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Label-free operator in calculations of individual properties of atoms in a pair
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The "label-free" operator has recently been used to calculate individual properties of each atom
in a pair. Large values of individual induced-dipole moments have thus been obtained. We explain
the origin of such artificial values. We also show why this approach is not consistent with
quantum-mechanical principles and leads to logical inconsistencies. Such a formalism cannot be
used to calculate individual properties of an atom in a pair. However, we specify the conditions for
which this formalism could be extended to be useful in calculating global exchange properties of the
total pair.

I. INTRODUCTION

For atoms or molecules interacting at short-range dis-
tances, both polarization and exchange effects must be
taken into account in order to calculate interaction-
energy or interaction-induced changes of electric proper-
ties. Such calculations are of great interest for chemical
and biological studies, and many different approaches
have been proposed to account for them. ' As present-
ed, for example, in Ref. 9, each method has its own ad-
vantages and difficulties. However, in general terms, ab
initio calculations are very long and expensive. The prob-
lem is, therefore, to find approximate treatments that ac-
count for intermolecular overlap. Many authors there-
fore use adapted perturbation theories. In some of them,
the zero-order wave function is constructed either as a
simple product of the wave functions of individual mole-
cules or as an antisymmetrized product.

The "label-free' exchange perturbation method is based
on a direct Rayleigh-Schrodinger perturbation theory
with fully antisymmetrized zeroth-order wave functions.
It was first introduced to calculate exchange interactions
between two atoms in a pair. Such a calculation can be
used at any distance and thus specifies both van der
Waals and exchange effects. ' '"

Recently the definition of label-free operators was used
in order to describe individual properties of each atom in
a pair: f'or instance, to calculate exchange-induced dipole
moments of individual atoms of the pair, ' ' quadrupole
moments, or exchange-induced modification of individual
polarizability. ' The total dipole moment of a He-H pair
was also calculated' and seemed to corroborate earlier
ab initio calculations.

In this paper we show why such an attempt to study
individual properties of each atom in a pair is incon-
sistent with quantum-mechanical principles. We explain
why these above approaches lead, in the calculation of in-
dividual induced dipoles, to artificially large moments:
when applied to study the electron density on one atom
of the pair, the label-free operator leads to negative prob-

abilities, which explains why very high values of the
exchange-induced dipole moments are obtained within
this theory. '

In Sec. III we show that, although the label-free opera-
tor cannot be used to study individual properties of
atoms in a pair, it can however be used to calculate global
exchange properties of the total pair.

II. CRITICAL REVIEW OF THE USE
OF THE "LABEL-FREE OPERATORS" IN STUDIES

OF INDIVIDUAL PROPERTIES OF ATOMS IN A PAIR

We consider two interacting hydrogen atoms, A and B,
and we limit ourselves to the simplest possible description
of the diatom, as in Refs. 10—12. The Hilbert space of the
two electrons is thus spanned by one-electron orbitals of
each atom's linear combination of atomic orbitals
(LCAO). In the label-free representation, ' two con-
figurations are possible: in the first one, electrons 1 and 2
are attached to A and B, respectively; in the other, they
are attached to atoms B and A. For such a system the
complete Hamiltonian (Coulombic approximation) can be
written as

Ho= g (H„+H~ )A;, (2)

V=+ VA, .

In these expressions the operator A, (i = 1,2) projects the

H =H~ +H~+ V,
where H~ and H~ are atomic Hamiltonians of A and B,
respectively, and where V represents the Coulombic in-
teraction between the two atoms. The total Hamiltonian
is symmetric with respect to the exchange of electrons be-
tween the two atoms; however, neither H~+Hz nor V
are themselves invariant with respect to such an ex-
change. The invariance can be achieved by writing the
Hamiltonian in the label-free form as
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wave function of the total system onto the subspace cor-
responding to a particular grouping of the electrons on
each atom A or B: A, thus corresponds to the case when
the first electron (noted 1) and the second one (noted 2)
are attached to A and B, respectively; A2 corresponds to
the case when they are attached to B and A, respectively.
Hz (Ha ) is the Hainiltonian operator for the isolated

t I

atom A (B) in the ith configuration. V, is the Coulomb
interaction of the electron of A and of the electron of B
in this configuration.

Two hydrogen atoms are considered in Ref. 12. Tak-
ing the origin of the reference frame of atom A, with r,
and rz the position of the first and second electrons, re-
spectively, and with R the internuclear distance between
A and B, the totally antisymmetric zeroth-order wave
function leap & of the pair of electrons for the fundamental
state is then built from the wave functions P(r, ),
P(rz —R) (corresponding to the first configuration) and
$(r2), P(ri —R) (corresponding to the second con-
figuration)

leap &
=fp[o (1)r(2)P(r, )P(r2 —R)

-0.&

-0.2

R(o, u.)

—cr(2)~(1)$(r2)P(r, —R)] (4)

(in this expression, where fp is a normalization constant,
the functions of spin of the two electrons are denoted by
o and ~, respectively). The use of A,. thus leads to

&i I +p & =+fp~(1)r(2)P(r, )P(r, —R),
+2I@p& = fpo'(2)T( 1 )P(rz)P(r, —R)

Within this description, Mahanty and Majumdar'
have then given the following definition of an operator as-
sociated with atoms A or B separately:

Qq —Q~ A)+Q~ A2

with a similar equation for Qz.
Following Ref. 12, Eq. (6) leads to the definition of the

dipole moment operator of the individual atom A in the
pair

Pw P~, &&+Ps,&2

By using Eqs. (4) and (5) and the hydrogen ls orbital, we
obtain in the case when the spin functions o and ~ are
identical,

where S (R ) is the overlap integral.
This result was found by Mahanty and Majumdar. '

They concluded that, although the total dipole moment
of the pair is zero, each individual atom can be con-
sidered as having nonzero dipole moments with opposite
signs. The variation of p~ according to the internuclear
distance is then illustrated in Fig. I. When the R axis is
oriented from A toward B, the positive value of pz
shows that the two electrons have repulsive interactions.

- lt o (o.u.)

FICx. 1. "Individual" exchange-induced dipole moment in a
hydrogen pair. Curve a, case of two parallel spin states; curve b,
case of two antiparallel spin states (vertical scales are different
for curves a and b).

When applied to the case of two antiparallel spins, the
above method (as claimed in Ref. 12) leads to the a priori
surprising result (p„&=0. Let us note, however, that in
this case a result which could seem realistic could be ob-
tained by taking some precautions as explained in Sec.
III. Such a calculation would leads to a negative value of
(p„& (Fig. 1) showing that, in this new case, the dipole
moment of A is directed from B toward A (or, in other
words, that electrons are attracted in the space lying be-
tween the two nuclei in a bonding orbital). These two re-
sults could seem to be physically satisfying: when the
two atoms approach each other from infinity, each gets a
permanent induced-dipole moment because of the van
der Waals very-long-range interaction their electrons
are thus attracted by the other atom. In the overlap re-
gion, spin effects become important via the Pauli princi-
ple and thus must be taken into account.

The label-free operator thus seems to give results that
could agree with the usual representation of bonding and
antibonding orbitals. However we are shocked to think
that a fully quantum-mechanical treatment of undistin-
guishable particles (electrons 1 and 2) could be permitted
to define individual properties of each atom in the pair.

With respect to the important problem of separability,
the above results (Fig. 1) regarding individual dipole mo-
ments cannot hold true and our purpose is then to illus-
trate this and show an unacceptable consequence of the
definition [Eq. (6)]: in the case of two parallel spins the
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individual label-free operator leads to a negative electron
density of the atom.

To see this, let us study the electron density of "each"
atom according to the above theory. Using the electron
density operator, Eq. (6) leads in this case to

p„(r, ) =5(r, —r, )A, +5(r, —r2)A2,

and we obtain for the electron density of atom A in the
case of orientation of spins, as in Ref. 12 (two parallel
spills):

{p„(r,)) = [exp( 2r—, /ao) —5(R) exp( 2r—, /ao) exp( —2~r, —R~/ao)] .
[1—S(R)']

mao
(10)

We find that the electron density for the individual atom
A is somewhere negative (in particular, around atom 8).
This explains the very large dipole moment observed in
Fig. 1(a). It, of course, invalidates the use of the
definition [Eq. (6)] of individual exchange-induced opera-
tors.

III. USE OF THE LABEL-FREE
OPERATOR IN CALCULATION OF

GLOBAL EXCHANGE PROPERTIES
OF THE COMPLETE SYSTEM

These results clearly show why the use of label-free
operators cannot be extended to define individual proper-
ties of each atom in a pair. However, our aim is to go
deeper into this problem and to show how this formalism
can be used (as in Refs. 11 and 14) in order to evaluate
the total contribution of exchange interactions between
the two atoms. In order to perform such calculations it
appears necessary to clarify the use of the wave function
given in Eq. (4) and the projection operator.

In the paper of Mahanty and Majumdar, '
A, (i =1 or

2) projects the totally antisymmetric function on the sub-
space constructed by the ith configuration where the elec-
tron i is associated with atom A and has the spin state o.
originally associated with A [see Eqs. (4) and (5)]. In
such an approach the antisymmetrized states which span
the Hilbert space of the two atoms are (we use the
simplified Slater notations and we neglect all ionic contri-
butions)

A 8 = [a (1)b (2) —a (2)b (1)]a(1)a(2),

A 8 =[a (1)b (2)—a (2)b (1)] /3(1)P(2),

(A 8 + A 8 )=[a(1)b(2)—a(2)b(1)]

(12a)

(12b)

This comes from the fact that, when performing such cal-
culations, the products of the spin functions factorized in
Eqs. (11a) and (1 lb) can never be zero. On the contrary,
the states A 8 and A +8 lead, in this same case, to
identically null results for the exchange contributions.
This comes from the fact that, in evaluating the diA'erent
mean values, the spin functions a(1)/3(1) or a(2)P(2) are
orthogonal.

This shows the understructure of calculations present-
ed in Ref. 12. When defining ~40) [in Eq. (4)], the two
atoms are first considered to be initially separate and then
are brought together. Because of this, Eqs. (11) does not
allow for the indistinguishability of the electrons.

In order to satisfy the general character of quantum
mechanics in the calculation of exchange properties, we
have to consider (instead of separated atoms) that the two
atoms are originally not separated (and that they conse-
quently will remain unseparated when their distance R
increases). Because of this, we may not use the wave
functions [Eqs. (4) and (11)]which do not correspond to a
complete description of the pair; ~&o} is to be expanded
through the total pair spin-orbital functions. In so doing
the basis states are no longer the states of Eqs. (11) but
are the following ones:

A +8+ = [a (1)b (2)a(1)a(2)—a (2)b (1)a(1)a(2)],
(1 la)

8 = [a (1)b (2)/3(1)p(2) —a (2)b (1)/3(1)p(2)],

(1 lb)

X [a(1)/3(2)+a(2)/3(1)],

( A +8 —A 8+ ) = [a ( 1 )b (2)+a (2)b (1))
X [a(1)/3(2) —a(2)/3(1)] .

(12c)

(12d)

A 8+ =[a (1)b (2)/3(1)a(2) —a (2)b (1)P(2)a(1)],
(1 lc)

A +8 =[a (1)b (2)a(1)P(2)—a (2)b (1)a(2)P(1)],
(1 ld)

where a and P indicate up (+) and down ( —) polariza-
tions of electrons. These four equations correspond to
Eq. (4) when spin functions are specified.

When applied to states A+8 and A B, the label-
free operator gives nonzero exchange contributions to the
dispersive energy" as do other dynamic operator. '

Equation (12c) completes the description of the triplet
(S = 1) state and Eq. (12d) defines the singlet (5 =0) state
[which is missing in the above description (11)].

These wave functions [Eq. (12)] are the only possible
wave functions to be considered. They can be used to
calculate exchange properties and overlap mean values of
dynamic operators for the total pair in all possible states.
For example, an interesting calculation of the exchange
dipole moment of a pair has been recently given by
Timoneda and Hunt. '

In order to use these new states [Eq. (12)] with label-
free operators, it is necessary to clearly define the role of
the projection operator A; which only act on the spatial
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part of the wave function. For instance we have

A&[a (1)b (2)+a (2)b (1)][a(1)P(2)—a(2)P(1)]

=[a(1)b(2)][a(1)P(2)—a(2)P(1)] . (13)

dynamic operator 0 defined in the pair AB into the sum
of operators of the type [Eq. (6)]:

=A~ Ai+Qq A2+A~ A)+0~ A2 . (14)
All these modifications make it possible to use the

label-free operator in order to calculate, for the state
S =0 as for the state S = 1, the exchange contributions to
the dispersive energy or, in other words, the dispersive
contribution to the exchange energy. The same holds
true, of course, when using all other dynamic operators.

This, however, does not validate the use of the label-
free operator in order to calculate "individual" properties
of atoms in a pair: it is always possible to decompose a

We must, however, emphasize the dangerous application
of Q, ~ or fL~ separately.

Let us note that in all these calculations, the expres-
sions of the projection operators A, are related to the
basis set that has been chosen in the Hilbert space. A
more precise representation of the diatom including ionic
wave functions on 3 and 8 or a three-center expansion
would require a new definition of these operators.
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