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The dynamics of a growing interface with conservation of total volume under the interface is
investigated using both dynamic renormalization-group and computer simulation. The conserva-
tion law leads to a new universality class from that discussed by Kardar, Parisi, and Zhang [Phys.
Rev. Lett. 56, 889 (1986)]. The growth exponents are calculated and compared with those from
the simulation of a conserved restricted solid-on-solid model. Excellent agreement between theory

and simulation is found.

Understanding the dynamics of a growing interface
separating two phases is a challenging problem of both
theoretical and practical interest.!”'> Much work has
been devoted to situations where the system is near equi-
librium.! Far from equilibrium, however, these problems
become exceedingly difficult due to the nonlinear collec-
tive interaction of many degrees of freedom. Examples in-
clude crystal growth into a supercooled melt,? layered
growth by molecular-beam epitaxy or chemical vapor
deposition,® development of ordered phases by spinodal
decomposition,* propagation of flame fronts,” and cluster
growth in diffusion-limited aggregation and Eden mod-
els.® Common to these problems is the existence of thin
interfaces where active growth occurs. Although compli-
cated patterns appear during the growth, there exist late-
time regimes when a dominant large length develops and
the growth shows scale invariance. As in critical phenom-
ena, the “universality class™ of the growth dynamics can
be defined. Within a universality class, features such as
growth exponents and shapes of scaling functions are in-
dependent of short-wavelength details. The concepts of
scaling and universality classes greatly simplify the
description of a dynamic system and much useful infor-
mation can be obtained.

Recently, Kardar, Parisi, and Zhang’ (KPZ) proposed
an extremely interesting nonlinear differential equation
which gives interfacial growth exponents consistent with
numerical simulations of ballistic aggregation and Eden
growth in the substrate dimension d =1 (the dimension of
the system is d+1). The critical dimension d. of the KPZ
equation is two, above which the nonlinear coupling of the
modes is irrelevant and one recovers the usual dynamical
roughening results. At d., the KPZ equation does not
have a stable fixed point, and growth information can only
be inferred indirectly. However, KPZ argued that it is
possible to have superuniversality, such that the growth
exponents are independent of dimension. At d=1, a
fluctuation-dissipation theorem holds which allows one
to calculate the exponents y=4 and z =3 defined by
the growth of the width of the interface: W(L,t)
~L*f(tL %), where L is the linear size of the growing
substrate, 7 is time, and f is the scaling function (this scal-
ing form was introduced by Family and Vicsek®). Furth-
ermore, the KPZ equation satisfies a “Galilean” transfor-
mation which leads to a scaling relation y +z =2.
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Many computer simulations in d =1 (Refs. 8-12) give
results consistent with those obtained from the KPZ equa-
tion; notable are ballistic growth models,® Eden models, '°
and variants of solid-on-solid models.®!!'> While some
simulations do not give the superuniversal exponents con-
jectured by KPZ, all agree with y+z =2.

It is thus natural to ask two questions: What features
determine universality classes (beside possibly the spatial
dimension) for interfacial growth? Are there growth
models which do not obey y+z =2? In this Rapid Com-
munication we propose a model which has y+z=2, and
where y and z differ from those of KPZ. Our model is
simple enough that a renormalization-group analysis can
be carried out. We have also performed extensive numeri-
cal simulations on a restricted solid-on-solid model in one
substrate dimension, which generalizes a model intro-
duced by Kim and Kosterlitz.® Excellent agreement be-
tween simulation and analytic results is obtained.

In critical dynamics,!? it is known that universality
classes in nonequilibrium are determined not only by the
symmetry of the order parameter and the dimension of
space, but also by the presence or absence of conservation
laws, mode-coupling terms, and Poisson-bracket relations.
We are thus motivated to generalize the nonconserved
KPZ equation to the following conserved model:

%’:___vz[vv2h+ TAOVR) 1+ 0(x,0), m
(n(x,1))=0,

and
(n(x,t)n(x',t')) = —2DV25%(x —x')6(t —1') ,

where h(x,?) describes the height of the interface from
some reference plane h =0, and is assumed to be a single-
valued function of position x. Angular brackets denote an
ensemble average, where higher-order correlations of the
noise n are determined by Gaussian statistics, and v, A,
and D are constants. The conservation of total 4 is evident
because the right-hand side of Eq. (1), including the
noise, can be written as the divergence of a current. To
motivate the conservation law, one can imagine atoms re-
locating on a damaged solid surface due to a driven flux so
that the total number of atoms is conserved. Without the
nonlinear term, Eq. (1) describes the dynamics of an in-
terface involving surface diffusion with the diffusion con-
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stant proportional to v. The nonlinear term is of kinetic origin and cannot be derived from any Hamiltonian, as was not-
ed by KPZ. Dimensional analysis gives the upper critical dimension of this model, d. =2.
We have applied a dynamic renormalization-group analysis'# to Eq. (1), which is written in Fourier space as

h(k,0) =ho(k,0) = $1Go(k,0)k [ q.0q- (k—q)h(q, 0)h(k—q0— ), @
[
where and
holk,0) =Go(k, @)1 (k,0) ,
o(k,0) =Gok,0)n(k, d’tT(ll)-(z+x——4)x(1), (%)

Gok,0) =(—iow+vk?*) "1,
(n(k,0)n(q, 2)) =2DQ2x)4 k259K +q)s(w+ Q) ,

and [qo=fd%da/(2z)?*'. We solved the equation
iteratively in the vertex — 3 Ak2q-(k—q). For conveni-
ence, Eq. (2) and the renormalizations of v, D, and A are
schematically represented in Fig. 1. Following Forster,
Nelson, and Stephen,'* the intermediate values of v, D,
and A were calculated by integrating out fast modes in the
momentum shell e /A=< |k| <A. The remaining slow
modes (|k| < A) were restored to full momentum space
by a rescaling of space and time: k'=ek, o' =cw,
R(K,0')=e 794D (k,0), and 'K, 0') =e ~@+D’
xn(k,w). The scaled variable A’ satisfies the same equa-
tion as Eq. (2) provided the renormalized coefficients
satisfy the flow equations which are given to lowest order

by

dvl) |, _s4p4=d . =2
= [z 4+ ad Kah ]V(I)’ ©)
dDW) _(, 2 q_2)DQ). @
dl
o, 4< @
— = e+ (O ®
e e 4 _)_Q_(_ ©

o =

FIG. 1. (a) Diagrammatic representation of Eq. (2); (b) v re-
normalization to leading order; (c) D renormalization; and (d) A
renormalization. Intermediate frequencies are summed from
—oo to +oo. Intermediate momenta are integrated over the
shell e “/A < | q| < A. Light and heavy lines represent ho(k,w)
and h(k,w), respectively. Lines with arrows represent propaga-
tors Go(k,w) and G (k,w), respectively.

@

where 22 =A2D/v? is the reduced coupling constant, and
K, is the geometric angular factor of the momentum in-
tegration. Note that diagrams contributing to D (/) have
prefactors proportional to k% Thus they correspond to
higher derivatives in the original noise spectrum and are
irrelevant. The three diagrams of O(A3) in Fig. 1(d) can-
cel exactly so A is not corrected. As we will discuss below,
contributions to A are zero to all orders of the perturbation
expansion due to a transformation invariance of the origi-
nal equation.
The recursion relation for the reduced coupling A is

ar _ 2—d):+ 3(d—4)

dl 2 8d
Above two substrate dimensions, A is driven to zero as
I— o, At d=2, X still goes to zero because the second
term has a negative sign. Below d =2, a stable fixed point
can be found: K A*2=%¢, where e=2—d. The strong-
coupling regime d <2 can be studied using an ¢ expan-
sion. Scaling exponents y and z were adjusted to keep v
and D invariant under the renormalization-group trans-
formation as /— oo. In particular, the fixed-point values
of x and z below the critical dimension were found to be

K23, 6)

z-_lz—_-_i, x-;—e_ (7)

The interface growth exponent B where W(L,t)
~1tPg(tL ~7), is related to y and z by B =yx/z. Thus in one
substrate dimension we have z=14 y=1 and =1,
with y+z =4. At and above d =2, the stable fixed point is
A* =0, which gives the “classical”’ exponent z =4.

The exponents obtained above are distinctly different
from those of the KPZ equation, indicating that the con-
servation law changes the universality class, as anticipat-
ed. The hyperscaling relation between y and z, y+z =4,
is also novel. This is a direct consequence of the conserva-
tion law in Eq. (1) which breaks the Galilean invariance
discussed by KPZ. Instead, Eq. (1) is invariant under the
transformation

h— h+a-x, x— x—AraV?, (8)

where a is any constant vector. The presence of A in the
transformation guarantees that diagrams correcting A
cancel to all order. Hence from Eq. (5), y+z =4 is an ex-
act result. Furthermore, the noise spectrum D is not re-
normalized, because the diagrams generated correspond
to irrelevant variables. Thus from Eq. (4) we have
z—2—d —2x=0. Together with y+z =4, we have, quite
generally, z = 3 (10+d), y= % (2 —d). These results are
expected to be exact. In particular, setting d=1, we re-
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FIG. 2. Simulation results: In-In plot of interface width W vs
time ¢. System size L =2000. Time measured as number of
growth attempts. Slope gives growth exponent g=y/z = 0.091.

cover the € expansion results given above.

To test the analytical results, we have performed exten-
sive numerical simulations on a conserved restricted
solid-on-solid model in one substrate dimension. The
model is a natural extension of one proposed by Kim and
Kosterlitz.® Briefly, the model is as follows. We randomly
pick a site i on a one-dimensional substrate of length L,
and increase its height A; by one unit, provided the height
difference Ah between h; and its nearest neighbors
remains Ak <1 after the updating. During each attempt,
conservation is enforced by decreasing a height h; by one
unit (subject to the same restriction) where site j is as
close to site i as possible, but no further than a few lattice
spacings. If such a jth site could not be found, the update
on site i is canceled and the process is continued. This en-
forces a local conservation law which is consistent with
Eq. (1). The growth of the interface is monitored by fol-
lowing the time evolution of the width W of the interface,
where W(L,1)=[(h%(x,))]1"2. Large numbers of runs
were required to obtain good statistics.

At early times and large L, W grows as a power law in
time. Figure 2 shows our results for InW vs Inz. We ob-
tain $=0.091 +0.002, which is in excellent agreement
with the renormalization-group calculation 8= 7. The
roughening exponent y can be obtained by running the
simulation until the width is saturated, since W~LZ% as
t— oo, This is much more difficult to do because a great
deal of computing time is required due to the large value

InL

FIG. 3. Simulation results: In-In plot of saturated interface
widths W vs system size L. Slope of the fitted straight line gives
roughening exponent y = 0.35.

of the exponent z (¢>>L? is required to get into the finite-
size regime). We are thus limited to rather small systems
and moderate numbers of runs for the average. Figure 3
shows InW vs InL. The slope gives y =0.35 + 0.03, which
is again consistent with our analytical calculation y= 1.
The independent measurements of 8 and y imply y+z
=421+0.4.

In summary, we have introduced a new model describ-
ing the dynamics of a growing interface where a conserva-
tion law is present. We have shown that it belongs to a
different universality class from that studied by Kardar,
Parisi, and Zhang. A stable nontrivial fixed point was
shown to exist below the critical dimension, which allowed
the study of the strong-coupling regime. A formal trans-
formation invariance of the equation, similar to Galilean
invariance, led to the hyperscaling relation y+z =4,
which we expect to be exact. Numerical simulation of a
conserved restricted solid-on-solid model confirmed the
scaling relation and gave values of growth exponents in
agreement with theory. We have also studied models for
interfacial dynamics belonging to other universality
classes. These and other results will be presented else-
where. !®
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