq. L—ike-
wise, the Barg mann representation diagonalizes the
creation operator z and expresses states as functions g(z),
the basic operators being (in one degree of freedom)

z (denotes multiplication by z),
z =Ad/dz .

B
The transformation g(q) ~f(z) is given by

(2.3)

2+ 2

X exp —— + 2zq q dq .
2

(2.4)

This maps the standard Hilbert space L (dq) over the
Hilbert space of entire (analytic) functions it (z) with finite
norm, this norm being

(g(z)l0(z)) =(2M) ' J [P(z)]*/(z)e I'I / dq dp .

(2.5)

W'e also have the relation

~(z) =e (2.6)

which exhibits the connection between the Bargmann
representation and the various coherent-state approaches
to quantum mechanics. ' Compared with the Husimi
function (1.12), g(z) carries phase information explicitly.

Both the differences and the similarities between the
Bargmann representation and others make it an extreme-
ly attractive tool for semiclassical analysis. ' The Barg-
mann representation diagonalizes the operator z, whose
complex eigenvalue can be viewed as a phase-space vari-
able, z =(1/&2)(q —ip) Its global an. d analytical struc-
ture are quite different from the Schrodinger picture,
reflecting the fact that z is a combination of two observ-

sical dynamics; and they are by no means universal. It is
only for one degree of freedom (and, by extension, for
completely integrable systems) that a full theory of semi-
classical wave functions is available, based on WKB (also
called phase-integral) approximations.

It is so difficult to reconstruct the full wave vector g
from the semiclassical form of the Wigner (or Husimi)
function perhaps because this function depends bilinearly
on

II. THE BARGMANN REPRESENTATION
(REF. 2)

H z, fi g(z) =F.Q(z) .
d
dz

(2.7)

The exact operator meaning of H(z, h'd/dz) is, for in-
stance, the normal-ordered quantization of the normal
symbol HJv(z, z*), as in Eq. (1.9). Symbols may, in full

generality, contain A-dependent "quantum corrections. "
For instance, the standard harmonic oscillator
h =(P +q )/2 has the normal symbol hz=z'z+fi/2
and in the Bargmann representation its normal-ordered
quantization is

f=Az +A/2 .
d
dz

(2.8)

But we could have started instead with the Weyl symbol
h ~ =z *z, which upon Weyl ordering gives

1 d dh= —z A + A z
2 dz dz

(2.9)

the same operator as Eq. (2.8).
Either symbol representation of the given quantum

Hamiltonian H has its own advantages as a basis for the
semiclassical expansion of the eigenfunction. The corre-
sponding algorithms differ by small algebraic details and
will be described in turn.

III. THE WEYL-WKB-BARGMANN METHOD
IN ONE DEGREE OF FREEDOM

It is well known in the usual representations of quan-
tum mechanics that the WKB method provides the most
powerful analytical semiclassical description for eigen-
functions in one degree of freedom. . . if it were not for
the turning points (or caustics). The method can only be
made global and uniform, then, at the expense of compli-
cated constructions (using either special functions, or
complex paths, or the patching of various local represen-

ables which cannot be simultaneously measured in quan-
tum mechanics. Nevertheless, the function P(z) can be
conceived as a sort of phase-space representation of the
quantum state lP). Phase-space representations are very
useful in semiclassical theory because classical trajec-
tories have no caustics in phase space (thanks to
Liouville's theorem). However, the Wigner (or Kirk-
wood, Husimi, etc. ) functions which are traditionally
used for this purpose are bilinear in the wave function,
which is in a way natural but also creates some big tech-
nical difBculties.

Now, the Bargmann representation is similar to the
Schrodinger representation in that it is linear in the wave
function, and that moreover all formulas of an algebraic
nature can be taken over from the better-known
Schrodinger picture because the algebras are essentially
isomorphic. This is especially true for all semiclassical
expansion coefficients, which are algebraic functions of
the symbols and their derivatives.

In other words, the semiclassical expansion algorithms
are the same. We simply must now apply them directly
to the Schrodinger equation written in the Bargmann rep-
resentation, i.e.,
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tations). Very useful eigenvalue formulas are then ob-
tained [Bohr-Sommerfeld, Maslov, or Einstein-Brillouin-
Keller (EBK) rules].

We shall now transcribe the WKB method to the Barg-
mann representation and show that it immediately gives
singularity-free, global approximations in the useful re-
gion, for a single well potential. No matching is needed,
nor any shuttling back and forth between representations.
Quantization rules, relations with perturbation theory be-
come transparent and exhibit strong connections with an-
alytic function theory. '

In this section we discuss the formulas attached to the
use of the Weyl symbol for the Hamiltonian, whereas the
normal symbol will be used in Sec. IV.

A. The WEB wave construction

We want to construct a WKB, or phase-integral, solu-
tion to HP=Eg in the Bargmann representation based
on the Weyl symbol H~(fi;x). We shall develop the cal-
culation to leading order in A' (dominant semiclassical be-
havior). We moreover assume that H~ does not depend
on A, i.e., that it coincides with the classical Hamiltonian.
It is in fact surprisingly simple to incorporate quantum
corrections to all orders if the appropriate algorithm is
used; this is done in Appendix A. (The corrections only
involve even powers of fi in the Weyl formalism. )

We know that in the Schrodinger representation, the
equation H g= Eg admits local asymptotic solutions

—1/2
BH~f(q)—

R~O BPE
exp —f pz(q')dq' (3.1)

BZE
exp —f zg(z')dz' (3.3)

where zg(z) is a branch of the classical energy curve in
the (z, z*) coordinates

H~(z, z*)=E . (3.4)

Equation (3.3) can also be derived by applying the in-
tegral transformation (2.4) to the coordinate space WKB
solution (3.1), using the complex stationary phase method
to perform the integration. The integral f 'zz(z')dz' sim-

ply gives the classical action in the z variable.
Now, the relation H~(z, z') =E and the fact that z* is

the complex conjugate of z imply that z lies over the real
energy curve, i.e., z =[q —ipse(q)]/V'2 for some q, and

where pz=pz(q) is any branch of the classical energy
curve in phase space,

H~(q, p)=E . (3.2)

That Eq. (3.1) satisfies the Schrodinger equation up to
0 (R ) results from a purely algebraic computation. Since
Weyl ordering looks the same in the Schrodinger and
Bargmann representations (this involves the invariance
under a linear, albeit complex, canonical transformation),
the same formulas apply mutatis mutandis in the Barg-
mann representation. We must simply replace (q,p) by
(z, z*) and R by i', to find that the eigenvalue equation
admits local asymptotic solutions

' —1/2

Energy quantization around a closed energy curve is
now immediate: the global approximation (3.3) must be
single valued over the energy curve, implying

zg(z)dz =2m.i' k + CX (3.6)

where a is the winding number of the function r)H/dzF'
around one turn. On the left-hand side, by canonical in-
variance,

It)zz(z)dz =i fpz(q)dq, (3.7)

so that we recover the standard EBK eigenvalues provid-
ed we identify a with the Maslov correction.

Another interpretation of the quantization rule (3.6) is
that it monitors whether the eigenfunction f(z) is analyt-
ic inside the real energy contour. A necessary condition
for analyticity is

2mig(x ). (3.8)

which must be a non-negative integer, giving the number
of zeros of g(z) (counted with their multiplicities) which
lie inside the energy curve. If we use the approximation
(3.3) on the energy contour, we find exactly the condition
(3.6), and moreover k ' =k: the kth eigenfunction has pre-
cisely k zeros inside the energy curve (cf. Sturm-
Liouville theory).

There is a marked difference here with quantization in
the Schrodinger representation: the eigenvalue selection
is effectively achieved here by enforcing not the square in-
tegrability of the eigenfunction (i.e. , restricting its growth
at infinity), but is analyticity (which is the other condition
for belonging to the Bargmann vector space).

C. Analytical extension {Ref.1)

Since analyticity in z is an important feature in the
Bargmann theory, it is natural to consider in more detail

consequently zz(z)=[q+ipz(q))l&2 .This defines a
preferred branch zE(z) of the curve (3.4) over the real
classical energy curve only, but this branch is single
valued by construction. For nonanalytic H~ it may hap-
pen that it is impossible to extend the function zz(z) any-
where outside. Thus the asymptotic expression (3.3) is
well defined in any case only for z over the real energy
curve.

There, however, the WKB expression (3.3) has no turn-
ing point anywhere, hence it is globally regular. Indeed,
the turning point condition,

aaw =0, (3.5)az*

and reality, imply BH~/Bz=0 as well. Then it is the
phase-space velocity on the classical orbit which must
vanish, but this only takes place for singular orbits which
are stationary points of H~(q, p), and which are anyway
excluded from the scope of the WKB method (see, how-
ever, Sec. IV C).

B. Semiclassical eigenvalues
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the frequent case where the classical Hamiltonian
Hii, (z,z*) itself is analytic in both variables z and z*.
The energy relation Hii, (z, z*)=E then implicitly defines

zz as a multiply valued (i.e., ramified) analytic function of
the complex variable z. Outside the real energy curve,
zg(z) is no longer the complex conjugate of z, so that a
less confusing notation is required. We shall denote as y
the independent complex variable canonically conjugate
to z (in the sense of classical mechanics), i.e.,

q
Re(z}

z =(q ip—)/&2, y =(q +ip) /&2

Hii, (z,y) =E, (3.10)

(q,p now complex) . (3.9)

The complex energy curve is then defined by

Im(z }

its explicit branches are locally analytic functions of z,

y=y (z), (3.11)

which connect (generally two by two) at the complex
turning points, given by

Hw =0.
Byg

(3.12)

There remains a privileged branch yz' '(z) such that the
real energy curve is specified by yz '(z) =z", and for regu-
lar energy values this real curve contains no turning
point, as explained before. We can think of the cut plane
carrying the branch yz '(z) as the principal or first sheet
of the function yz(z).

The WKB approximation itself is now a holomorphic
expression of z in a region about the real energy curve
avoiding turning points in the first sheet:

—1/2

exp —f yz' '(z')dz' . (3.13)
ByE

Q(z)-

However, the true eigenfunction g(z) is certainly approx-
imated by this simple expression only in some annular
neighborhood of the real energy curve (Fig. 1). Further
away, other branches yz(z) could contribute as well, so
that a global approximation of it/(z) in the whole z plane
would still involve computations of connection formulas,
Stokes phenomena, etc. The crucial advantage of the
Bargmann representation is that this extra work is only
required if subdominant (i.e., exponentially small) quanti-
ties are wanted. Within asymptotic accuracy, everything
is controlled by the values of P(z) over a vicinity of the
real classical orbit in the principal sheet.

Analyticity also makes eigenvalue calculations more
fiexible. The complex integration contour in Eq. (3.5)
may be deformed from its initial position over the real or-
bit, as long as it stays away from turning points and cuts
of the ramified holomorphic function yE '(z).

Consequently, if we interpret Eq. (3.6) as counting the
number of zeros of the exact eigenfunction it/(z), we find
that these zeros must accumulate in the classical limit
along certain cuts joining pairs of turning points (these
cuts must be anti-Stokes lines).

FICx. 1. Typical configuration of a real classicai orbit and of
complex turning points in the Bargmann representation. The
dashed area suggests the region of uniform validity for the
WKB approximation.

D. The harmonic oscillator (Refs. 11 and 1)

In the Bargmann representation, the Hamiltonian for
the reference harmonic oscillator, Eqs. (2.8)—(2.9), is of
first order d/dz, and this causes the leading WKB ap-
proximation to become trivially exact for the eigenfunc-
tions (and thereby for the eigenvalues). Specifically, we
have the equation

fiz +—P(z)=EP(z) .
d
dz 2

(3.14)

The Weyl symbol being Hii, (z,y)=yz, the WKB formula
(3.13) gives

(z ) z i /2exp dz z i /2 + E/R1 ~E
z

(3.15)

which indeed solves Eq. (3.14) exactly, for any value of E.
Then, the single valued ness or analyticity condition
selects E =(k + —,

' )A', giving the eigenfunction gk(z) =z",
which is exact.

This trivial observation will help us clarify and numeri-
cally improve the behavior of the WKB method at low
quantum numbers (see Secs. IV B and IV C).

E. Comparison with other semiclassical techniques

A consequence of Eq. (2.6) is a formula for the Husimi
function where z =(q —ip) I&2,

f@&(yl„(q,p) =.-" /"fq(z) f', (3.16)

a much simpler relation than that of the Wigner function
to the Schrodinger wave function, for instance. It is man-
ifest upon this formula that the Bargmann wave function
carries explicit phase information in addition to the infor-
mation provided by the Husimi function.

Equation (2.6) also links the Bargmann representation
to coherent-state decompositions' and the WKB approx-



WENTZEL-KRAMERS-BRILLOUIN METHOD IN THE BARGMANN. . . 6819

imation to methods based on Gaussian wave packet su-

perpositions.
In the language of action-angle coordinates, the Barg-

mann wave function over the energy curve looks like a
wave function in the angle variable. The semiclassical
quantization in Bargmann variables has technical advan-
tages similar to those presented by action-angle quantiza-
tion without sharing the latter's axiomatic difficulties
(about formulating the fully quantal theory in action-
angle variables).

IV. THE WKB METHOD
USING NORMAL ORDERING {REF.1)

g fi"f u„dz =2irifik .
n=0

(4.6)

There appears no longer any explicit Maslov correction
on the right-hand side. Here, this correction is distribut-
ed partly in the term fu, dz, and partly on the diff'erence
between the Weyl-ordered and normal-ordered operators.
For the harmonic oscillator, exp(i/A f uodz) is already
the exact eigenfunction, and u, =uz= . =0, so that
the Maslov correction must be entirely accounted for by
the shift from Weyl to normal ordering, which is a well-
known fact in this case. Otherwise, all properties listed
in Sec. III are valid here as well.

A. The standard solutions

The WKB solution is most conveniently sought in the
form

oo

g(z) =exp —f g u„(z')fi"dz' (4.1)

Normal ordering is very natural in the adapted Barg-
mann representation: it simply puts all differentiation
operators (d/dz) to the right of all multiplication opera-
tors (z). We now describe WKB algorithms to solve
Hg=Eg in terms of the normal symbol H~(z, y), assum-
ing now without real loss of generality that this symbol is
fi independent (purely classical).

B. The optimized WKB method

Semiclassical analysis is not expected to give good
quantitative predictions at low quantum numbers. Nev-
ertheless, we shall show that by exploiting the lack of
canonical in variance of normal ordering, the WKB
method can be made much more accurate for the ground
states (and low-lying excited states, as it seems), at the ex-
pense of only a slight deterioration for large quantum
numbers. The idea is to select the normal ordering self-
consistently by a variational Hartree argument.

If H(q, p) is the Hamiltonian under consideration, as-
sumed to be bounded below, we minimize the expectation
value

The leading term is, as usual,

u 0(z' }=y~(z'),

with

(4.2)

H~(z', yE(z')}=E . (4.3)

Various algorithms can effectively compute the expan-
sion coefficients u„ to any order n, as polynomials of
(dH& /By) ' and of the other derivatives of Hz at
(z,yE(z)). Those algorithms can be performed by sym-
bolic algebra computer programs. They are described in
Appendix B.

To reach the same order of accuracy as Eq. (3.13), only
uo and u& are needed, and the WKB solution of Appen-
dix B then reduces to

(4.7)

over all possible ground states of positive quadratic Ham-
iltonians (and their translates in phase space). Assuming
uniqueness, we take the minimizing center under transla-
tions as new origin in phase space. The essential step is
then to choose the minimizing quadratic Hamiltonian
h;„as the reference oscillator for normal ordering and
complex structure, i.e., h;„(z,z*)=z*z.

The minimization conditions are given by self-
consistent equations for the normal symbol in the final
Bargmann representation itself:

B,H&(0, 0)=8 H&(0, 0)=0 (translation minimum)

(4.8)

z
g(z)-exp —f yz(z')dz'

B,H~(0, 0)=B,H~(0, 0) =0

~=a,a.H (o,o)&o

(4.9)
(general minimum) .

(4.10)

a'a aH„

+—,
' f z

(z', yz(z'))dz'
z Qy BZ

(aH /ay)~
(4.4)

I

dz =2~ik, (4.&)

or

The quantization condition again expresses the analyti-
city of g(z} inside the real energy curve, as

Consequently, around (z, z* ) = (0,0) we have

HN(z, z* ) =H~(0, 0)+coz*z +0 ( iz~ ) . (4.1 1)

Now, H~(0,0) is the minimal expectation value, which is
often a very good approximation to the exact ground
state, as the practice of the Rayleigh-Ritz method indi-
cates. In turn, the WKB method with respect to this nor-
mal ordering will yield levels very close to those of
Hz(0, 0)+cofizd/dz for low quantum numbers; in this re-
girne it will resemble the random-phase approximation
(RPA) expansion used in Hartree-Fock theory. ' But for
large quantum numbers it will work even better, since
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this WKB method is still semiclassical. Consequently,
this single method will be more uniformly accurate over
the whole spectrum than either standard WKB or RPA
expansion taken separately.

As a numerical example we consider the quartic oscil-
lator:

dH= — +q
2 dq

(4. 12)

H~= ——(z —z*) + —(z+z')",
4 4n' (4.13)

H =exp —BB H
2

(4.14)

[we have used Eq. (1.11)],hence

H~= ——(z —z*) + (z+z*)
4 4n'

2

+Pi —+ (z +z*) +
4 2~2 4@2

The crucial self-consistent equation is (4.9), giving

n=(6a)'"
and afterwards

(4.15)

(4.16)

6f /3g4/3 3 d 1

8 dz 24
d

z +4z +6z
dz

The nontrivial part of the variational argument lies on
minimizing the frequency A of the trial harmonic oscilla-
tor h =

—,'(p /0+Qq ). The corresponding symbols are
[with z =(&Qq —ip /+0) /+2, z*=(+Qq+ip /+0) /
v'Z]

The correct scaling behavior of H with respect to A fac-
torizes out, and it is the operator in the brackets (with an
effective A'=1) which is then treated by the semiclassical
formulas (4.1)—(4.6).

Table I shows the numerical comparison of the usual
Bohr-Sommerfeld formula with Eq. (4.6) used in this opti-
mized representation, to increasing orders in A. We em-
phasize that the optimization has drastically changed the
expansion parameter. This is most obvious in the ex-
treme anharmonic case of Eq. (4.12), giving a frequency
0 in Eq. (4.16) highly nonanalytic in A' at fi=O

C. The localized or "descaled" WKB method

which essentially blows up to a macroscopic scale a
phase-space disk of radius V R around the minimum. The
quantum Hamiltonian expansion around the minimum
has then the form

, dH =ficoz', + g A'"~
dz' .=3

a& ak

j+k= ~ k ~z ~3'

k

If the classical Hamiltonian has an absolute minimum
E;„,any standard WKB method becomes singular for
E =E;„. In the Bargmann representation, however, be-
cause the harmonic oscillator is trivial, the WKB method
can be carried down to E =E;„by means of a simple
scale transformation.

We choose the normal ordering scheme, for instance.
We can always assume that the classical minimum is
E;„=0 at q =p =0. The scale transformation is a
change of variable z ~z':

z =&fiz', A'd/dz =&Ad/dz',

d' d4+4z" + '
dz dz

Xz'~
dz' (4.18)

(4.17) The spirit of the WKB method is then to look for

TABLE I. Numerical comparison of the ordinary (a) and optimized (b) Bohr-Sommerfeld quantization rules for the eigenvalues E&

of the quartic oscillator —
—,'d /dq'+q . In both cases, in order to avoid inverting the quantization formulas, we treated the quan-

tum numbers k =0, 1,2, . . . as the unknown quantities and used as input the tabulated energy levels Ek. One should compare to the
exact k the values k(„, obtained by n-term truncations of the Bohr-Sommerfeld series. In (a) we used the standard rule equivalent to
Eq. (3.6) with corrections (Ref. 20); these naturally jump by two orders at each step; no improvement is obtained for the lowest three
states at higher orders (values not shown). In (b) we applied Eq. (4.6) to the Hamiltonian (4.17). Considerable improvement is gained
for the ground state at the expense of a slight decrease in convergence for large quantum numbers, which means a more uniform ac-
curacy.

E
(a) Ordinary

k( 1 ) k(, ) k(o)

(b) Optimized
k( & ) k(2) k (3)

0
1

2
3
4
5
6
7
8
9

10

0.667 986 259
2.393 644 02
4.696 795 39
7.335 730 01

10.244 308 5
13.379 336 6
16.711 889 6
20.220 849 5

23.889 993 7
27.706 393 5
31.659 456 6

0.081
1.014
2.010
3.007
4.006
5.005
6.004
7.0035
8.0031
9.0028

10.0025

0.0358
0.9967
1.999 97
2.999 94
3.999 976
4.999 987
5.999 992
6.999 995
7.999 997
8.999 998
9.999 998

0
1

2
3
4
5
6
7
8
9

10

—0.0074
0.815
1.728
2.660
3.603
4.553
5.509
6.468
7.431
8 ~ 397
9.364

—0.0093
0.9519
1.959
2.962
3.965
4.967
5.968
6.970
7.971
8.972
9.973

—0.010
0.984
1.993
2.995
3.997
4.997
5.9978
6.9981
7.9984
8.9986
9.9988

—0.0005
0.9947
1.9997
2.999 96
4.000 05
5.00007
6.000 07
7.00007
8.000 06
9.000 05

10.000 04
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eigenfunctions of the Harniltonian A 'H, in the form

@(z')=exp f v(irt;z")dz" . (4.19)

The nonlinear equation for v can be solved by iteration,
giving

v(A';z")= „+g A" P„z", „,E'E'
(4.20)

where E'=A 'E is the unknown eigenvalue and P„ is a
polynomial.

Then the quantization condition (4.5) in terms of the
function v simply expresses that the residue of v, i.e., the
coefficient of 1/z" in Eq. (4.20), should be a non-negative
integer k. To lowest order, this gives E'=k, and the
corrections to this form a power series in A' . But this
power series can also be generated by linear quantum per-
turbation theory (the Rayleigh-Schrodinger method) ap-
plied around the unperturbed Hamiltonian Acozd/dz. '

Hence, upon this descaling, the WKB algorithm becomes
equivalent to standard perturbation theory in an obvious
fashion. The so-descaled WKB expansion is therefore
positively weaker than the origina1 WKB expansion, all
the more that the quantum number k is larger; the origi-
nal WKB expansion can conversely be viewed as a par-
tially resummed perturbation series. The main advantage
of the descaled method is that, being just perturbation
theory from a di6'erent perspective, it readily extends to
any number of degrees of freedom, requiring no addition-
al constants of the motion in contrast with the ordinary
WKB method (see Conclusion).

in Bargmann variables).
This generalization allows the WKB method in the

Bargmann representation to cover certain quasi-
integrable systems. At the other extreme, for very irregu-
lar or chaotic systems, the intrinsic structure of the eigen-
states leaves little hope that their state vectors will admit
any WKB description at all. In this case, we do not ex-
pect that such a difhculty is curable by way of a change of
representation (see, however, Ref. 17 for a more optimis-
tic point of view).

Note added. J. Kurchan, P. Leboeuf, and M. Saraceno
have independently developed similar results in a frame-
work which moreover encompasses curved phase spaces
associated with symmetry groups SU(2) and SU(1,1), thus
considerably enlarging the scope of the method. '
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APPENDIX A: WKB EIGENFUNCTIONS
TO ALL ORDERS IN WEYL CALCULUS

(REFS. 5 AND 1)

CONCLUSION

We shall only observe in conclusion that the Bargrnann
representation is also more promising for a unified WKB
treatment of several classes of quantum Hamiltonians in /

degrees of freedom (I) 1). Completely integrable systems
are handled by the same algebra as in the Schrodinger
representation; ' multidimensional extensions of Eqs.
(3.3) and (3.6) give the joint eigenstates and eigenvalues of
a collection of commuting constants of the motion, again
with all caustic crossings avoided. But in the Bargmann
representation, we can also treat systems with fewer con-
stants of the motion but with one stable fixed point per
degree of freedom corresponding to a missing constant.
The best example is the quantization of a system with a
classically stable orbit isolated in its energy surface. '

The longitudinal motion, generated by the conserved
Hamiltonian itself, can be quantized by a standard WKB
approach, and small transversal motion can be quantized
by the descaled WKB approach. The fact that the two
types of motion are globally coupled is no obstacle. An
output of the treatment is the analog of the Bohr-
Sommerfeld quantization formula for such an isolated or-
bit (see Refs. 16 and 4 for details, Ref. 1 for the treatment

I

We describe a semiclosed WKB expression which
solves to any order in i)1 the operator equation HP=Ef
in one degree of freedom, using the Weyl symbol H~,
which we assume to be A independent until the last para-
graph.

The key idea is to solve the operator equation

(2~irt) '
I q) & q I

= (2~i )

1 1
X lim

~~0 H —E —is H —E +is

[ =5(H —E}] (Al)

in power series of A for the Weyl symbols. We must as-
sume that on the right-hand side, the limits a&0 and
iii~0 commute (this will fail in higher dimensions); and
that on the left-hand side, f is given by a WKB ansatz:

g(q)=ae' " with a,S real . (A2)

(We now use real coordinates and the Schrodinger repre-
sentation because the algorithm is easier to comprehend
this way, but the algebraic results go over to the Barg-
mann case by canonical invariance. )

The Wigner function is then

lg)(@l ii,(fi;q p}=f a(q —r/2)a(q+r/2)e' "'( ' " ' ' " '+t'")dr . (A3)
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=a (q) 5(p —dS/dq) . (A5)

On the other side, to lowest order in fi, we have (locally)

We describe the computation to lowest order in A' first.
We expand the integrand around the point

(p =dSldq, r=0), which is where its phase variation is
slowest, being

5S(q, r)=S(q —r/2) —S(q+r/2)+p(q)r =0(r ) .

(A4)

We may then neglect 6S and the amplitude variation
around r=O, and we find

( 2rr)ri )
—1

~ q ) ( q ~ w ( 2rri)i )
—1a ( q }2je ( /R )( —) ds /dq )r +p ldr

the delta distribution [using Hw(q, pF(q))=E), so that
we may now readily compare Eq. (A6) with (A5}. We
thus obtain

dS
=pz(q) or S(q)= I pF(q')dq' (A7)

by identifying the distributions' supports, and

BHw
a(q)=

Bpg
(A8)

by identifying their intensities.
We have thus recovered the lowest-order WKB solu-

tion in a seemingly tortuous way, but now the incorpora-
tion of quantum corrections is immediate. Indeed, if the
functions a and S in Eq. (A2) have full real expansions

[5(H —E)]w-5(HW(q, p) E)—
=(BH /Bp ) '5(p —p (q)) (A6)

a —g a„(q)fi", S = g S„(q))ri",
0 0

(A9)

where we had to change the independent variable under then the analog of Eq. (A5) is

(2irA') '~P)(P~w-a(q) 5(p —pz(q))+[pF(q) dSldq)—5'(p —pz(q))+ g q), (q)5"(p pF(q}}-
$=2

(A10)

with coefficients y, (q) which will not be needed.
On the other hand, the full expansion of Eq. (A6) is'

Moreover, 0„and a only contain even powers of fi

Now, the Bargmann analogs are obtained by the substitu-
tions q~z, p~y, fi~ifi (see Sec. III A). For instance
(still with )ri-independent Hw ),

oo l[5(H E)]w = g— Q„(fi;q,p—)5'")(Hw(q, p) E), —
0

7'.

with
(A 1 1) gW gw O

Q„(fiiq p) = [[H Hw(q~p) I] I w(h~q p} (A12)

[5(H E)]w= g a—, (fi;q)5"(Hw(q, p) E)—
$=0

(A13)

where

a, (A';q) =I [5(H —E)]w[p pF(q)]'Is!dp—

},a
r! w ' ap

where I is the identity operator; then the change to p as
independent variable inside (Al 1) results in

Q2 =[(Hw), —(Hw)„(Hw) ]Pi /4+0(R ),

g3 =[(Hw) (Hw) 2(Hw) (Hw) (Hw)

+(Hw)y(Hw)„]Pi /4+0(i)i ),
gW gW — —0 (g4)

(subscripts denote differentiations), and

a, (z)=(aH /ap ) '+0(A''), a, =0(R ),

(A17)

(A18)

X (Hw) ' 0 ())i )s!
(A14)

Q„=o (A'") for any r ) 3n /2 . (A16)

Finally, the comparison of Eqs. (A10) and (A13) yields
the full WKB phase and amplitude, respectively, as

S = f (p~ —a, /ao )(q')dq', a =(ao )' . (A15)

This is an effective formula to any finite order A" be-
cause the sums (Al 1) and (A14) are then finite, due to the
property

but here the A' corrections are already so long that we do
not reproduce them (23 terms for ao, 13 terms for a1).
This algebraic complexity is the one practical disadvan-
tage of the Bargmann representation, as the Hamiltonian
no longer enjoys a privileged simple form like p + V(q)
in real coordinates. However, symbolic computer
languages can easily manipulate such bulky expres-
sions. '

Finally, when the Weyl symbol itself contains
dependent terms, they can be taken into account in two
equivalent ways: either by using the same formulas
[(Al 1}—(A15)] but reexpanding Hw and pz(q) in powers
of A, or by using the classical limit 00 everywhere in
place of Hw (which redefines the coefficients Q„and a, ).
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H@(R z,y) HN(z y) (HN )»
fiW» N (81)

(subscripts will denote differentiations), and the eigen-
function itself is

BHw

Bp

—]/2

exp — YE A;z' dz'
= YE

(82)

where YE is given by

H~(fi;z, Y&(z))=E .

We shall use in fact Eq. (82) in the form

aHw

()y
~

»=Y~
)ri 1ng- YF(fi;z} — ln-d fi d

dz 2 dz

(83)

(84)

To that same order of accuracy, we can further simplify,

))l(HN}»
Y~(A;z)- Y~(z)+—

2 (HN )»» = Y&(z)

APPENDIX B: WEB EIGENFUNCTIONS
TO ALL ORDERS IN NORMAL-ORDERED

CALCULUS (REF. 1)

We describe four possible algorithms for computing
the WKB solutions of the eigenstate equation Hg=EP
in terms of the normal symbol HN(z, y), which we assume
to be A independent until the last paragraph.

(1) An obvious but indirect method is to return to the
Weyl symbol, using the inverse of Eq. (1.11) or (4.14)
(the latter in complex coordinates), i.e., H~(fi;z, y)
=exp( —R/28, ()» )HN(z, y). To the order in A' corre-
sponding to Eq. (3.13), this simplifies as

and

(HN )z»
in/ —yz (z)+-

dz 2 (HN)

(HN ), (HN)-yz(z)+-
(HN )z

—Ad
ln(HN )

2 dz

(86)

where we have used

d
dz

(HN}. a
Bz (HN) ()y „= ( )

(87)

X (HN), (HN }»»+ — (z',yz(z') ) dz'
(HN )»

To obtain higher orders we may then use Appendix A
(including the last paragraph, since H)Y depends explicit-
ly on A).

(2) We may adapt the same argument as in Appendix A
to the case of the ordering where p operators are put to
the right of q operators (in real coordinates) (Ref. 1, Part
IV, Annex C), then transpose to complex coordinates us-
ing q~z, p~y, fi~ifi. The analog of Eq. (A15) is then
obtained as

z
/=exp — yz—

aN —Ad aN/dz'
N
0

(z')dz' (88)

where total differentiation is in the sense of Eq. (87), and

Consequently, we obtain the WKB eigenfunction as given
in Eq. (4.4),

p(z)-exp —f yz(z'}

~N(X;z)= y (
—1)"
r!

yz(z) —y
'

S. y yE(,z)
(89)

with

QN(A;z, y) =
I [H —HN(z, y)I]"I N(A;z, y),

QN=O(A'") for any r ) 2n

Thus Eq. (88) is a semiclosed expression valid to any fnite order in I To lowest order for instance

(z0 (HN }» + [(HN )» (HN )»—»
—(HN )» (HN)»»(HN )z» ]» =»~(z)2

a( [ 2(HN)» (KN)z»+(HN)» (HN)z(HN)»]»=»~(z)2
and Eq. (88) reduces to Eq. (4.4).

The last two algorithms are iterative.
(3) Take as unknown function v (fi;z) where

g(z) =exp —f 'yz(z')exp f 'U (R;z')dz'

(810)

(811)

(812)

(813)

The eigenfunction equation K/=ED then becomes

[HN(z, yz(z)+fiB, ) —E]exp f U (fi;z')dz' =0 .

This has the Taylor expansion

(814)
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oo

(H)v ) „[yE(z)—y. I+A'd/dz]"exp I u(A';z')dz'
n=1

=0 (815)

Now, we have that
r

'exp —I u())'i;z')dz' [y~(z) —y I+)rid/dz]"exp I u(fi;z')dz' y=y (,)=P.(f;u(z), du/dz, d2u/dz2, ), (816)

is a certain polynomial in i)i, u, and its derivatives at z (the coeScients of P„depending on derivatives of H)v ). In partic-
ular,

du
P& =u, Pz= — +A' +u (z)

(H~) dz
(817)

Therefore Eq. (815) can be rewritten as

u(i)i;z)= —(H~)y ' g, (H~) „P„(A';u(z),du/dz, . . . ) .
1

n! (818)

The right-hand side can be made explicit to any finite order in A' (it is then analogous to the Riccati equation in the
Schrodinger case). Equation (818) can then be solved to that finite order by repeated iterations.

The first two steps give v[o] =0, and

(H~) (H~),
2(H)v )y

(819)

which corresponds to Eq. (4.4).
(4) The last algorithm resembles the descaling method described in Sec. IVC but now the expansion is performed

around a regular point (zp, yp ) on the classical orbit, i.e., a new variable z is used, where

d
z =zp+&iriz', i)i =yp+&)ri, [H~(zp, yp) =E] . (820)

The eigenfunction in the new variable is

f(z) —=exp(ypz/&iri)p(z') .

As in the preceding algorithm we write the equation in terms of u = (d /dz)in()'j. It reads in expanded form as

(821)

exp — u H)v(zp, yp) E+A' (H)v) z'+(HJv)&
0 y dz

+
m+n =2 m!n!

(H~) (H)v ) .
g(m + n)/2 Imz

dz
exp U =0 .

J

(822)

Since Hz(zp, yp) =E, the leading contribution comes from the linearized motion around the classical orbit, which is a
well-known idea in semiclassical theory. Rewritten accordingly, as

u(z') =—(H~),
g(m + n —1 )/2

+.=i

(H)v ) (H~) „
0 mz exp —

U
m! n! dz

n

exp U (823)

u (A';zp, yp) =)ri 'i~u(z'=0), (824)

and it has the most suitable form for extensions to mul-
tidimensional systems in conjunction with the descaled

Eq. (822) can be solved by repeated iterations of Eq.
(823). This algorithm is a close relative of the previous
one, giving the function u in Eq. (813) as

method around a fixed point. '

(5) Finally, to account for quantum corrections coming
from an explicit dependence in A of the normal symbol
H~ itself, the same formulas can be used, provided all fi-
dependent quantities, like Hz and now also yz(z), are
further reexpanded. For the second algorithm, the alter-
native described in the last sentence of Appendix A can
equally well be used.
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