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Adiabatic population transfer in a three-level system driven by delayed laser pulses
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We give a simple analytic solution that describes a novel method for population transfer in a
three-level system driven by delayed pulses and which accounts for recent experimental results.
This solution describes a procedure that is counterintuitive, and yet it is shown to be, in fact, one
of the simplest solutions for multilevel systems arising from the adiabatic theorem. Its possible
application to many-level systems is suggested.

INTRODUCTION

The development of techniques for efficient transfer of
population to thermally unpopulated atomic or molecular
levels, such as high-lying Rydberg states or molecular vi-
brational levels, is of crucial importance to further ad-
vance our knowledge in spectroscopy and collision dynam-
ics. It has been suggested' and independently experimen-
tally demonstrated that complete transfer of population
can be achieved when atoms or molecules are exposed to
two laser fields with an appropriate time dependence. In
this Rapid Communication, we give a simple approximate
analytic solution to this problem, which describes an
efficient way for transfer of population into excited atomic
or molecular levels that are not accessible by one-photon
transitions. This solution is found to fit very well with the
result of a recent experiment involving the excitation of
sodium molecules by two spatially displaced laser beams.
In this experiment, the molecules interact first with the
Stokes laser and then with the pump laser. Unlike other
solutions which usually depend sensitively on the input
parameters such as the laser pulse shapes, intensity, and
frequency modulation, the adiabatic following solution
discussed by us is quite insensitive to changes in those pa-
rameters as long as certain easily controllable experimen-
tal conditions are satisfied. From the theoretical point of
view, this solution is interesting not only for its remark-
able simplicity, but also because (i) it prescribes a pro-
cedure that is counterintuitive, (ii) it is one of the simplest
analytic solutions that describes the adiabatic rapid pas-
sage for multilevel systems, a process of fundamental im-
portance in quantum mechanics, and (iii) it generalizes a
relation that expresses population trapping. We mention
that Peterson, Cantrell, and Burkey have previously
pointed out that multiphoton excitations of multilevel sys-
tems can be described more accurately using an adiabatic
theorem than the sudden approximation for many experi-
mental cases.

and a Stokes laser which connects levels 2 and 3. The
strength of the interaction varies with time and is given by
the respective Rabi frequency Q„(t ) lsE„(t)/0, , where p
is the relevant dipole matrix element and E(t) the time-
dependent amplitude of the corresponding laser field.

Under two-photon resonance condition and using the
rotating-wave approximation, the Hamiltonian of the sys-
tem can be written as

~
u|(t)& cos8(t)

~
1& —sine(t) ( 3& (3)

is one of three eigenvectors of the Hamiltonian, Eq. (1), at
any time t and independent of h. This eigenvector has a
zero eigenvalue, independent of the Rabi frequencies. It is
of particular interest because it is the only eigenvector
which does not include a contribution of the intermediate
level 2. We will show below under which conditions Eq.
(3) is an adiabatic following solution, describing complete
population transfer between levels 1 and 3.

We assume that only level 1 is initially populated.

where d, (t) is the one-photon detuning of the laser fre-
quencies from the respective transitions; see Fig. l.

Using

n |(t)tane(t)-
02 t

it is easy to verify that

A SPECIFIC EIGENFUNCTION OF
THE HAMILTONIAN

Consider a three-level system with eigenvectors
~
1),

~
2), and

~
3&. We discuss the problem of transferring pop-

ulation, which is initially in level 1 to level 3 (see Fig. 1)
by means of a pump laser which connects levels l and 2

FIG. 1. Three-level system coupled by two lasers. The Rabi
frequencies for the pump and Stokes laser are Ai and Az, re-
spectively. The detuning from the transition frequency is 6, for
both lasers, provided that the two-photon (Raman) resonance is
maintained.
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Complete population transfer occurs if

n i(t) Q2(t)
0 and 0,

Q2(t) n)(t)

where t — and t +~ corresponds to times before
and after the interaction with the lasers, respectively, pro-
vided the evolution is adiabatic (see below). In fact, it fol-
lows from Eqs. (2)-(4) that we have

I (1 I u~(t)) I'-1 fort

l(3 I u&(t)& I 1 for t +
(5)

Experimentally, Eq. (4) requires that the interaction of
the Stokes laser with the atom or molecule begins and
ends earlier than the interaction with the pump laser (see
Fig. 2). This sequence seems to be counterintuitive. It
can be achieved by appropriate spatial displacement of the
axes of cw lasers when interaction with particles of a
molecular beam is considered or by a suitable time delay
of the pump laser relative to the Stokes laser when pulsed
lasers are used.

CONDITIONS FOR ADIABATIC FOLLOWING

Q](t) Q2(t) —n }(t)Q2(t)Ht-
n&2(t)+ Q2(t)

We introduce

n( 2(t) - n~), 2g(z),

and use, for convenience,

g),2(z) -exp[ —(z+ b) 2) '],

(6)

(7a)

(7b)

where z t/T and b'~ 2 + ht/T measure the time and
time delay (or displacement), respectively, in units of the
pulse length (or interaction time) T. The + and —signs
apply to the Stokes laser [Q2(t)l and the pump laser
[Q&(t)], respectively. With Eqs. (6) and (7), together
with the assumption that the delay is of the order of the
pulse width, i.e., I

b'I = I, the adiabatic theorem leads to
the condition [for further details see Ref. (8)]

AeffT» 1

%'e now consider the conditions under which the system
with the state vector

I+(t))- I 1& fort

[see Eq. (5)] evolves adiabatically, i.e., remains very near-
ly an eigenvector of the time-dependent Hamiltonian at
all times. [ I e(t)) =

I u )(t))].
Nonadiabatic coupling between the eigenstates is small

when the rate of change of the mixing angle e(t), Eq. (2),
is small compared to the separation h, co of the correspond-
ing eigenvalues, see Messiah. For 6, 0, the latter are
given by Aco +'0.5(n~+ Q2)'t Q,s. Therefore

I d8/dt I «Q, tr is required for small nonadiabatic cou-
pling.

It follows from Eq. (3) that

C3

C3
LLJ

U

FIG. 2. Time dependence of the Rabi frequencies required
for e%cient population transfer under adiabatic following condi-
tions.

o g((z) o

H(z) - h g, (z) 2W(z)/n' g2(z)
0 g2(z) 0
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Obviously, when Eq. (8) is satisfied, the regime of adia-
batic following is reached. Then Eq. (9) reduces to

H(z) I e(z)& -0
at all times z. Thus, steady-state condition is maintained
at any time throughout the process. ' If the system is ini-
tially (at t~ —~) prepared in the eigenstate I u&) it
remains in that eigenstate at all times and Eq. (3) is in
fact the adiabatic following solution for complete popula-
tion transfer from level 1 to level 3.

A more rigorous treatment of the adiabatic following
conditions, for on-resonance excitation 6 0 (see, e.g. ,
Ref. 8), leads, instead of Eq. (8), to

I gi(z)g2(z) gl(z)g2(z) I &(1,
n T [g/ (z)+g2(z)1

(12)

where the dot identifies the derivative with respect to z.
Equations (8) or (12) implies that details of the pulse
shape are not important. It is also obvious from Eq. (8)
[or Eqs. (7) and (12)] that the overlap of the interaction
with the two 1asers should not be too small. For 8» 1 the
denominator of Eq. (12) (or Q,tr Q&+ Q2) may become
very small and Eq. (8) [or Eq. (12)l is no longer easily
satisfied.

The discussion presented in the Schrodinger picture can
be extended to the Heisenberg picture. In this case, we
deal with the Liouville equation for the reduced density
matrix

ing. Rather, for given T, the limit can be approached by
increasing Q,ff. This is exactly the point of interest for ex-
periments with intense laser, since it shows that the adia-
batic limit can be achieved for strong enough pulses even
if the pulse duration is short.

Alternatively, we may consider the Schrodinger equa-
tion scaled to the dimensionless parameter z, and using for
convenience 0 ~ A2 0,

d
I e (z)) -— H(z) I

e(—z)&,
&OT dz

with

It is a nontrivial consequence of Eq. (8) that T ~ is not
required to reach the asymptotic limit of adiabatic follow-

[p,H]+Lp. —1 dp i
T dz

(13)
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TRAPPED STATE

The fact that
~

u ~ (t )& is an eigenvector corresponding to
the zero eigenvalue makes this solution a special generali-
zation of the relation for population trapping, as we shall
briefly explain below.

To the best of our knowledge, population trapping has
been observed and discussed " for constant laser fields,
Q~ 2 const, or concurrent pulses Q~(t) cQ2(t), only.
For these cases it follows from Eqs. (2), (3), and (7) that

~
u ~& is a constant eigenvector because the mixing angle 8

is time independent. A statement expressing population
trapping is

cos8&%'(r) ( 1& —sin8&+(r)
~

3& const. (i4)

The above relation also holds for the adiabatic following
process where 8 is time dependent. To prove this state-

Using this approach, the analysis can be further extended
to include relaxation processes during the evolution of the
population transfer, given by the matrix elements L;k.
Radiative and collisional damping, e.g., both contribute to
L22 y22, while yi3 is the relaxation of the Raman coher-
ence.

The adiabatic following solution discussed above is, of
course, given by p,d(r) ) u ~ (r)&&M ~(r)

~
.

We can verify by inspection that the same solution as in
the lossless case I. 0 arises, provided Eqs. (4) and (8)
are satisfied and y;I, T(& 1 is valid, except for y22. Restric-
tions for the matrix element L, 22 need not be invoked, be-
cause it does not affect the eigenstate ( u ~& or its eigenval-
ue.

We emphasize the most important conclusion, namely,
the independence of the transfer efftciency from radiative
or collisional damping of the intermediate level 2. In fact,
it has been noted previously by Hioe and Carroll' that in
general the process of an adiabatic rapid passage or adia-
batic following tends to minimize the population of the in-
termediate level 2 in a three-level system. A related
analysis in which concurrent instead of delayed pulses
were used but in which the one-photon detuning h(t) was
varied in time was given by Oreg, Hioe, and Eberly.
These authors also suggested a counterintuitive way of
varying the one-photon detuning in order to achieve
efficient population transfer. The result derived in this pa-
per, however, gives the simplest analytical form which
also reveals the most essential features clearly and explic-
itly.

Finally, we consider the consequences of having the
laser frequencies not tuned to exact two-photon reso-
nances, i.e., when h~(r) WA2(r). In that case, the matrix
element in the lower right corner of the Hamiltonian, Eq.
(10), is not zero anymore. It is rather given by [b,&(r)
—A2(t)]/0 . Again, we realize that the adiabatic follow-
ing solution is approximately valid as long as the detuning
from the two-photon resonance is small compared to the
Rabi frequency 0 (or Q,s). We also note that phase
fluctuations of the lasers during the interaction time with
the molecules are assumed to be negligibly small. This is
appropriate for the interaction of molecules with single-
mode cw lasers.

ment, we realize that we have from ih, (8/Bt) (%'(t)&
-H(r) i e(r)&,

ih&u) [ 8/Br ) e(t)&-&u( )H(r) ) e(r)&-0, (is)
because &u~ (H(r) 0. If &u~

~
is time independent, as in

the case of concurrent pulses, the left-hand side of Eq.
(15) can be written as

ibad/Bt&u~

( 4'(t)&, and hence
&u~ (+(t)& const, the explicit statement of population
trapping, follows. When &u & ( is slowly time varying in the
sense prescribed above Eq. (6) for the adiabatic following
process, the left-hand side of Eq. (15) can be approxi-
mately written as th(|I/Bt)&u&

~
+(t)& also. Thus, our ap-

proximate analytical solution for the adiabatic process
also gives a generalization of the previously known rela-
tion for population trapping.
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ample, for the efficient production of hydrogen atoms in
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In summary, we have found a remarkably simple ap-
proximate solution of the Schrodinger equation describing
the evolution of the state vector for a three-level system
interacting with two radiation fields while the two-photon
resonance is maintained. It accounts for the experimen-
tally observed efficient population transfer. A detailed
account of this experiment, as well as a detailed numeri-
cal study to assess the prospect of applying this technique
with continuous or pulsed lasers to a large class of mole-
cules, ' will be published elsewhere.
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