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Semiclassical approximations in the coherent-state representation
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We analyze the semiclassical limit of the stationary Schrodinger equation in the coherent-state
representation simultaneously for the groups 8'1, SU(2), and SU(1,1j. A simple expression for the
first two orders for the wave function and the associated semiclassical quantization rule is obtained
if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of
the modulus of the wave function, which is a distribution function in a curved phase space, is stud-
ied for the three groups. The results are applied to the quantum triaxial rotor.

I. INTRODUCTION

In recent years there has been a renewed interest in
semiclassical approximations in many fields of physics.
Two aspects arise which are not generally recognized in
the standard textbook WKB approach and which are at
the root of this interest. The first is the understanding
that many quantum theories possess a classical limit—
different from the standard Pi~0 limit —when a certain
parameter X (e.g. , the dimension of the space, of the
group representation, etc. ) goes to infinity. These limits,
broadly known as 1/N expansions, ' can provide a wealth
of information about many aspects of otherwise intract-
able quantum problems.

The second aspect, much more fundamental and
dificult, is related to the fact that most classical limits
obtained in this way lead to nonintegrable classical dy-
namics and to the awareness that the ensuing chaotic
motion severely limits the applicability of standard semi-
classical methods.

The semiclassical limit of the Schrodinger equation in
this case is not yet completely understood and is a subject
of current research. The integrable case when the limit
is the standard A'~0 has been extensively studied (usually
in the coordinate representation) and corresponds of
course to the WKB approximation.

In this paper we address mainly the first aspect and
show how WKB works for phase spaces associated to
groups other than the O', Weyl group. A detailed
analysis for the case of the Weyl group is carried out in
Ref. 4, and we will frequent1y refer the reader throughout
this paper to that reference.

We use the coherent-state representation which due to
its analyticity properties provides a smooth, global ap-
proximation to the semiclassical wave functions. There
are no caustics and a11 the relevant quantities are
displayed in phase space. ' ' In the case of the Weyl
group this representation takes the form of a Hilbert
space of analytic functions studied extensive1y by Barg-
mann, but it is also available for many other groups. In
fact, coherent states are known for a large number of

semisimple (both compact and noncompact) and nilpo-
tent groups. We will be interested here in conservative
one-dimensional systems belonging to the representative
cases of the Weyl W„SU(2), and SU(1,1) groups, using a
formalism that allows for their unified treatment.

The group structure induces its own geometry on the
space of parameters that label the coherent states —this
space corresponds to a manifold A, which has a symplec-
tic structure defined on it and therefore can be thought of
as a "curved" phase space.

Quantum mechanics defined in the unitary representa-
tions of these groups goes to a classical mechanics on the
respective phase spaces when the weight of the represen-
tation becomes large. This limit has been studied before
mainly using path-integral methods.

Our strategy is different here; we follow closely the
standard WKB approach of quantum-mechanical text-
books. We first write the differential version of the sta-
tionary Schrodinger equation in the coherent-state repre-
sentation valid for the three groups. This equation con-
tains the weight of the unitary representation as a param-
eter and therefore using a rather standard argument we
construct the asymptotic solution —which we study to
next-to-leading order.

There are several possible "classical" Hamiltonians
(symbols) defined on A/, associated with a given quantum
Hamiltonian, the most usual ones being the Q and P sym-
bols ' (related in the W& case to normal and antinormal
ordering, respectively). The quantization condition arises
from the requirement of analyticity' ' and takes the form
of a Bohr-Sommerfeld quantization rule.

Because each type of symbol possesses a different
dependence in the semiclassical parameter, the form of
this quantization condition depends on the symbol under
use. Which symbol yields better results depends on the
particular problem under consideration. The central re-
sult of this paper is to show that there is a unified geome-
trical treatment underlying the semiclassical approxima-
tion in many group representations, therefore extending
considerably the application of methods available for the
Weyl group in these more general limits. Specifically,
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we study the wave functions and quantization rules and
their next-to-leading-order corrections for the groups
W&, SU(2), and SU(1,1). We find that the corrections are
greatly simplified if the following points are true.

(i) These specific choices are made for the expansion
parameter: iit'for the Weyl group, (j + —,

'
)

' for the SU(2)
group, and (k —

—,
'

)
' for the SU(1, 1) group (j and k being

the usual labels of the representation). The convenience
of such choices for the expansion parameters is also sug-
gested in other contexts: (j+—,') ' in the Langer correc-
tion' for the radial Schrodinger equation and (k —

—,')
in the case of the free motion of a particle on a manifold
of negative constant curvature. '

(ii) An "intermediate" symbol (located between Q and
P) is used as classical Hamiltonian. This symbol coin-
cides with the usual classical Weyl-Wigner' symbol in
the case of the W', group. In the case of SU(2) and
SU(1,1) groups, this intermediate symbol coincides to this
order with the generalization of the Weyl-Wigner symbol
as given by Berezin. '

As in ordinary Maslov-Einstein-Brillouin-Keller treat-
ments' the next-to-leading order enters through a
Maslov index which, under certain assumptions, depends
only on the nature of the stationary points encircled by the
trajectory.

We also study the square amplitude of the wave func-
tion in the coherent-state representation, which provides
a positive definite distribution in the phase space JM, in

many ways similar to the Wigner distribution. ' There
are important differences, however, since, as is known,
besides being positive definite this distribution is smooth
and converges onto classical invariant structures. It con-
stitutes therefore an ideal tool for the identification of
these structures in quantum eigenfunctions. For the case
of the Weyl group, this distribution was first used by
Husimi' and its semiclassical limit studied by
Takahashi. ' We generalize these results for the other
groups.

The paper is organized as follows. In Sec. II we review
the coherent states of W„SU(2), and SU(1,1) introducing
a unified notation. In Sec. III we obtain the asymptotic
limit up to next-to-leading order for the stationary
Schrodinger equation. In Sec. IV we study the analytici-
ty requirements that lead to quantization including the
Maslov correction. In Sec. V we study the square
modulus of the wave functions and show how it con-
verges smoothly onto the classical trajectories of a Ham-
iltonian which is somewhere in between the classical Q
and P symbols. Finally as an illustration we apply in Sec.
VI the results to the simple case of the asymmetric quan-
tum rotor.

II. COHERENT STATES
In this section we review briefly the properties of

coherent states, in particular their use as a phase-space
representation (the Bargmann representation). Excellent
and very comprehensive reviews of coherent states, their
properties, and applications have appeared recently in
the literature. '

The emphasis will be to show that well-known results
for the usual coherent states of the harmonic oscillator

can be easily extended to coherent states of other groups
and to present a unified treatment for the elementary
groups Wi, SU(2), and SU(1, 1).

A. The elementary groups

I. The Weyl group Wi

The generators are a, a, and I with commutation rela-
tions

[a,a ]=(1/A)I,
[a,I]= [a ,I]=0 .

(2.1)

Notice the slightly unconventional placement of ih' in (2.1)
which results from our definition of a and a in terms of
the classical operators P and q:

a
1

1&m coq+i p
mco

1&m cocj i — p
mco

(2.2)

~z & =exp(zat)~0&,

a~o)=o
(2.3)

where z (and its complex conjugate z ) are classical
phase-space coordinates

1 ~ . 1z= — &mcoq —i p
2 Pl CO

1 1z= — &mcoq+i p
2 mco

(2.4)

The norm of ~z ) is given by

(z~z ) =exp(zz/irt) (2.5)

and the algebra is realized by the differential operators:

(2.6)

The Hilbert space of analytic functions where a and a
are Hermitian conjugates has been extensively studied by
Bargm ann.

2. The SU(2) group

The generators are J+ and Jo with the algebra

[Jo,J+ ]=+J+,
[J,J+]=—2JO .

(2.7)

The orthonormal bases of the unitary representations
are labeled by the quantum numbers j and m and they

This normalization allows a uniform treatment of all
groups.

The coherent states are defined as
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span the Hilbert space which is finite and 2j+1 dimen-
sional. Coherent states for a given j representation are
defined as

groups. For that purpose, we introduce parameters a
and 0 which have the following values:

lz & =exp(ZJ+ ) Io&

where IO) is the lowest weight state
I j, —j ).

The norm is given by

(2.8) 0 for 8' 1/A' for 8']
a= '1 for SU(2) 0= '2j for SU(2)

—1 for SU(1, 1), 2k for SU(1, 1) (2.16)

(z Iz & =(I+zz)'~ (2 9) and define

and the generators can be represented as differential
operators

(ZIJ+ lit) = —z'„+2jz &ZI1(&,
2d

dz

(2.17)

It will be shown in the following sections that A. is for the
three groups the most "natural" semiclassical expansion
parameter. In terms of these parameters the norm of the
coherent states is

&.IJ l1()= „(zllt), (2.10) (zlz) =(1+azz) =(1+azz) ~ (2.18)

&ZIJ, lit&= z„—J &ZI1(& .
dz

The Hilbert space is here that of polynomials of degree
2j +1.

In the case of the Weyl group, (2.5) is obtained from
(2.18) in the limit a~o.

All the geometrical quantities associated with the man-
ifold A, spanned locally by the complex coordinates z and
z can be expressed in terms of the quantity

3. The SU(1,1) group

The generators are K+ and Ko with the algebra

[Ko,K+ ]=+K+,
[K,K+]=2KO .

(2.1 1)

1 1F(z,z)= —ln(1+azz)= —ln(zlz) .
CX 0

We will also need the definition

g(z, z) —= =z j(1+azz) .
BF
az

The metric is given by

(2.19)

(2.20)

I
z ) =exp(zK+ ) IO) (2.12)

As the group is not compact, unitary representations are
infinite dimensional. We will only consider here the
discrete representations D+. Coherent states are defined
as

d s =4 dz dz =4(1+azz) dz dz .
BF
azaz

(2.21)

The corresponding two form (X denotes the exterior
product)

where Io) is the lowest weight state of the D+ represen-
tation defined as

m=2i dz Xdz0 F
Bz cgz

(2.22)

K'lo& =k(k —1)lo&,

K.l» =klo&

where K =Ko —
—,'(K+K +K K+ ). The norm is

(z Iz ) =(1—zz )

(2.13)

(2.14)

defines the area on A. . For the Weyl group (2.22) can
also be written in terms ofp and q variables as [cf. (2.4)]

co=2dp Xdq .

Finally, a symplectic structure is defined for functions
on& as

and a diff'erential realization of (2.11) is given by BFIf g I=i af ag af ag
Bz cjz c}z Bz

(zlK+ I@)= z +2kz (zip),
dz

&. IK Iq&= „(.Iq), (2.15)

af ag af ag
az ag ag az

(2.23)

(zlK I1/i&= z +k &zip& .
dz

B. Geometrical structures

It is convenient at this point to introduce a unified no-
tation that will allow the simultaneous study of the three

g is the canonical conjugate variable of z. In the rest of
this work, unless otherwise stated, it is understood that
the independent arguments of the functions are z and g.
The complex manifold A, is a coset space for the groups
and is a sphere for SU(2), a hyperboloid for SU(l, l), and a
plane for 8', . The parameter a defined in (2.16) is then
interpreted as the curvature of the corresponding mani-
fold. For the simple cases treated here this manifold has
dimension two and corresponds to the phase space of a
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system with one degree of freedom. For other groups the
dimensionality is in general that of the orbits under the
coadjoint action of the group.

The Laplace-Beltrami operator on JK is given by

Alternatively, a differential realization of the action of
an operator can be obtained using (2.6), (2.10), or (2.15).
Thus

aF
a.a;

a z a=(1+azz )
az az azaz

a a a

ay az ag

Alternatively, in terms of the variable z, g

(2.24)

(2.25)

(z~A"~y&=A z, „&z~1t& . (2.33)

We will always assume that the operator in (2.33) has
been "normal" ordered with all operators d/dz acting on
the right.

A relationship of A (z, d /dz) with the Q symbol is easi-
ly obtained from (2.33) as

These geometrical structures determine the manifold JK
as a phase space (though in general with a more compli-
cated structure than the usual classical phase space of
mechanical systems).

The set of coherent states constitutes also an overcom-
plete basis for the representation of each group. This can
be symbolized in a resolution of unity

( g)
(z~ A ~z )
(z(z) A z (ziz )

In this representation the Schrodinger equation is

(.Iy) =E&.lq& .

(2.34)

(2.35)

I = f dp(z) iz&&zi

&z/z &

where the measure is

aF
dp(z) = — d(Rez)d (Imz) .

7r azaz

(2.26)

(2.27)

In the solution of this equation the requirement of
analyticity is essential and provides the quantization of
energy. '

III. ASYMPTOTIC EXPANSIONS

The action of operators on At can be represented in the
following two ways. As integral kernels using (2.26) any
operator can be written as

A = f dp(z)dp(y}&zl A ly &

fz &&y I (2.28)

However, the analyticity of the coherent states allows a
simpler representation in terms of diagonal kernels as

A = f dp(z) A (z, g) .
&z~z&

(2.29}

8 z, „ddz
1 d=gf (z, A} (3.1)

The asymptotic expansion of (2.35) is obtained with the
usual WKB-like ansatz

%'e turn now to the solution of the stationary
Schrodinger equation (2.35) in the limit for large A.. It is
important to notice that we do the expansion in A, =A+a
and not, for example, directly in Q.

We first expand the Hamiltonian in normal form as
'm

Another representation is in terms of diagonal matrix
elements

&z~g&=exp[AS(z)] .

Substituting (3.2) in (2.35) and using the fact that

(3.2)

(z[A" [z)
&z/z)

which is related to A in (2.29) by

A (z, g)= f dp(y) A (y, v)(zly &&ylz& o

(2.30)

(2.31)

—xs d A,S
dz' dz

we get

8(z,S'(z) + ( I /A, )(d /dz) ) 1 =E (3.4)

A =TA =(1+5/A+ . . )A (2.32}

In (2.32) we have used the expansion parameter A, defined
in (2.17).

where v=y /(1+ayy ). Here, as stated previously, we are
taking (z, g) and (y, v) as independent variables. Both A

and A fully represent the quantum operators 3 and are
known as covariant (or Q) symbol and contravariant (or
P) symbol. They map the operator into a c-number func-
tion on the classical manifold A, . Their relationship has
been extensively studied. For our purposes we are only
interested in their asymptotic relationship (see Appendix
D):

where primes indicate derivative with respect to z. The
rather symbolic expression (3.4) can be expanded explicit-
ly in terms of I/A, as follows:

E = 8(z, u)+ S"(z) P(z, u)
1 „a

2. aQ

+ S"'(z} B(z,u)+ .a'
3(A, au u =S'(z)

(3.5)

where 8(z, u) is (3.1) replacing (1/A, )(d/dz) by u. This
equation is an exact nonlinear equation for S which is
equivalent to (2.35). In Appendix A we rewrite this ex-
pression up to order 1/A, in terms of the Q symbol H (z, g)
and its derivatives with the result
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E= H(z y)

1 B' B+ a y +2y H(z, y)
2A. By

+S"(z) H(z, y) +O(A, ) .B2

By y =S'(z)

The first is the Hamilton-Jacobi equation for S0 in terms
of the Q symbol as a classical Hamiltonian, and (3.12) can
be used to compute the I /A, correction S,(z).

In general, H(z, g), includes various orders in A, and
therefore the separation [(3.11), (3.12)] order by order in
X is somewhat arbitrary. We can use this fact to extract a
classical Hamiltonian in such a way as to leave in (3.12)
only the total derivative, rendering it trivially integrable.
We are thus led to define a new classical Hamiltonian &, :

(3.6)
In what foHows we shall invoke analytical continuation in
order to assume that y belongs to an annular domain that
contains a branch of the trajectory y =g (cf. Ref. 4 for
details). The last term in the right-hand side of (3.6) can
be written in terms of a total derivative

H= 1+ + . . . 8„8,= 1 — + H
2k 2X

(3.13)

S"( )
d H(z, y)

By

d dH(z y)
=s (.) dz By

y =S'(z) E =&,(z,y) ~

y So(z) (3.14)

in terms of which Eqs. (3.11) and (3.12) take the form

and then (3.6) becomes

dH (z,y)
BZBy -s( )

(3.7) M', (z,y)
S', (z) = —— ln

2 dz By y =-So(z)
(3.15)

r

1 d dH(z y)
2k dz By

y =S'(z)
+O(A, )

1E =H(z, y)~, , (,)
— aH(z, y)2k

y =S'(z)

(3.8) H =exp( b, /2X )8= ( I +A /2A, + . . )S . (3.16)

In the case of the Weyl group we verify that &,
defined in (3.13) coincides to this order with the "classi-
cal" Weyl-Wigner symbol % which is connected with the
Q symbol H through (see, for example, Ref. 15)

1S=S +—S+0 g 1 (3.9)

where we have used (2.25) for the Laplace-Beltrami
operator b. The neat feature of (3.8) is that the first-
order terms have assembled to form a differential opera-
tor with a geometrical significance plus a total derivative.
It is important to remark that this only happens because
we have used A, instead of 0 as an expansion parameter.

Equation (3.8) is solved order by order with K = ( I+5/2A, + . )8,
H =( I+6, /2A, + . )8

(3.17)

(3.18)

For the SU(2) and SU(1,1) groups Berezin' has intro-
duced the generalization of the Weyl-Wigner symbol,
defining the Weyl covariant A and Weyl contravariant
A symbols of an operator A. For our purposes we only
need the asymptotic relation of & and W with the Q
symbol, which in Appendix D are shown to be

obtaining

E =H(z, y)~
y So(z)1, dH(z y)

By y =So(z)

1 d dH (z,y)
2 dz y —So(z)

,' b.H (z,y )~——
y —so(')

(3.10)

We see that, up to this order, these symbols & and W
coincide and both agree with the expression (3.13).

In any of the three groups, the simplest way to com-
pute the wave function, correct up to second order in
1/k, is then to use a classical Hamiltonian satisfying the
asymptotic relation (3.13)—so that &, is "half way" be-
tween the Q and P symbols as results from the compar-
ison of Eqs. (3.13) and (2.32). In that case, (3.14) and
(3.15) are applicable, and the first-order correction for the
energy is trivially computed, as will be done in Sec. IV.

Then from (3.14) and (3.15) the asymptotic solution to
(2.35) now becomes

This yields the two equations

E =H(z, y)~
y —So(z) (3.11)

8&,(z,y)
z Q

By

where

y =So(z)

—1/2

exp[ASO(z) ] (3.19)

S, ( )
1 d

1
BH(z,y)

2 dz By y =So(z)
So(z) = I y (z', E)dz' (3.20)

hH
2 BH/By y=s'( )

(3.12)
and y (z, E) has been obtained inverting algebraically the
equation &,(z,y ) =E. This is a WKB-like solution
which, however, has some characteristic differences
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which are worthwhile to point out. The prefactor is
analogous to the 1/&p(q, E) of the WKB theory. How-
ever, since we are now in phase space and there are no
turning points on the classical trajectory, the prefactor
does not diverge and (3.19) provides a regular approxima-
tion in a neighborhood of the trajectory.

dS(z) 1 d
~

dz (z~y& dz
(4.1)

then, for finite A. , and for a circuit C in the complex plane
in a neighborhood of a branch of the trajectory

A f &S'(z)dz =i Ah(arg(z ~ f) ) =2min, n =0, 1, . . .

(4.2)

where b, ff] is the jump of f around C and n is the num-
ber of zeros of (z~g) inside C. When A, ~oo the func-
tion S'(z) has, in general, cuts and poles in the complex z
plane. According to (3.9) we impose the quantization by
requiring that

I) I2 nI + + + (4.3)

where we have de6ned

bS;(E)I;=
2'lTl

dS,
(z, E)dz (4.4)

where tr denotes the fact that we have chosen a branch of
the trajectory as integration contour.

The integrals (4.4) can be interpreted as a particular
case of the contour integrals of the form

f [f&
(z, z )dz+ f2(z, z )dz ] (4.5)

tr

with f2=0, f, =f, (z) in the two-dimensional space of
independent variables z, z.

For Io we can hence write

1 dSOIo= z E dz
2~i tr dz

1 z 1 BFdz- dz
vli tr 1+Azz 2~i tI Bz

(4.6)

where the integrands in the first and second integrals only
coincide on the trajectory.

Using Stokes' theorem for the right-hand side of (4.6)
we get

1 BF 1
. f dzXdz= f ~

«BZBz 4m tr
(4.7)

where co is the area two form on the manifold A, [cf.
(2.22)], so that I„co is the area enclosed by the trajectory
of energy E on A, .

IV. QUANTIZATION IMPOSED

The requirement of analyticity for (z~f) inside the
trajectory imposes the quantization of energy. This fact
can be used to derive quantization conditions similar in
nature to the Bohr-Sommerfeld rules. Since

Let us now compute the next term I, . Using (3.15) for
S', we get

dS,I)= . dz�-
=2� tr dZ

B
d ln

47Tl tr By V
=So(z)

(4.8)

using the fact that the integral is over a branch of the tra-
jectory and expressing it in terms of the independent vari-
ables z, z as in (4.5) we have

I =—
1

'. fd 1

B

4m t. By v =pz z)
(4.9)

Let us define

1 cy= fd ln
2mi tr By v g(z z)

(4.10)

so that to these first two orders, from (4.3), (4.7), and
(4.10) the quantization condition becomes (8 denotes
area)

6 —f co — n+
tr A, 2

n=0, 1, . . . . (4.11)

2
H= + V(x)

2m
(4.12)

with V(x) a smooth function, y is shown in Appendix C
to be one, as expected. However, this phase-space calcu-
lation of the Maslov index reduces to counting the num-
ber of stable minus of unstable stationary points encircled
by the classical trajectory.

Even though similar to the usual Bohr-Sommerfeld ex-
pression in coherent-state representation, this formula
diff'ers in (i) that it uses classical orbits as calculated with
&, and (ii) we use 20+a instead of 2Q as expansion pa-
rameter.

Let us exemplify this with a trivial example of an SU(2)
Hamiltonian

= —J
so that Q and P symbols read

H =j(1—2zg) = (1—2zg),
(A. —1)

2

H =(j+1)(1—2zg)= — (1—2zg),p . (A, +1)
3

(4.13)

(4.14)

(4.15)

This is the general quantization for an arbitrary Hamil-
tonian &, to this order; y has to be calculated in each
case. The integral (4.9) is obviously that of a form that is
closed wherever in(B&, /By ) ~ + ~

is a nonsingular
function of z, z. If we assume that the integration contour
can be broken down into circuits surrounding each singu-
larity and we further assume that B&,/By ~ + ~

is itself
nonsingular inside the trajectory (this is not the case, for
example, with the Coulomb potential) then y is complete-
ly determined by the local properties of.&, in a neighbor-
hood of each stationary point. In Appendix C we analyze
this in more detail. In the well-known case of the Weyl
group with a Hamiltonian of the form
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and, correct to next-to-leading order

W=~. =(j + —,')(1—2zg) =—(1 —2zg) . (4.16)

The y index is calculated easily (see Appendix C) to be

and the complex conjugate equation for z.
We want to extract this behavior from our approxi-

rnate expression for the wave function in the coherent-
state representation. The square modulus of this wave
function provides a positive phase-space distribution

The classical trajectory is obtained from (4.16) by

(4.17)
W(z, z)= I &z I @)I 1

&zlz)
=exp 1, S+S——ln&z Iz )

g(z, E)= 1— 1

2z
(4.18)

so that the quantization condition reads

f 2E 4v
co=2m 1 — = (n+ —,'), n =0 1, . . . , A, —1

tr

(5.2)

This is the Q symbol for the density operator. In the
case of the Weyl group it is known as the Husimi distri-
bution function. '

Using (3.9) and (2.18) for the norm, we can write to
second order in A,

or

(4.19) 1
W(z, z)=exp A, Ao(x, z)= —A, (z, z)+ . (5.3)

Al ~E =——n —
—,
' =j —n, n =0, 1, . . . , 2j (4.20)

which is the exact result.
This example was treated by Kuratsuji and Mizobu-

chi in their study of the semiclassical approximation in
the coherent-state representation for the spin group using
the Q symbol for A and the same y index, obtaining a re-
sult incorrect to next-to-leading order in A, (or in j). No-
tice the essential role played by the choice of the "classi-
cal" Hamiltonian and by the choice of expansion parame-
ter I, (a fact already conjectured by them).

There are many other situations where one attempts to
use the Q symbol as a classical Hamiltonian, the most
notable being the time-dependent Hartree-Fock method.
Although there is no expansion parameter there, the
question of which is the most appropriate classical Ham-
iltonian, in the sense discussed in this paper, remains to
be explored.

In this section we have found an approximation
scheme for the energies by expanding the "action" [cf.
(4.3) and (4.4)] in powers of 1/A. and imposing, for each
order, a quantization condition (4.2).

A diFerent strategy, often connected with perturbative
corrections based on bosonizations, ' is to expand the
energy of the nth level E(A, , n) in powers of I/A, . The
coefficients are consequently, in general, n dependent.

In Appendix B we study the relation between both ap-
proaches. In particular, we show that Bohr-Sommerfeld
approximation (without the y index) is equivalent to a
leading order in I/A, but keeping P=n /A. as an indepen-
dent parameter (i.e. , a resummation of all terms in the ex-
pansion for the energies of the form n /A, ).

V. HUSIMI DISTRIBUTiON

a Fi= [z,&, ] =i
azaz

(5.1)
az

In the large A, limit quantum dynamics reduces to a
classical theory on the manifold A, with the dynamics
given by Hamilton's equations [cf. (2.23)]

'a&,

where

Ao(z, z ) =So(z)+So(z ) F(z, z ), —

A, (z,z)=S,(z)+S, (z)+aF(z, z) .

(5.4)

(5.5)

For large k, 8'(z, z) is sharply peaked at the point where
Ao(z, z ) has a maximum:

aw,
az

aw, =0.
az

(5.6)

Using (5.4) and (2.20) we see that this condition is
satisfied by the points such that

ax, (z,z)
az

dSO(z) —g(z, z) =0
dz

(5.7)

Ao
+CO + . , (5.8)

az2

where the first derivatives vanish on account of (5.6) and
the second derivatives are computed on the points (z„z, )

belonging to a classical trajectory of energy E. If the first
term, which is a constant over the classical trajectory is
included in the normalization, and using (5.7) it is easy to
show that

1 a F 2dz + 2dz
co 2coco +6)2a a- d- (5.9)

where the derivatives are evaluated on (z„z, ).
Let us now define a unimodular complex number

(and simultaneously the complex conjugate equation).
This is exactly the condition that determines So as a solu-
tion to the Hamilton-Jacobi equation (3.14) and therefore
the maxima occur on the classical trajectory.

To study the shape of the distribution close to the tra-
jectory we expand Ao(z, z ) up to second order

Ao(z, +co,z, +co)= Ao(z„z, )

, a'~, a'w,
+

2
co +2coco

az2 azaz



40 SEMICLASSICAL APPROXIMATIONS IN THE COHERENT-. . . 6807

a =—dz/dz which clearly defines the direction of the tra-
jectory. Then (5.8) becomes

ds 02FU= =2 zz
dt gzgz

1/2

1+azz
Z Z )1/2 (5.19)

Ao =— (boa —boa )
1 BF
2 azaz

(5.10)

CO] + l C02 =COQ

then

(5.11)

Q) —COL +COT (5.12)

We notice that this form vanishes for co in the direction
of the trajectory [as was to be expected from (5.6)]. If we
write the directions of co relative to the trajectory using
the real numbers co, , ~2.

If we now use Hamilton's equations (5.1) for i and i we
get

M', ayf,
'"

v =2(1+azz)
az az

(5.20)

and thus we see that, up to a normalization factor, (5.18)
is the inverse of the phase-space velocity.

Finally, using these results, the large A, form of the
Husimi distribution in the neighborhood of the point
(z„z, } on the trajectory can be written

COL =Q CO], CO T = lQ CO2 . (5.13)

where we have defined the longitudinal and transversal
components

W =JV exp ——(5s)
1 2

v(z„z, )
(5.21)

Equation (5.10) then becomes

BFAo= —2 coTcoT= —
—,'(5sT)

azaz
(5.14)

where JV is a constant normalization. An alternative and
more useful expression can be written in terms of
&,(z,z):

where 5sT is the length of nor [cf. (2.21)] using the local
metric on JR.

Up to this order of approximation we can therefore
write the distribution as

W(z, z }=exp ——(6s )
2

2
(5.15)

ay/,
'

A, (z, z)= —
—,'ln +ln(1+azz) . (5.16)

Since

am, (z,g), am, (z, z)
=(1+azz )

az
(5.17)

we have

exp[A i(z, z)]= (1+azz)
M', a&, '

Bc Qz
(5.18)

We are putting &,(z, z)—=&,(z, g(z, z)). Since W(z, z)
gives the probability density on A, , we expect this factor
to be inversely proportional to the phase-space velocity.
Let us check that this is so. The velocity on AL is given
by [cf. (2.21)]

This is a Gaussian of constant height centered on the
classical trajectory with a constant width I/&A, where 5s
is the perpendicular distance from it measured with the
metric on the manifold.

In order to find the factor that modulates the height we
have to go to the next order A i in (5.3). According to
this equation this will be a factor independent of A. but of
course it will depend on the point on the trajectory.

Using (3.15) for S, and (5.3) we have (the formulas that
follow should always be evaluated on the classical trajec-
tory)

W =JV exp —2A,
1

v(z, z)
&,(z, z )

—E
(5.22)

v(z, z)

VI. THE QUANTUM ROTOR

As an illustration of the results obtained in the preced-
ing sections, we consider the dynamics of the asymmetric
top

8=J2+yJ 2 —J' (6.1}

It is easy to check that this expression is the same as
(5.21) close to the trajectory where its value is
significant —E is the energy of the trajectory quantized by
(4.11). Notice that the last two expressions are entirely
written in terms of invariant geometric objects. It should
be pointed out that the first-order correction only afFects
the height of the distribution function and not the locus
of the maxima. Again this happens only due to the pecu-
liar choice of classical Hamiltonian and expansion pa-
rameter.

The prefactor in (5.21) and (5.22) vanishes if the
phase-space velocity is zero, as, for example, on an unsta-
ble stationary point on the trajectory when it coincides
with a separatrix. This signals a breakdown of the ap-
proximations leading to Eq. (3.19) in the neighborhood of
these points. However, the turning points (or caustics)
that produce divergences in WKB in coordinate or
momentum space are not present.

This result which is simple and intuitive should be
compared to the equivalent calculation for the Wigner
distribution as calculated by Berry for the Weyl group.
There the classical result gives a 5 function on the trajec-
tory, which, when broadened by a large but finite k be-
comes an Airy-like function with very fast oscillation
away from the trajectory to its concave side and a broad
peak on it. In our case the 5 function is broadened to a
simple Gaussian on the phase-space manifold and the os-
cillations are eliminated.
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X[(pz +oz +p)g —(2pz +oz)g
(1 —4o)(A, + I)+pz' —

—,
' (6.3)

where for this group A, =2j+1 and g=z/(I+zz). In
(6.2) and (6.3) we have defined

1 —X 3+X
4 2

O— (6.4)

It is convenient to work with the scaled Hamiltonian

HH/A, (6.5)

so that H contains only terms up to order 1/A, . Using
Eq. (3.13) we calculate the classical symbol &, as

H .
2k

(6.6)

Up to order 1/A. we obtain

&,(z, g)=(pz +oz +p}g —(2pz +az)g

+pz —
—,'+O(A, ), (6.7)

i.e., the leading order term of Eqs. (6.2) and (6.3). Thus
we see that the action of the operator (1—b, /2X) on H is
to eliminate terms of order 1/A, .

We are now in a position to apply the quantization
condition (4.11). The classical Hamiltonian (6.7) obtained
gives the usual dynamics for the angular momentum vec-
tor on the Bloch sphere with six stationary points corre-
sponding to the three principal axes of inertia. Those as-
sociated with the major and minor axis are stable and the
intermediate one is unstable. Each of them satisfies the
equation B&,(z, g)/Bg=0. Since every trajectory encir-
cles one stable point, in order to determine the y index
we must calculate the integral (4.10) for a small contour
around the stable point. Using standard techniques simi-
lar to those indicated in Appendix C, we obtain y = 1 and
the quantization condition becomes

f ~= f [I+cosO(p, E)]dy= . (n + —,
'

) (6.8)
tr 0 2j+1

where J„co is the area of the classical trajectory on the

where we have used the standard parametrization.
This is an example of an SU(2) Hamiltonian (a = 1). In

the large j (or A, ) limit the (classical) dynamics is
represented by a constant modulus angular momentum
vector describing a trajectory on the two-dimensional
surface of the Bloch sphere.

Specific coherent states for this Hamiltonian have been
considered by Janssen. In our case we use the simpler
SU(2) coherent states given by Eq. (2.8). We obtain for
the Q and I' symbol of Hamiltonian (6.1)

H(z, g) =(1,—l)(k —2)

X[(pz +crz +p)g (2—pz +oz)g
(1 —4cr )(A, —1}

H (z, g)=(A+1)(A, +2)

sphere and 8(Q, E) is the parametrization of the trajecto-
ry of energy F. using the spherical angles 0 and P. They
are related to the coherent states coordinates by z= tan(6/2)e'~.

In this formula, since f „co~ 4' we have

n 2j (6.9)

Notice that the change n ~2j —n amounts to quantizing
using the complementary area on the sphere. The con-
sistency of this condition requires that 2j be an integer,
i.e., the quantization of j.

If we define

k=n —j, k= —j, . . . , j
then Eq. (6.8) reads

(6.10)

cosOdy=, k =0, +1, . . . , +j .
277 4~k

0 2j+1 ' (6.11)

In his extensive study of the semiclassical quantization
of the asymmetric rotor, King has used empirically a
similar quantization rule using the same Hamiltonian but
rescaled by j(j=1) instead of A, . His quantization con-
dition is

2~k
(6.12)

0 j(j+1)
Our results differ from theirs only at order 1/X since we
have

A/[2&j(j+1)]=1+0(I/A, ) .

Thus we will not present a numerical comparison of ener-
gy levels and refer the reader to the work of King.

We have computed the wave functions and therefore
we can present the Husimi distributions for the eigen-
states. We have diagonalized the Hamiltonian (6.1) in a
basis

~ jm ) with j =60 and y= —0.4 corresponding to an
oblate rotor. There are four subspaces characterized by
the symmetry operations consisting in 180 rotations
around the three axis. In Fig. 1 we present results for the
(+, + ) block which has dimension j/2+ 1 =31.

We plot the wave functions as distributions on the
Bloch sphere. The normalization is arbitrary and has
been chosen to enhance the graphical display. As expect-
ed from Eq. (5.21) the distributions peak neatly around
the classical trajectories, which are obtained from the in-
tersection of the Bloch sphere with the ellipsoid of inertia
(Fig. 2). The oscillations in the height of the distributions
are associated with variations in the classical velocity [cf.
(5.21)]. The distribution peaks over the the two branches
of the classical trajectory, a fact due to tunneling effects.

There are clearly three types of wave functions. From
1 to 10 the trajectories encircle the north and south poles
and correspond to classical rotations with the angular
momentum mostly aligned with the larger moment of in-
ertia. States 11, 12, and 13 show the transition through
the separatrix. It is interesting to notice the strong con-
centration of probability at the unstable point (state 12)
corresponding to rotations around the intermediate axis.
This is due to the fact that in that point the phase-space
velocity is zero and thus there is a large probability of
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VII. CONCLUSIONS

19

' r-

FEEe'9i

t'' 'Fl

12 23

13

~Qjj&
27

~~. i )uH
15 31

FICJ. 1. Phase-space distributions corresponding to several
eigenstates of the triaxial rigid rotor with g= —0.4 (see text).

finding a wave packet there. As discussed in Sec. V, our
approximate expression would diverge for this point. If
we continue increasing the energy (15—31), we get now
distributions centered on trajectories that encircle the
other two stable points, until we arrive at the eigenstate
with higher energy, 31, that corresponds to a rotation
around the axis with minimum moment of inertia.

We have discussed in detail the first two orders of the
semiclassical expansion for the Weyl ( W, ), SU(2), and
SU(1, 1) using the coherent-state representation. We have
used analytic methods which closely parallel the standard
WKB derivation but, by being in phase space, avoid the
divergences associated with caustics.

By an appropriate definition of the classical Hamiltoni-
an, which is neither the Q nor the P symbol, but some-
thing intermediate we are able to formulate a quantiza-
tion rule correct to next-to-leading order in an asymptot-
ic expansion in the parameter 1/A, . The correction ap-
pears as a term of Maslov type related to the singular
points of the Hamiltonian vector field enclosed by the
classical trajectory. This is an intriguing relationship
that deserves further study. Usually the Maslov index
depends on the particular way a trajectory is inbedded in
phase space. Here we have related it to whether the tra-
jectory encircles a critical point of the Hamiltonian and
therefore it is more like an index of its vector field.
Whether this is a general property in more dimensions
remains as an open question. Using this quantization
rule one can get as a particular case for low excited states
the excitation energies with perturbative corrections in-
cluding anharmonicity effects.

The definition of the Hamiltonian coincides to this or-
der with the Weyl-Wigner symbol of H for the 8', group
and with the Weyl-Berezin symbols for the SU(2) and
SU(1, 1) groups.

The square modulus of the semiclassical wave function
provides a positive definite phase-space distribution. We
show that this distribution peaks smoothly on the classi-
cal trajectories.

The generalization of our analytic methods to groups
with more dimensions may seem at first sight trivial, but
going to larger groups leads to phase spaces of dimension
~2 where the systems are not in general integrable. In
this case, although many of the techniques discussed in
this paper can also be applied to the semiclassical limit,
for analytical work one encounters very rapidly the same
difficulties that appear for WKB in nonintegrable Hamil-
tonians. However, as a representation method, the
phase-space positive distributions built from coherent
states can be very useful for numerical work as they can
be used to display wave functions in phase space and to
allow a direct comparison with classical invariant struc-
tures.
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APPENDIX A

FICx. 2. Classical trajectories associated with the angular
momentum vector on Bloch sphere for the triaxial rigid rotor
with g= —0.4.

In this appendix we derive Eq. (3.6). For convenience,
we rewrite the differential operator representing the
Hamiltonian (3.1) as
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where

1 d
dz

g (z)

r A. dz
(A 1)

According to definition (A7), the last equation can be
expressed in terms of H (z, g) as

H (z,y)+ — H(z, y)+ay
S" a' aH(z, y)
2 By

y =(k —a)(A, —2a) . (A, —ma) . (A2)

This expression defines g (z).
We first calculate the Q symbol of the Hamiltonian

defined by [cf. (2.34)] i.e. , Eq. (3.6).

+ H(z y) =E,
2 ()y

(Al 1)

H(z, z)= H z, &zlz & .
1 d

zz dz

For that purpose, let us show that

dm —I

&zlz'& =y
& I'&d- 1+

m

(A3)

(A4)

APPENDIX B

In this appendix we study the relation between expres-
sions for the energies based on expansions "in the action"
of Secs. III and IV and the ordinary expansions of the en-
ergies in 1/X.

As indicated in Sec. IV the energies are obtained from

with &z lz' & =(1+azz')'
We proceed by induction, clearly, for m = 1:

1
&zlz'& =(A, —a)

&zlz'& dz
(A5)

1
hS(A, ,E)=-n

21Tl

or, using definition (4.3) and (4.4)

I(A, E)=I (E)+ I (E)+—1 n
0 ~ 1

(81)

If we assume that (A3) is valid for m —1, then for m

1

&zlz'& dz &zlz'& dz &zlz'& dz
m

=y, (A, —ma)

z
7m 1+o.zz'

m

—Iz

1+azz'

(A6)

so that the Q symbol for H reads, using the variable g in-
troduced in (2.20)

We consider now /3=n /A, as an independent parameter
so that inverting (82) we get

E(/3, A, ) =I '(P, A, ) .

Let us formally expand (83)

E (/3)
E(/3, A, )= g

m

(83)

(84)

To relate this expression to the usual expansions of the
energy, we write (notice that this is not always possible,
e.g. , Coulomb potential)

g (z)
H(z, g)= g

m

(A7)
E (/3) = g d„ /3'

so that

(85)

Of course, the purpose of the inclusion of y in (Al) was
to eliminate it from (A6). Using (Al), Eq. (3.5) can be
written, up to 1/A, terms

g (z) S" g (z)(S') + g m (m —1)(S') =E. r- 2A. r.

E(n, A)= g c„'
s ()r)

C1n +cp C2n +C 171 +Cp1 1 2 2 2 2

=Cp+ + +
A.

2
(86)

but, y can be approximated by

1 cx+ m (m +1)+
gm 2gm +1

(AS)

(A9)

where c,'—=d,'
We next consider (82) and substitute expression (84)

for the energy

Io Eo(P)+ E, (P)+ . —1

so that, to that order

(S') +——g m (m +1) (S')
m m

g (z)+ g m(m —1)(S') ~ + =E .
2 y

+ I E (/3)+ E—(/3)+ + —=P (87)1 1

where the large parentheses indicate the argument of the
functions I, . To the first two orders this equation reads

Io(Eo) =P

(A 10)
ar,

E, (Eo)+Ii(Eo)=0 .' BE
(BSb)
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Eo(P)=co+c', P+c~P + . . = g c„"P" (B9)

Comparing with (B6) we find that (BSa), i.e., the Bohr-
Sommerfeld approximation, is equivalent to the summa-
tion of the principal series of (B6}:

1
En Eground state

= n ol
l p=o

+ (n +yn) ol
1 dQ)

2i2 dE0

co=EO(P=O)=IO '(P=O), (B10)

dE0co-l dp
(B1 1)

so that we find that this approximation is the leading or-
der of an expansion in powers of 1/A, but considering
p= n IA, as an independent parameter.

In particular, we have

(B20)

The first term gives the usual harmonic spacing near the
ground state, related to the classical frequency co. It is
usually calculated in many-body theories with the
random-phase approximation. The second term contains
a 1/A. correction to the spacing and an anharmonicity
proportional to n . These corrections are usually ob-
tained with special perturbative expansions, i.e., the nu-
clear field theory ' or Holstein-Primakoff bosonization.

d E0
C2 =

2 dP p —o

and also,

1co =El
l p=o

dEi
C2 =

dP p —o

If we now differentiate (B8a) we find that

BI0 dE0

BE() dP
=1

so that

(B12)

(B13)

(B14)

(B15)

APPENDIX C

1 ay= d ln2, C(z. , g. )
By y =-g(z, z)

(Cl)

In this appendix we give some useful formulas for the
calculation of the index y. It is a winding number and
therefore a topological invariant. It does not depend on
the energy as long as no singularities of the Hamiltonian
vector field are crossed. We show that its value is deter-
mined by the critical points enclosed by the trajectory.

We assume that the integration circuit can be changed
by varying the energy and reduced to a sum over small
circuits at different energies y =+Jyi, where

, dE0
ci

p=o

ar,
BE()

—:oll p=o . (B16)
The point (z, , gl)—:(zi,zj) is a stationary point (or a

singularity of the gradient) of H and C is a contour which
we parametrize in the following way:

The last equality defines the classical frequency.
Differentiating (BSa) twice we obtain

1 dE0
C2 = 2dPpo

1 de(p} 1 cd[)(E )odEO

2 dP p o 2 dEO dP

z =z, +pe'&,

z —
z~ +pe

(C2)

(C3)

where we will later let p~O. The integral (Cl) becomes,
with this substitution, an ordinary integral in P between
/=0 and t)t =2m.

Applying the standard method for these integrals we
make the new change of variables

1 dco

2 dE0
(B17) x =e'&, —=e1

X

and we define

(C4)

Using Eq. (B8b) and the result of Sec. IV for I, we have am, (., g)f (x,p)=
Z =Z +PX

(C5)

Ij
co =E, (P=O) = — = ~col

aI, iaE, l, , 2
(B18) obtaining

y = lim ' dx=n —p
1 d (xp)

p-o 2~i ixi=l f (x,p)
(C6)

dE, ~ dco ~ dry
Ci =

Cc)

dP p o 2 dP p o 2 dEO
P—0

(B19)

Finally, we have, for the perturbed energy of the nth level
relative to the ground state (notice that we are assuming
that the lowest energy is for n =0), ~ (z,z)= ——(z —z) + V(z+z) (C7)

where n and p are the numbers of zeros and poles of f in-
side the circle of unit radius, respectively.

As an example, let us derive y for the case of the Weyl
group and a Hamiltonian of quadratic kinetic energy of
the form
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so that

am, (z, z) + BV(z+z)=az —z +
az

(CS)

JV, (z,z) —= ——(z —z) + —(z+z}
2 2

where V is assumed to be an analytic function of z+z.
Clearly, the extrema lie on the real axis. In the neighbor-
hood of one minimum &, can be written

r= &r, =i . (C17)

Notice that in this derivation the quadratic form of the
kinetic energy has played an essential role. In the general
case, of course, y need not be one.

Clearly, from the above, for a particle in a potential of
the form (C7), since always the number of stable points
minus the number of unstable points is one, then

+ g P„(z+z)"
n{ &2)

so that f (x,p) takes the form

1 1f (x,p)=ap x —— +Pp x+—

(C9)
APPENDIX B

Berezin' has defined generalizations of the Weyl-
Wigner symbol of an operator 3: the Weyl covariant A
and the Weyl contravariant A symbols. Their relation
to the ordinary covariant A and contravariant 3 Q and
P symbols is as follows:

+ g nPp" ' x+-
n(&2)

n —1

(C10)

If we assume that the local frequency P&0, then keeping
only the first two terms (linear in p) f (x,p) has a pole in
x =0 and zeros in x+ =+&(a—P)/(a+@) which lie in-

side the unit circle if P/a &0 (stable minimum) and out-
side if P/a & 0 (unstable extremum) so that for these cases

A'

1 stable point (P/a & 0)
—1 unstable point (P/a & 0) . (C 1 1)

apx" (x —1)+n13„p" '(1+x )"

Xn —1
(C12)

In the case where P=O we must keep the first nonzero
term in the potential

n —1

f (x p)=ap x ——+nP„p" x+-n —1

X X

where 4, 4', and T are functions of the Lap1ace-Beltrami
operator.

We give a derivation of the asymptotic formulas for the
operators T, 4 and 4" in the SU(1,1) group. Similar re-
sults can be obtained for the SU(2) group, while the re-
sults for the Weyl group are well known. '

Recursion formulas for T, 4, and 4" for this case are

It is easy to see that for p~O we will have n —2 zeros
near x =0, n —1 poles in x =0 and the two zeros near
x+ =+1. For small but nonzero values of p the effect of
the potential is to shift the zeros x+ either inside or out-
side the circle ~x

~

= l.
Putting

A(A, +1)

b
A, (A, +1)

(A, +1)(A,+2)

(D la)

(D lb)

(D lc)

x+ =+1+v~

with v+ infinitesimal so that

lx g I'=1+2U,

and inserting (C13) in (C12), we get

(C13)

(C14)

Let us now assume that asymptotically

Tg 1+ + +az. 1ST

k2
(D2)

2 f1 ll 2P
/x~ /'=1- (+1)" (C15)

Then, inserting expression (D2) in Eq. (Dla) and keep-
ing only up to the second order

which shows that

1 stable point (P„/a &0, n even)

r = 0 saddle point (n odd)
—1 unstable point (13„la &0, n even) .

(C16)

CXT1+ + +
k2

1 — +
A,

2

=1+ + + . . (D3)&+1 (A+1)'
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Expanding in powers of 1/A, and equating we find
eV' =1+ +

2A,
(Dsb)

T =1+—+. (D4)

I =1+ +
2X

(D5a)

Repeating the same procedure for 4 and 4' we get

and we verify that gS'=T to this order. Equation (D4)
was derived in Ref. 16 in a more rigorous way.

Applying the same method to the operators T, 4, and
g' corresponding to the SU(2) group, we can check that
formulas (D5a) and (D5b) are also valid for this group.
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