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Effect of a forced How on dendritic growth
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The e6'ects of a forced flow on dendritic growth rate are studied theoretically. By using a solva-
bility condition, one determines the eigenvalue C =p V/Ddo as a function of the velocity of the
forced flow in the two-dimensional model. Even in the presence of crystalline anisotropy, no solu-
tions for eigenvalues can be found when the flow velocity is larger than a critical velocity. The re-
sults are compared critically with recent experiments.

I. INTRODUCTION

A basic problem in dendritic growth is to determine
growth rates as a function of various control parameters
such as undercooling, concentration of an impurity, or
velocity of a controlled external flow.

Growth from a pure undercooled melt is now well un-
derstood, at least from a theoretical point of view.
Current theory is based on the existence of a one-
parameter family of isothermal paraboloids (Ivantsov')
growing with constant velocity, with an exact solution of
the Stephan problem. For these solutions, only the Peclet
number related to the crystal P, =pV/2D is fixed by the
undercooling b, = ( To —T )c IQ so that the growth ve-
locity remains arbitrary. Here, p is the tip radius of the
crystal, V the velocity, D the diffusive coefficient for tern-
perature, T the temperature of the undercooled liquid,
To the crystallization temperature of the pure liquid, c
the specific heat, and Q the latent heat released per unit
volume of solid. When anisotropic surface tension effects
are taken into account by the Gibbs-Thomson relation;
growth velocity can be determined since another com-
bination between p and V, the eigenvalue C =p V/4Ddo,
~here do is the capillary length, is determined by a solva-
bility condition as a function of the anisotropic factor
only (Meiron, Barbieri et al. , and Ben Amar and
Pomeau ).

The agreement between theoretical results and experi-
mental data is less clear. On one hand, from a theoretical
point of view, growth rates are determined from the nee-
dle crystals solutions, i.e., stationary shapes, which is not
the case in experiments. This difference appears inessen-
tial since numerical simulations of Saito et al. , by using
the same theoretical model of growth, can produce den-
drites, with growth rates in agreement with the previous
theoretical results. On the other hand, from the experi-
mental side, if the law p V=C" for a given material is
well verified, its dependance as a function of the aniso-
tropic factor is less clear. Measurements of anisotropic
factors are difficult, essentially when they are small, and
there is still some controversy about the experimental re-
sults. Thus it appears essential to study the influence of

other control parameters on the dendritic growth rates.
When impurity is added to the melt, the Ivantsov para-

boloids are still exact solutions of the Stephan problem
without surface tension, at once for the thermal and solu-
tal fields. Still here, only the thermal and solutal Peclet
numbers related to the crystal are determined by T andc, the concentration of impurity in the melt, so that the
growth velocity is not determined. When anisotropic
surface tension effects are taken into account, a solvabili-
ty condition leads to the determination of the same eigen-
value C as a function of the anisotropic factor and c
only (Ben Amar and Pelce ). For a fixed anisotropic fac-
tor, 1/C is a linear function of the concentration of im-
purities, result not in agreement with experiments. Nev-
ertheless both theory and experiments agree that, for a
fixed undercooling with respect to the liquidus tempera-
ture, the growth velocity has a maximum for some finite
value of c (Lipton et al. ).

When effect of an axial external flow is considered, ex-
periments show that for a given flow velocity U, p V is
still a constant, linearly increasing function of the exter-
nal velocity U (Bouissou et al. ). In this case, the
Ivantsov paraboloids are still solutions of the problem
when surface tension effects are neglected, either in the
large-Reynolds-number limit [potential flow approxima-
tion (Dash and Gill and Ben Amar et al. ' )], or in the
small-Reynolds-number limit [Oseen approximation
(Dash and Gill and Saville and Beaghton")]. Only the
Peclet number related to the crystal P, is determined as a
function of the undercooling and the Peclet number relat-
ed to the flow Pf =pU/2D. Our work will be devoted to
the determination of the eigenvalue C as a function of the
anisotropic factor and the external flow velocity U by us-
ing, as in the previous cases, a solvability condition.

In Sec. II, one introduces the two-dimensional free-
boundary problem defined by the equation of diffusion of
heat and Navier-Stokes, with thermodynamic boundary
conditions applied at the interface. We will consider in
the following that the flow is at small Reynolds number
NR, =p U/v, which is the case in experiments, so that the
flow satisfies the Oseen approximation. In such case,
when surface tension effects are neglected, this free

6673 1989 The American Physical Society



6674 PH. BOUISSOU AND P. PELCE

The liquid-solid interface is a region which is in general
very small compared to the macroscopic scale (several
0
A). During crystal growth, it is there that the latent heat
is released, that the temperature field varies rapidly. In
order to study the dynamics of growth, one can consider
the interface as a discontinuity for the field of tempera-
ture and for the velocity field on which boundary condi-
tions are applied.

A. Interface

The interface is assumed to be rough so that the kinetic
time of transfer of molecules between solid and liquid is
very fast compared to the characteristic diffusion time of
heat. In these conditions, a thermodynamic relation, the
Gibbs-Thomson relation gives the temperature at the in-
terface, a function of the local curvature 1/R of the
front. For simplicity, one considers here a two-
dimensional model so that the temperature T at the inter-
face is

TO 0 (I)

Here o. is the effective anisotropic liquid-solid surface
tension and 1/R the curvature of the interface.

TO

boundary problem admits a one-parameter family of
Ivantsov parabolas, that one determines in the third part.
Then, we introduce surface tension effects in the problem.
Contrary to the previous cases, it is not possible to write
an integral equation in which only the shape of the crys-
tal enters. Thus methods based on the resolution of these
integral equations (either a whole solution of an analyti-
cal continuation of the equation in the complex plane or
a solution of a linearization of the equation around the
shape without surface tension ) cannot be used easily.
One will use a solvability condition, in a form previously
derived by Pelce and Bensimon, which is simply the
vanishing of an oscillating integral in which shapes
without surface tension and dispersion relation for distur-
bances of a planar interface enter. In Secs. IVA and
IV 8 we present the method and derive the dispersion re-
lation. In Sec. IVC we analyze the effects of a forced
flow on velocity selection. %'e first test our method to
study the effects of Peclet number on velocity selection
and compare the results to the one obtained by Barbieri
and Langer' in the two-dimensional case. Then we

study the effects of the external forced flow and derive a
relation between the eigenvalue C and the external flow
velocity. In particular we show that above some critical
flow velocity, selection disappears even when anisotropic
effects in surface tension are considered, i.e., no steady
solution can be found. Then in a final discussion all these
theoretical results are compared to experimental data and
new experiments are suggested.

II. MODEL OF GROWTH

in the solid. In the liquid phase, one must take into ac-
count the advection of heat by the fluid velocity field w
and thus the temperature satisfies

BT +(w.V)T=DAT .
Bt

(3)

At the interface, conservation of energy leads to

Qv n=D. c~(V T, —V T, ).n, (4)

where v.n is the normal velocity of the interface. Far at
infinity, the temperature is uniform and equal to T

C. Velocity field

The velocity field w satisfies the Navier-Stokes equa-
tion

%V 1+(w V)w= — Vp+vb, w
at p&

and the mass conservation relation

V.m=O (6)

Here v is the kinetic viscosity of the fluid, p the pressure
field, and p, the density of the liquid. In the following,
one assumes that crystal and melt densities are equal so
that there is no exchange of mass between the fluid and
the crystal as it grows and the normal component of the
flow vanishes at the interface. Furthermore, one assumes
a no-slip condition at the interface so that the tangential
component of the flow vanishes too (see Gliksman
et al. i4).

III. CASE WITHOUT SURFACE TENSION

A family of exact solutions can be found when the tern-
perature is constant on the interface T = T0, and when
the fluid flow is potential ' or Oseen type. '" In both
cases, as for the Ivantsov solutions, the shape of the inter-
face is a parabola in a two-dimensional model. For a
given undercooling, the Peclet number related to the ve-
locity of the needle crystal P, is a function of the Peclet
number related to the velocity of the flow PI.

In the following, one will study the experimentally
relevant case of the small Reynolds number limit where
the flow is Oseen type. In that approximation, the non-
linear term of the Navier-Stokes equation is replaced by
the term U (Bw/Bz), where U is the external Aow veloci-
ty far ahead of the crystal. Then, the Navier-Stokes
equation becomes the so-called Oseen equation:

U = — Vp +vow .aw
Bz p&

B. Temperature field

The temperature field satisfies the diffusion equation

=DDTBT
(2)

One assumes that the interface is parabolic, of tip ra-
dius p, and grows at velocity V along the Oz axis. The
external flow at infinity is parallel, in the opposite the
direction of growth.

In the parabolic coordinates, where g and rI are defined
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z =&(q —g),
2

(9a)

one finds a solution for the velocity field, in the Qseen ap-
proximation, whose components are, in a frame where
the crystal is at rest

f rl

2&i)+ g

Here Xo(l) is the Ivantsov parabola function of the curvi-
linear coordinate l; 6, the curvature operator; and k
the local nonzero marginal mode of the conjugate disper-
sion relation, written in a frame moving with constant ve-
locity U in the z direction (frame at rest with respect to
the unperturbed solution). The condition of application
of this formula is that k (1) is large compared to the in-
verse of the scale of the unperturbed solution [Wentzel-
Kramers-Brillouin (WKB) approximation].

where

f ( il ) =2( U + V)&g —2 Ug ( il ),
with

erfc( QNR, q /2 )

erfc(QNR, /2)

+Q(2/vrNa, )
1

erfc(QNR, /2)

(9b)

(10)

8. Stability analysis of a planar interface
moving with constant velocity

One determines the growth rate of a perturbation of
the planar interface with a wavelength small compared to
the scale of the unperturbed solution. As the perturba-
tion disturbs the fluid on a distance of the order of the
wavelength, one can expand the stationary velocity field
give by Eqs. (9) and (10) around the parabola (i) = 1). To
the first order in g —1, one finds

1/2

(14a)

X exp
NR,

2
—exp

NRe

2 ~

1/2

1+ [ V+ Ua (NR, )(rl —1)], (14b)

(11) where

Then, one integrates the stationary equation of heat (3),
with the boundary conditions (1) and (4) in which
surface-tension eA'ects have been neglected to obtain a
temperature profile which depends only on g. Then, rela-
tion between Peclet numbers and undercooling is ob-
tained as

6 =P, exp(P, P&)—
+ o d'g

X —exp —I', gv'ii

a(NR )=
1 /2

2NR, exp( NR, /2)—
erfc( Q(NR, /2 )

u = —VcosO,

It is more convenient to use a local Cartesian frame
(x,y) fixed to the crystal, where x and y are, respectively,
the tangent and normal axes to the interface, at a point
where the normal to the interface has an angle O with the
growth axis. In these coordinates, the stationary velocity
field is

U
u = —V sinO —a—sinO cosOy,

p

(16)

IV. EFFECT OF SURFACE TENSION
IN THE T%'O-DIMENSIONAL MODEL

(12)

VT=TO — —cosOy .
c, D

(17)

i.e., a shear flow whose magnitude is a function of the an-
gle O. A similar expansion can be done for the tempera-
ture field and one obtains at leading order

A. Solvability condition

When surface-tension eAects are taken into account the
Ivantsov parabolas are no longer solutions of the free-
boundary problem. Nevertheless, when surface-tension
eFects are weak, in a sense that will be discussed in detail
later, steady solutions can be found close to an Ivantsov
parabola if a solvability condition is satisfied. In its most
general form, derived previously by Pelce and Bensi-
mon' (see also Pelce' '

), this condition appears as the
vanishing of an oscillating integral as

f dl G [Xo(1)]exp i f k (1')dl' =0 . (13)

Let u ', U', and T' can be the perturbations of the station-
ary field, g' the perturbation of the steady interface, with
a wavelength A. assumed very small compared to p. In
these conditions, the advective term in the Oseen equa-
tion can be neglected and the flow perturbation satisfies
the Stokes equation, i.e.,

Vp'= vp, Aw',

with the mass conservation relation

Similarly, the temperature equation can be written as
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BT' BT' BT' , dT
Bt Bx By dy

(20)

since the stationary temperature field is independant of x.
One conserves the advective terms in the temperature
equation and not in the flow equation since the Prandtl
number Np, =v/D is assumed small. As it can be de-
duced from the relations (1) and (4), on the unperturbed
interface (y =0) the following boundary conditions are
satisfied:

Bu'=0, v'=—
Bt

for the velocity field, and

A B P
T,

' = Ti' g' c—osg—= do
c& By

and

(21)

(22)

g ag aT,'=D
c Bt By

dT, g V—cosg
By c D

2

(23)

B =C sinOcosOaU/p,

A = —C(coke+i singcosgakU/p) .

(26)

(27)

One determines now the perturbation of the temperature
T' on the form, T'(y)=g(y)exp(cot +ikx) and obtains
from Eq. (20)

D [g "(y)—k g (y)] =ug'(y)+g (y)(co+iku )+u'

(28)

As g varies on the length scale k, the left-hand side of Eq.
(28) is dominant compared to the right-hand side at large
wave number so that one can solve Eq. (28) by expanding
the solution at large k. At leading order, one obtains
simply go(y) =Eoexp( —Eky), so that the following order

can be found in the form g&(y)=(E& f+,y
+Giy )exp( —sky), where:

Eo . U
i asing cosg——2e(c~ i k V sing+ ek V—cosg )

4kD p

for the temperature field. As can be deduced from rela-
tions (18) and (19), bp'=0 and thus p' takes the form

p'= A exp(cut +ikx —sky)

where e has the same sign as Re(k) since p' cannot
diverge as y goes to + oo. Then, by using Eqs. (18) and
(19) one obtains the perturbed velocity field as

u'=( ie Ay —+B)exp(cot +ikx sky), —

u'=[A (y+e/k)+iBe]exp(cot +ikx sky), (25)—

where B is for the moment an arbitrary constant. One
applies the boundary conditions (21) to determine the
constants A and B as a function of the amplitude C of the
interface displacement:

+i Vd k e sinO+m —e —ed k2 5 V
0 4 Dk

U
+dokia sinO cosO .

4p
(30)

The first line of this relation corresponds to the usual
Mullins-Sekerka growth rate. When all the terms of this
line balance one obtains the usual order of magnitude
co= Vk and k =( V/Ddo)'~ . The second line of the rela-
tion corresponds to the effects of Pcclet number related to
the crystal, i.e., the correction to the Mullins-Sekerka
growth rate due to the advective effects of the motion of
the crystal. The relative order of magnitude of these
terms is V/Dk, or P, k/p. Then, the third line of the
dispersion relation corresponds to the effect of the exter-
nal flow, whose order of magnitude, relative to the dom-
inant terms is aUdo/Vp, or aPf(A, /p) . The correspond-
ing term is complex so that, at this order of the calcula-
tion, the effect of the external flow is to modify the advec-
tion of the perturbations along the crystal.

C. Velocity selection

We will consider the two following extreme limits of
small or large flow velocity, the crossover between the
two regimes being for a(NR, )PI =P, (p/k).

1. Small velocity limit

As mentioned at the beginning of the section, one com-
putes first the marginal mode of the conjugate of the
dispersion relation (30), in which U=0. For this, one
changes i in i in relation—(30) and as it is the case in pre-
vious works, ' ' one chooses e= —1. As in this limit
there is no external flow, the marginal mode k satisfies

—k Vexp(ig)+2d(8)Dk

V exp( —ig)
D

cosg —cosg id(8)k V—sing .
2

(31)

One has, at leading order in V/Dk

—k V exp(ig)+2d (8)Dk 3 =(),

from which follows

]/2

One can apply now the boundary conditions (22) and (23)
at each order of the expansion in order to eliminate the
unknown constants Eo, E„and C and obtain the disper-
sion relation for the perturbations as

~=i Vk sinO+ e Vk cosO —2doD ek

V2+ cos8[ —,
' exp( —i eg )

—cosg]

Q V2 U+ C 3eco+ia sinOcosO—
c 4kD P

(29) k
mO 2d(8)D exp( i 8/2 ) (33)
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since Re(k} has the same sign as e.
At the first order in V/Dk, one has

k = —exp( i 8—) .
P

(34)

dqG g exp C% g — ig+
Qo 2 2

=0.

(35)

Here

i f n (1+i')') (1—ig') /

2 0 V'g (q')

where B(g)=(1+g ) (1—P)+8Pg and g=tan8. Here,
we find a relation already found by Barbieri and Langer'
who solved the linearized equation of the complete in-
tegral equation. In order to determine this relation, we
have neglected the external flow velocity in the dispersion
relation, i.e. , we assumed that aP& ((P, (p/A. ). As
X= 1/k, this condition is satisfied if a U «VC'

2. Large velocity limit

Consider now the case where the eff'ects related to
the Peclet number P, are negligible, i.e., when

(Xa)RPI ))P, (p/A. ), which is generally the case in ex-
periments. Then the equation for the marginal mode is
simply [here we still choose e= —1 and i is changed in
—i in relation (30)]

—k V exp(i8)+2d(8)Dk =—ak sin8cos8,i d(8)U
pV

Here, one assumes a fourfold symmetry of the crystal so
that the capillary length can be written as d (8)
=d0(1 —pcos48), where p is the anisotropic factor.
Then the solvability condition (13) can be written as

function of the anisotropic factor P and the dimensionless
flow velocity e. At this level the first discrepancy be-
tween theory and experiments occurs. In a given experi-
ment, for a given flow velocity of the dendrite decreases
on a long-time scale due to the slow change of the super-
saturation, but the eigenvalue C remains a constant.
Furthermore, C is function of the external velocity U, by
the dimensionless number Udo/D. Here, theory predicts
that the eigenvalue C is function of the external velocity
U by the same dirnensionless number multiplied by the
factor 1/P, As .a result for a given experiment, C is not
constant since P, changes due to the slow change of the
supersaturation.

To get more quantitative results, one can evaluate the
integral (40) in the limit of small anisotropy. The
numerator of the integrand vanishes for values of g close
to g =i (stationary phase points) and the denominator for
ran=i (1—&2P) (singularity). The dominant contribution
to the integral is determined by the neighborhood of q=i
so that 4 (g) can be approximated by

I7/2 &2
1

1/2
29/8P7/8 d y

[0' '(t' ] (4 1 )
1/+2P (yi2 1)1/2

where q =i ( 1 &2PP) a—nd r =a /2 / P
First recall what occurs when r=0 (no external fiow

velocity). The initial contour of integration (real axis in
the g variable or line parallel to the imaginary axis of the
real part 1/&2P in the P variable) must go close to the
stationary phase point /=0, turn around the singularity
P = 1, and come back to the stationary point (Fig. 1). The
integral (41) is dominated by the contribution of the loop
which gives an oscillating factor to the exponentially
small value of the integral on the form

from which the marginal mode k can be deduced as
1/2

k m 2d (8)D

i d(8)UX exp(i 8) + —a sinOcosO
4 pV

1/2

(38)

As before, we assume a fourfold symmetry of the crystal
so that the solvability condition can be written as

f ™dgG[(g)]exp[&C 4 (q}]=0 . (39)

Here

i g, [(1+irj')(1+re' )
/ +iari'B(g')]'/

2 0 &a(q )

(40)

0 Bee

where o. =ado U/4p V. Thus, as a first result, one obtains
that the eigenvalue C characterizing a selected state is a FICs. 1. Contour of integration in the P variable when ~=0.
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cos( A v'C /3 ), (42)

where A is a numerical constant.
When r&0 the stationary phase point /=0 for ~=0

splits into six displayed symmetrically to the real axis as
shown on Fig. 2. The dominant contribution to the in-
tegral is given by the two symmetric points with largest
real part, i.e., the points with positive real part. The
essential feature is that when the parameter ~ increases
the two points go on the right of the singularity, fuse for
some value r, =

—,
'

( —', )' on the real axis, and then
separate still on the real axis. Thus for small ~ the con-
tour goes through the stationary points, turns around the
singularity still giving an oscillatory contribution to the
integral [Fig. 3(a)]. When r) w, all the contour lies on
the right of the singularity [Fig. 3(b)]. As a result, the in-
tegral is real and the solvability condition cannot be
satisfied. Then, even if anisotropic surface tension is tak-
en into account, no stationary solution can be found at
sufficiently large external Aow velocity. A similar situa-
tion was found in the problem of the Saft'man-Taylor
finger. Solutions for fingers moving at constant velocity
can be found only if the relative size of the finger is larger
than -'. "

2

For ~ & ~„the selected values of C are on the form

tionary phase points P and P+ and the contribution of
the loop. Each stationary phase point contributes by a
term exp[&C 4'(P+)] whose oscillating part is

cos[A, &CP (I+B,r" ' )],
where 3, and B, are numerical constants. It remains to
evaluate the contribution of the loop [Fig. 3(a)] between

0

a(XR, ) doU
C P

—7/4f
0

(43)

where f is a function determined numerically.
When ~ is small the stationary phase points split from

/=0 at a distance of order 2 . We assume that r is
sma11 but sufficiently large in order that the stationary
phase points can be treated separately. There are two
contributions to the integral: the contribution of the sta-

2

0 0

FIG. 2. Stationary phase points.

I

Bee (b)
FIG. 3. Contour of integration in the P variable {a) when

~ & ~,. and (b) when ~) ~, .
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at the intersection of the steepest descent path
and the real axis and /=1. It gives an oscillating factor
to the exponentially small value of the integral of the
form

i 7/2 2
1

i /2
cos A2&C P f dP (44)P/7 y2)i/2

which behaves as cos[A23/Cp (I+82r" ' )]. The
cancellation of the sum of these contributions leads to the
following selected values of C:

' 11/14
a(NR, ) doUC= 1+6

p7/4 p3/4 p V
(45)

where b is a numerical constant. As mentioned before,
this formula holds when aPf »P, (p/A, ), or a U
))V( 1/2

V. DISCUSSIQN

We determined dendritic growth rates in the presence
of an axial external flow in the two-dimensional model.
When surface tension effects are neglected, the problem
of growth admits a continuum of solutions for needle
crystal growing with stationary shape and constant veloc-
ity. For a give undercooling, the Peclet number related
to the crystal P, =p V/2D is an increasing function of the
Peclet number related to the flow Pf =pU/2D so that
growth rates are not determined at this level. One needs
another combination between tip radius and velocity, the
eigenvalue C=p V/4Ddo that we determine by taking
into account surface-tension effects. This relation can be
determined analytically when shapes are close to the
shapes without surface tension, as a result of a solvability
condition. In the two-dimensional model, the results are
the following.

When the external flow velocity is small,
a (NR, )U « VC', C is independent of U. It is a func-
tion on the Peclet number P, by the relation (35). For
larger flow velocity a (NR, ) U » VC ', C is a function of
the dimensionless parameter r =a (NR, ) Udo/p p V,
where a (NR, ) =NR, for small Reynolds numbers. When
~ is larger than a critical number of order unity no sta-
tionary solution can be found. These results are found in
the WKB limit, i.e., when C is large, or when the aniso-
tropic factor p is small.

In experiments, p =0.75 (pi valic acid), U/ V = 10,
do=20 A, and p=10 pm so that r=10 a(NR, ). Furth-
ermore, NR, =10 so that a(NR, )=NR, =10 in the
two-dimensional model. As &C =5, a(NR, )U « V3/C
and the effects of the forced flow are dominated by the
effects of the Peclet number related to the crystal, i.e., the
eigenvalue C is not modified by the effects of the flow.
This result is essentially due to the smallness of the factor
a (NR, ) in the two-dimensional model.

In the three-dimensional model, a(NR, )= —1/lnNR,
when the R~enolds number is small, so that
a (NR, ) U/V3/C = 1 and thus one can consider that the
external flow may have an observable effect. If one as-
sumes, as it is the case in the absence of forced flow, that
the scalings are the same in two-dimensional and three-
dimensional case, one will have

nC= 1+b
7I4

11/14
a(NR, ) U

p3/4 D /d P

%'e are grateful to D. Bensimon, M. Ben Amar, B. Per-
rin, and P. Tabeling for many instructive conversations.
One of us (Ph.B.) wishes to express thanks for the hospi-
tality of the Laboratoire de Recherche en Combustion at
1'Universite de Provence. This work was supported by
Centre National d'Etudes Spatiales Contract No.
89/CNES/ l 228.

It is interesting to compare this formula to the experi-
mental results. The linear variation of product p V with
velocity U must be compared with the theoretical predic-
tion which gives a dependence with U" ' . Because of
the uncertainty of the data, it is dificult to distinguish a
power of U between 1 and 11/14 so that essentially the
observed dependance of p V with U can be considered in
reasonable agreement with our theoretical calculation.

However, experimentally, for a given value of the
external flow velocity U, the variation of C as a function
of the growth velocity V gives a plateau. If one esti-
mates the constant b in formula (46) so that the value C is
equal to the measured one, one finds, for an experimental
variation of the growth velocity from 1.5 to 3 pm/s a rel-
ative variation for C less than S%%uo through the term
(1/Pc)" /' . Thus, under those conditions, one can con-
sider that the dependance of C with V is consistent with
experiment.

Furthermore, due to experimental uncertainty, the plot
p V versus Ui [Ref. 8, Fig. 3(a)] is not inconsistent with
the existence of the two regimes predicted by the theory:
a first one at low flow velocity (Ui & 5 pm/s), where p V
does not depend on Uii and a second regime correspond-
ing to the effect of the forced flow.

All this indicates that it would be interesting to per-
form additional experimental work in order to draw out
any conclusion concerning the validity of this theory.
The main result of the paper is that the eigenvalue C
is a function of the dimensionless parameter
r=a(NR, )Udo/p pV which mixes in a nontrivial way
cristalline anisotropy and external flow velocity. Thus, in
experiments, it would be particularly interesting to work
at larger flow velocity, in a larger range of values of crys-
tal velocity, and use materials of very weak anisotropy
like succinonitrile in order to test more completely this
scaling law.



6680 PH. BOUISSOU AND P. PELCE

G. P. Ivantsov, Dokl. Akad. Nauk SSSR 58, 567 (1974).
D. Meiron, Phys. Rev. A 33, 2704 (1986).

3A. Barbieri, D. C. Hong, and J. S. Langer, Phys. Rev. A 35,
1802 (1986).

4M. Ben Amar and Y, Pomeau, Europhys. Lett. 2, 307 (1986).
5Y. Saito, G. Goldbeck-Wood, and H. Muller-Krumbharr,

Phys. Rev. Lett. 58, 1541 (1987).
M. Ben Amar and P, Pelce, Phys. Rev. A 39, 4263 (1989).
J. Lipton, M. E. Glicksman, and W. Kurz, Metall. Trans. A 18,

341(1987).
8Ph. Bouissou, B. Perrin, and P. Tabeling, Phys. Rev. A 40, 509

(1989).
S. K. Dash and W. N. Gill, Mass Heat Transfer 27, 1345

(1984).
M. Ben Amar, Ph. Bouissou, and P. Pelce, J. Crystal Growth

92, 97 (1988).
'D. A. Saville and J. P. Beaghton, Phys. Rev. A 37, 3423

(1988).
P. Pelce and D. Bensimon, Nucl. Phys. B {Proc. Suppl. ) 2, 259
(1987).

' A. Barbieri and J. S. Langer, Phys. Rev. A 39, 5314 (1989).
M. E. Glicksman, S. R. Coriell, and G. B. McFadden, Ann.
Rev. Fluid. Mech. 18, 307 (1986).

'5P. Pelce, Dynamics of Curued Fronts iAcademic, New York,
1988).

~6P. Pelce, Lectures on the Motion of a Curued Interface, Les
Houches Proceedings of the Les Houches Summer School,
Les Houches, 1988 {North-Holland, Amsterdam, 1988).
J. W. McLean and P. G. Saffman, J. Fluid. Mech. 102, 445
(1981).


