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The thermodynamic formalism for dynamical systems is applied to a class of mappings of
"laminar-turbulent" temporal intermittency. The corresponding statistical system is shown to be a
lattice gas with many-body interactions of clustering type. This one-dimensional system bears a
close analogy with the Fisher-Felderhof droplet model of condensation. The abnormal dynamic
fluctuations give rise to a phase transition. The critical behaviors, which depend solely on the
characteristic exponent z of the original map, are studied analytically, and a number of unexpect-
ed results are obtained. In the pressure-temperature plane, the intermittant state is located on a
critical line that separates the chaotic ("turbulent" ) state from the periodic ("laminar" ) state. The
transition from one phase to the other may be of first order if z &2. On the other hand, for 2 z,
the "sporadic state" introduced by Gaspard and Wang [Proc. Natl. Acad. Sci. V.S.A. 85, 4591
(1988)] is existent and corresponds to a codimension-two point on the critical curve.

I. INTRODUCTION

A. Prelude

Dissipative dynamical systems that may display
aperiodic behaviors such as deterministic chaos have rel-
atively few excited degrees of freedom, and the asymptot-
ic states appear as attractors in a phase space of finite di-
mension. On the other hand, their temporal evolution is
in a sense irregular and unpredictable, and unfolds
indefinitely in time. Therefore, a statistical description is
needed to understand the probabilistic behaviors in these
systems, on the basis of the ergodic theory. ' To this end,
one wishes to be able to encode the trajectories using the
symbolic dynamics, then to consider the probabilistic
measure on the space of all possible long trajectories. In
this way an analogy may be established with a statistical-
mechanical system in one dimension (corresponding to
the time axis), and the well-developed theoretical tools of
equilibrium thermodynamics and statistical mechanics
may be applied for this purpose. Indeed, in the case of
the Axiom-A systems, the invariant measures are known
to be given as the Gibbs states of the associated
statistical-mechanical systems. The theory may also
be generalizable to spatially extended (spatio-temporal)
far-from-equilibrium processes, which would correspond
to statistical systems of dimension 1+d, where d is the
spatial dimension of the system. Such a system would
not be an isotropic one, however, since it acquires a semi-
group character in the particular dimension of time, as a
consequence of the irreversible and dissipative nature of
the system.

B. Posing the problem

In the case of a hyperbolic system, there exists a ftnite
Markovian partition of the phase space, and the statisti-
cal counterpart has a Hamiltonian with an interaction
potential that decreases exponentilly with the distance.

Now, it is well known that one-dimensional statistical
systems can not exhibit a phase transition unless the in-
teraction potentials decay slowly enough with the dis-
tance. ' Consequently, all the thermodynamic func-
tions of a hyperbolic system are analytic, and no phase
transition is expected. Much less is known for the nonhy-
perbolic systems where a thermodynamic phase transi-
tion becomes possible; and virtually no example of physi-
cal interest is available, for which the construction of the
corresponding statistical system has been done.

The present paper is devoted to such a task. We intend
to develop a statistical description of temporal intermit-
tency, on the basis of the Sinai-Ruelle-Bowen thermo-
dynamic formalism. We shall be concerned with the in-
termittent system of Manneville and Pomeau

x„+&

=f(x„;z) =x„+cx„' (mod 1),

with z) 1, c )0. The system is not hyperbolic, because
the slope of the map tends to 1 as x„~O (Fig. 1). x =0 is
a marginally stable fixed point, and the system (1.1) is at
the criticality of a transition from a periodic state to a
chaotic one (a universal "intermittent" scenario to
chaos).

Our motivations are threefold. First, we would like to
determine the physical invariant measure governing the
remarkable intermittent dynamics in (1.1), to construct
explicitly the Hamiltonian of its statistical counterpart,
and to discover the underlying structure of the interac-
tions.

Second, it is well known that this map displays long-
range temporal correlation and abnormal fiuctuations (cf.
Refs. 12—14, also see below). This implies a thermo-
dynamic phase transition in this system, in the sense that
its thermodynamic functions, such as the pressure P(I3), '

are not analytic. More specifically, we have shown previ-
ously' that if 1(a(2,
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law. Such systems are called sporadic. It would be of
great interest to see to what these intermittent or sporad-
ic states correspond in the related statistical system, and
how they compare with the chaotic state and the periodic
state (the fixed point x =0).

C. The two Banach spaces B and B

Xq

A3A2 A, Ao

FIG. 1. The Manneville-Pomeau map, with a countable par-
tition I Ak J of the unit interval [0,1] (from Ref. 17).

It turns out that the Hamiltonian we shall be dealing
with has certain curious features and belongs to a mar-
ginally known class of interaction potentials, under the
notation of BgB. Let us explain. Two Banach spaces of
interaction potentials may be defined regardless of the di-
mension of the physical space: B is defined as the space
of interaction potentials for which the tota1 interaction
energy of one given particle (or spin) with all the others is
finite:

g ~c(x)~ &
OEX

(1.4)

P(p)=hKs(1 —p)+constX(1 —p) as p~1 —,
P(P)=0, P~ 1

and if 0&a&1,

P(p)=constX(1 —p)'~ as p~l —,
P(P)=0, P~ 1

(1.2a)

(1.2b)

I(.„—n (inn )
' with 0&vo& 1 or vo= 1, vi &0, (1.3)

which is intermediate between the periodic (vo=0) and
chaotic (vo= 1) cases. The dynamic instability is

stretched exponential, rather than exponential or a power

p(PI &&

where a= I/(z —1) and hzs is the Kolmogorov-Sinai en-
tropy (Fig. 2). One naturally wishes to understand this
critical phenomenon at a more microscopic level of sta-
tistical mechanics.

Third, it has been revealed by Gaspard and Wang'
that an intermittent dynamics in (1.1) may or may not
possess a positive Liapounov exponent. In the latter case
(corresponding to 2 & z), the algorithmic complexity K„
of Kolmogorov and Chaitin' ' increases as

On the other hand, the space B is composed of interac-
tion potentials for which the energy per particle (or spin)
is finite

OCX
(1.5)

Obviously BCB. An example of B is given by the
one-dimensional spin system with pairwise coupling
J(

~
i —j ~ ), which exhibits a phase transition if J(n ) = n

with 1 & v & 2. ' On the other hand, Fisher devised circa
1965 a class of one-dimensional models of condensation
(gas-liquid phase transition) that are exactly solvable.
Such models have been studied extensively by Fisher and
Felderhof. One peculiar property of the Fisher-
Felderhof model is that the interaction energy of one par-
ticle with the rest of the system may be infinite, hence it
belongs to B&B. This actually was the first example of
B&B from which originated later studies, in particular by
Israel, ' of the Banach space B. A number of unexpected
phenomena have been uncovered for this ultimately large
space B, and for the systems in B&B. For instance, the
pressure of such a system need no longer be continuous
as a function of the density, ' a phenomenon called the
antiphase transition. Also, it has been proven by Lanford
and Ruelle that the systems in B can not have metasta-
ble states. This may no longer be true for B&B.

As we shall see below, the invariant state of the non-
equilibrium intermittent processes discussed here turns
out to fall into this category B&B. The Manneville-
Pomeau intermittency thus presents a physically observ-
able example (from nonlinear systems) for the Fisher-
Felderhof-like model. One may ask whether this finding
has a wider significance. In this respect, it is worth not-
ing that the interaction potentials of Fisher-Felderhof
type have been proven ' to be dense in the Banach space
B, and even possess certain generic properties in this
sense.

FICx. 2. Schematic drawing of the pressure function P(P) as
expressed by Eq. (1.2). It is convex, and vanishes for all 1 & P.

D. Outline of the paper

In order to provide an exactly solvable system, we sha11
consider a piecewise linear version of the Manneville-
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Pomeau map (1.1). We shall see that the corresponding
statistical system is a lattice system with many-body clus-
tering interactions. Since the intermittent dynamics is
characterized by long trains of "laminar phases" inter-
spersed with "turbulent phases, " it is of interest to identi-
fy. the "laminar" ("turbulent" ) state with the presence
(absence) of a particle on a given lattice site. This natu-
rally leads to the introduction of a chemical potential"
associated to the number of laminar states of a finite lat-
tice of size n as n —+ 00. In this way the thermodynamic
formalism is extended to the grand canonical ensemble.

The layout of the paper is as follows. In Sec. II we
shall present the piecewise linear map, convert our sys-
tem into a Markovian chain, and review some important
properties of this system. In Sec. III the corresponding
statistical mechanical system is constructed, and the
Hamiltonian is explicitly given. The occurrence of a
phase transition is discussed in terms of the nonanalytici-
ty of thermodynamic functions. The critical curve in the
pressure-temperature plane is obtained. In Sec. IV the
method of Fisher and Felderhof is then applied to clarify
the mathematical nature of the phase transition. The
critical behavior is studied in detail, and is shown to de-
pend only on the exponent z of the original mapping. %'e

shall see that z (2 and z )2 represent two qualitatively
different cases. For z & 2, the phase transition may be of
first order with a plateau portion of the density-pressure
diagram (the isotherm), whereas for 2 (z, the sporadicity
may occur at a single point of the pressure-temperature
plane, thus as a codimension-two phenomenon. Some
concluding remarks are given in Sec. V.

II. TEMPORAL INTERMITTENT SYSTEMS

A. Piecewise linear model

The following piecewise linear model, as an approxima-
tion of the Manneville-Pomeau system (1.1), was initially
conceived by Gaspard, and first appeared in Ref. 17. Let
the value a be [cf. (1.1)] given by

1 =a+ca', 0(a (1 (2.1)

and let us define the interval HO=[a, 1). Then, the suc-
cessive preimages of Ao generate a countable number of
intervals Ak, k =0, 1,2, . . . (Fig. 1). We suppose that the
mapping within each interval is linearized, the resulting
system can be easily seen to be (cf. Fig. 3)

4 —2
—4 —]

(xn kk )+kk —1 1f kk —xn kk —1

k —] kk
x„+,=f(x„;z)= '

n

1 —a
if a ~x„(1,

(2.2)

with a= 1/(z —1), and 0-: O~Q, Cr(COOCO]CO2 ) (Co]CO2CO3 ) (2.5)

a4= k=1,2, 3, . . . , go=a, g ]=1 .
(1+k )

The interval length is

aa
n 4n —I 4n (1+ (2.3)

with the transition matrix illustrated by the graph of Fig.
4. We shall see that the correspondence is not merely to-
pological, but also in the probabilistic sense. The invari-
ant measure density p„of the system (2.2) is determined
by Perron-Frobenuis equation which in the present
discrete case takes the form

and the slope within each interval is constant, Pn —] Pn /Sn+PO/SO ~ (2.6)

sn

~n —1 cx+ 11+, A,„=—lns„
ff ~ oo n

(2.4) By recurrence relations, and making use of the expres-
sions for b.k (2.3) and for sk (2.4), we can write

with 6,= 1 —a. All these asymptotic features are
shared by the original map (1.1), thus one expects that
the piecewise linear system (2.2) presents a fairly accurate
description of the Manneville-Pomeau system. It is not-
ed, however, that the system (2.2) is equivalent to a
countable Markov chain (as we shall see shortly), whereas
this latter property has not been proven for the original
map (1.1).

B. Countable Markov chain

k=0 I=1 k=l

1
po

n

(1 —a )po4 —]
so

n

or

(1 —a )pop„=,n)1 .
1 —[n /(n + 1)]

p s (p —] po/so) po + sk g II sk $0

(2.7)

(2.8)

The symbolic dynamics associated to the system (2.2) is
a Markovian subshift defined on a noncornpact space0= I0, 1,2, . . . I

One notices that since this probability density presents
discontinuity only on a countable set of points in [0,1], it
is absolutely continuous with respect to the Lebesgue
measure. Furthermore, the invariant measure is given as
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apo
p(A„)=p„b,„=

n

and for any cylinder (rooco, . . . co„,) of size n,

p(~0~1 ~ —1) p A ) (~0~1 ~ —i

(2.9a)

(2.9b)

where I(coors, . co„,) is the length of the interval cod-
ed by (coocoi . . co„ t). The constant po in (2.9a) may be
specified if the invariant measure is normalizable. Since

FIG. 4. The graph of our Markov chain with denumerable
symbols.

2

g p„=po 1+a g n
n=o Pl =1

(2.10)

the sum is convergent if cx & 1, or z (2, in which case

p(10101)=pip (li0)=p, p, (01)
p(0)

The transition probability matrix takes the form
r

BOO 701 P02 703

(2.12)

1+a n
—a

(2.11)
1 0 0 0
0 1 0 0
0 0 1 0

(2.13)

On the other hand, the invariant measure is not nor-
malizable if a 1, or z ~ 2, as is also the case in the origi-
nal Manneville-Pomeau system. Nevertheless, condition-
al probabilities are well defined for this kind of stochastic
process. The invariant measure is Markovian, as it can
be checked by examples, e.g. , [cf (2.9b)],

g pnpnm pm (2.14)

from which it follows that

The fact that p„ is invariant is expressed by the equa-
tion

Eon (pn pn+i)rpo=~n ~ (2.15)

f(x) with g„+go„=g„oh„=1. We conclude that the
piecewise linear mapping (2.2) is isomorphic to a count-
able Markov chain with the transition probability given
by (2.13) and (2.15).

C. Non-Gaussian dynamical fiuctuations

p(&)

P,

Let (coocoi . ni„ i) be an arbitrary orbit of length n.
We denoted by N„ the number of passages by the state
AO during n units of time. If this state is referred to as
chaotic ("turbulent" ), in contrast to all the other periodic
("laminar" ) states, then X„ is the portion of the time
lapse n during which the signal of the system is chaotic
(above the threshold a). This is a key quantity to describe
the intermittent dynamics.

As discussed in Ref. 17, the probability distribution for
N„may be obtained using the Feller's theory of recurrent
events. Let X be the recurrent time for the state Ao.
Then, the probability P(X= n ) =p+„ i ~, hence its distri-
bution function is

p F(n) = g bi, =1—g„&=1 an-
k=0

(2.16)

~ ~ ~ 636,~

FIG. 3. In the upper part is displayed a piecewise linear ver-
sion of the Manneville-Pomeau map. 6k, k =0, 1, . . . are inter-
val lengths of the cells t Ak ], within each the slope sz is con-
stant. The lower part of the figure shows the invariant probabil-
ity density of a staircase form. It diverges at x =0.

Let r (cr ) be the expectation (variance) of the recurrent
time X, then three distinct cases will be identified: (a) if
a) 2 (1 &z & —,'), r=finite and cr =finite; (b) if 1 &a &2
(—', &z&2), ~=finite and o =~; (c) if 0&a&1 (2&z),
~=~ ando 2

Let 6 (x) be the distribution function of the Levy
stable law ' of param. eter ~, with 0(0.~ 2, ~=2 corre-
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sponds to Gaussian distribution. For a&2, G (x) is
defined by the two-sided Laplace transform g (s )

[Re(s) ~ 0] (Ref. 30)

exp[ —I (1 —a)s ] if a%1,
exp(s Ins) if a= 1 . (2.17)

The following results can be proved.
(i) If 1 (z & —,', the fluctuations are Gaussian,

con
sin

var(N„) =f
COsin—
2

S&(co)den, (2.25)

var(N„) —n
n —+ 00

(2.26a)

where S& is the Fourier transform of the autocorrelation
function P(n). If

and

7- 7-'" n~oo
(2.18a) with 0 & v & 2, v&1, it follows from (2.25) that

S~(co) —co
CO~0

(2.26b)

E(N„)= n /v, var(N„) = cr n lr (2.18b) and the Tauberian theorem implies that

E(N„)= n lr, var(N„) = n inn . (2.19)

In the critical case z =
—,', the fluctuations are still Gauss-

ian, but

P(n) — n (2.26c)

Therefore, according to the Eqs. (2.20)—(2.22), we have, if
0&+&1,

flPN~ ——xn—
An
a+1

(ii) If —,
' &z &2 (1&a&2),

1/a

G (x), (2.20a)

P(n) —n " ' with 0&v=2(1 —a)&2,
and if 1 & a & 2,

P(n)-n ' " with 0(v=a —1&1 .

(2.27)

(2.28)

where 2 is a constant, and

E(N„)= n l~, var(N„) —n

(iii) If z =2 (a= I),

P(N„„~,„„+„~ n ) G, (x),

(2.20b)

(2.21a)

and

a
P N~ ~ 6 (x),n~~

(2.22a)

E(N„)=n /Inn, (Inn /n ) var(N„) =O(1) . (2.21b)

(iv) If 2 &z (0 & a & 1),

For 2 (a, var(N„)-n and the local fluctuations are
Gaussian (2.18), the matter is more subtle since Eq. (2.25)
can no longer be used to derive the asymptotic form of
S&. However, as we show explicitly in Appendix 8, we
still have a power law with v=n —1, which is now larger
than the unity. Long-range dynamic correlation is there-
fore intrinsic to the intermittent system, and is present
for all the three cases (a) —(c) listed at the beginning of
Sec. II C.

E. "Fractal time" (Ref. 32) and the stretched
exponential instability

We remark that for 0&a(1 (2&z),

and

E(N„)-n, var(N„)-n (2.22b)

E(N„) n'(inn -) '

with 0&vo&1, or vo=1, v, &0 . (2.29)

All these results, except (2.21a), may be found in Ref. 17.
The proof of the Eq. (2.21a) is given in Appendix A.

D. Long-range correlation

Given x =(coot@&co& . . ), let us define the characteristic
function of the state Ao as

1 if coo=0

In other words, the "turbulent" state occurs on a fractal
subset of the time axis with a fractional dimension
vo=cx & 1.

Similar behavior as (2.29) can be found for other im-
portant observables, such as the algorithmic complexity
of Kolmogorov and Chaitin' ' or the logarithm of the
separation of nearby orbits,

n —1

I x ='
0 otherwise (2.23) A„=g A,„.

k=0
(2.30)

then, obviously

n —1

N„(x)= g I(f (x)) .
k=0

(2.24)

As a result, the dynamic instability is stretched exponen-
tial, ""

We would like to show that the autocorrelation P(n) for
this random variable obeys a power law. In fact, the vari-
ance of fluctuations var(N„) may be written as '

5x„-5xoexp[cn '(inn ) '] . (2.31)

This new, sporadic dynamic regime is quite different in
nature from those cases more familiar to us.
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III. STATISTICAL MECHANICS
AND PHASE TRANSITIONS

ek(~0~1 ~k —1) hk(~0~1 ~k —1}

h—
l, 1(copcoi ' ' ' cok —i) (3.4)

A. Review of the thermodynamic formalism

We shall only recall what will be directly relevant to
our present study. Assume that a mapping x„+,=f(x„)
admits a generating partition t A, j so that
x =(copcoico2 ) if f'"'(x)C 3,k=0, 1,2, . . . Accord-

ing to the thermodynamic formalism, ' given any con-
tinuous function, a topological pressure can be according-
ly defined either by a variational principle or in terms of
the Ruelle-Perron-Frobenuis operator theorem. If the
particular observable —

P~f '(x)
~

depending linearly on P
is chosen, then a thermodynamic pressure function can
be expressed as '
P(P) = lim —InZ„(P)

1

n~oo

U„(co)= g px(co~X} . (3.&)

If I = I0, 1,2, . . . , n —I], then

n —1 n 2

Un(& &01 &rr —1) g Pk(&k )+ g Pk k +1(&kMk +1 )
k=0 k=0

+ . +P„(copco, co„,) .

(3.6)

By time invariance, pk =pp=hp, ctlk k+, =pp, =h,
—hp, . . . We obtain

with h, =0. The total energy of a configuration
co=(copco, co2 . } defined on a finite subset I is

1= lim —ln
n~oo n

( )

exp[ —PU„(cop . co„ 1)],

(3.1a)

U„(copco, . co„,)

2 hk(~n kcon —k+1' '—' con —i}
k=1

(3.7)

where

n —1

Since Eq. (3.7) is in fact identical to Eq. (3.1b), the
definition of pk(copco, cok, ) is consistent.

U„(copco, . co„,)= inf g In~f'(f'"'(x})~
xC(coo . - co &) k p

(3.lb)

plays the role of a Hamiltonian. Each choice of the value
of P induces a particular invariant measure

The "natural measure" is given by @=1 (the reasons
for which this measure is especially interesting are ex-
plained in Refs. 35 and 36). For attracting states, the
Pesin's equality is usually satisfied which implies
P(P= 1)=0. The parameter P, formally similar to the in-
verse of a temperature, is associated by a Legendre trans-
form to the spectrum of all possible values of
A- U„(copco, co„,)/n, the Liapounov exponent for
long (albeit finite) orbits. ' The pressure function P(P)
may be interpreted in terms of the large deviations
of the Liapunov exponent. The connection of the func-
tion P(P) to the generalized entropy h (q) of Renyi, and
the generalized Liapounov exponent L (q), is straightfor-
ward. ' '

Furthermore, for the resulting one-dimensional
statistical-mechanical system, the interaction potential
may, at least in principle, be deduced as follows. ' Let

hk (copco, cok 1)= inf ln
~f '(x ) ~,

x E I(coocol cojc 1)

(3.3)

where I(copcoi co„,) is again the interval of the phase
space coded by (copcoi co„,). The interaction energy
of a sublattice (copcoi . cok 1) is

lMp(cop co„,)-exp[ —nP(f3) —PU„(cop . co„,) ] .

(3.2)

B. Lattice-gas model of the intermittent system

We shall now apply the aforementioned scheme to our
intermittent system (2.2). For convenience, we shall
henceforth use a binary coding of the orbits in the system
(2.2). This is possible since the binary partition is also a
generating one [cf. Fig. 3(a)], although the resulting pro-
babilistic process is no longer Markovian in the metric
sense. The construction of the interaction potential is
direct in this case, because the slope of the mapping is
constant in each interval Ak, k =0, 1, . . . . Since

hk(copcoi ' ' ' cok —i }

1f cop, co], . . . ) col ]
—1

col=0, I &k —1

0 otherwise,

(3.8)

we have the following:

(a) Pk(copco, co„,) =0—0=0

Pk(~0~1 ~k —1} ~l ~l

1f cop) 6)]) ~ ~ ~ & Q)k ] 1

1f coo&Q)]& ~ ~ ~
& col

&
1& col 0& I k 2

(c) Wk(&0&1 ' ' '
Mk 1}—~k 1 0 kk 1

1f cop&ct)]&. . .
& cok 2= 1& cc)k ] =0

We shall say that (copcoi . col 1} is an isolated cluster
of "laminar" states if cop coi . . . col 2=1 col 1=0 (thus
ended by a "turbulent" state). Then, the interaction po-
tential is zero if the sublattice under consideration
(copcoi . col ) does not belong to a unique cluster; or if all
the sites are laminar. On the other hand, for an isolated
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cluster the energy is

I —1

u&= g A, ,
— (a+1)lnl .

1

(3.9)

which may also be rewritten as a sum of pairwise interac-
tions Q) 2(col );—1, col )

—0)=A, ;,

i=0
(3.10)

0(o.&1 type A

Wl —'exp[c(lnl)'], v(1,0(c type B
lnl, type C .

(3.1 la)

(3.11b)
(3.11c)

we emphasize that P& 2 is l dependent. It is to be
remarked that there is no "bulk" contribution to the en-

ergy, since u1 is essentially the "surface" energy 8'1 of an
isolated cluster of size l.

For an arbitrary sublattice (cvocal . co„&), the num-

ber X„of the "turbulent" sites in this sublattice is also
the number of clusters defined as above. These clusters
do not interact with each other, and the energy
U„(cooco, . ~„,) is a sum of energies of individual clus-

ters.
The interaction potential we have obtained is similar to

the Fisher-Felderhof model, in that the interaction en-

ergy of one given site with the rest of the lattice is not
bounded from above. In fact, the energy of an infinite
cluster is also the interaction energy u1 of the last "tur-
bulent state" with all the preceding laminar ones, which
diverges logarithmically with I, according to (3.9). There-
fore, our system belongs to the space B&8 mentioned in

Sec. I. In Ref. 20, three classes of models were investigat-
ed:

:-(p,z, n)= g z
N=0 (coOcu&

. . co„&j

N fixed

—13 „e

(3.14)

where z=exp(pp) is the fugacity (it should not be con-
fused with the exponent z of the mapping (1.1), which for-
tunately will rarely appear in the rest of the paper).

Since p= 1 corresponds to the natural measure, we ob-
serve that

In other terms, the sporadic dynamic processes corre-
spond to a kind of statistical system with energies dis-
tributed on a fractal subset of the space, with the conse-
quence that the mean energy density is zero. This
phenomenon has not been foreseen in the original work
by Fisher and Felderhof, but perhaps is also present in
their own model system. Other characteristics of the
Fisher-Felderhof-like model will become apparent below.

In what follows we shall be concerned with the statisti-
cal mechanics of this lattice-gas model derived from our
system of temporal intermittency. We start by observing
that besides the quantity U„(cooco, co„,), the laminar
time, or the number N=n —N„of the laminar sites in a
lattice of size n, as n ~ ~, is of equal importance here.
Therefore we would like to introduce a "chemical poten-
tial" p, to be associated with n —N„; just as p was intro-
duced in connection to the energy U„(cooco, . co„,).
This definition is mostly natural, with the consequence
that the thermodynamic conjugate variable of p, the den-
sity p, will be the unity when in average almost all the
sites are laminar, and we have a sort of condensed phase.

Then, the grand canonical partition function =(p, z, n )

1S

:-(p= l,z, n ) = (e" }, (3.15)
In each case, the surface energy 8'1 increases more slowly
than l, so that lim~ „W&/1 =0. Clearly our intermittent
system is of type C, or corresponds to the logarithmic
model which was analyzed by Fisher and Felderhof in the
second article of their serial publication (cf. Ref. 20. The
discrete lattice was considered in Ref. 22).

In various aspects, this system is quite unusual. For in-
stance, letting m1 denote the number of clusters of length
(1+1) in a sublattice (cooco, . co„,), we have

where we see that p is a parameter for describing fluctua-
tions of the random variable N =n N„(see also —Appen-
dix C). The pressure is given by

1
Pp(P, z)= lim —ln=(P, z, n) .

n~oo n
(3.16)

Recalling what we have said at the beginning of this sec-
tion, the pressure (3.16) may be thought of as defined in
correspondence with the function

ml=N„, g (I+1)m
1=0 1=0

(3.12)

E( U„(cvocal ' co —i))=g E(mi)ut
1

=(Xpotu, )E(N„),
I

(3.13)

with E(m&)=po&E(N„). The sum is finite, thus E(U„)
behaves similarly as E(N„). In particular, for 2 (z
(0(a(1), the mean energy will not be proportional to
the size of the system [cf. (2.21b), (2.22b)]. Rather, the
mean energy per unit of volume vanishes.

Then, the mean total energy of sublattices of size n may
be written as

which depends on two parameters. p and p determine a
two-parameter family of invariant measures of the sys-
tem.

C. Existence of phase transition

We shall follow the methodology of Ref. 20, and con-
sider the signature of a phase transition as the occurrence
of nonanalyticity of the thermodynamic quantities. Let
us consider the generating function (the discrete version
of Laplace transform) of the grand partition function
:-(p,z, n ):
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%(P,z, s ) = g e '""(/3, z, n ) .
n=0

We observe that if we let so =/3p(p, z ), then

if Re (s) &so

0 if Re(s

(3.17)

(3.18)

H (Pu) i

EXT

Bs

In other words, the Pp(P, z ) may be obtained as a singu-
larity of

00 n

4(/3, z, s ) = g e '" g z g exp( —P g m&u, ) . (3.19)
n =0 N —0 I m( I

—sl —Pu( 1
—Pu(H(Pz, s)=gze '=g u e ', u=ze

1=0 1=0

(3.20)

FICi. 5. H(P, u) curve for fixed P. Depending on H{P,u =1)
less than or greater than e', the internal or external condition is
selected. The crossover between the two determines a critical
line in the (P,s) plane, on which the thermodynamic functions
are not analytic.

4(/3, z, s }=g H (P, u )e
V=0

(3.21)

This sum can become divergent in two distinct ways: (a)
if H(p, u ) = ~, or the internal condition:

—Pu
ue =1, (3.22)

where u =limi (uI/1)=0; and (b) if H(P, u)e '=1,
or the external condition:

be the transformed grand partition function of a single
cluster (of all possible sizes). Then it can be checked that

One has thus proved the existence of a phase transition
crossing the critical line (3.24). Section IV is devoted to a
detailed analysis in the critical region.

IV. STUDY OF THE CRITICAL PHENOMENA

A. State equation and thermodynamics

According to Fisher and Felderhof, we may write from
the definition of u =e 'z

H(P, u)= g u'e '=e'.
1=0

(3.23}

H(P, u = l)=e' or s=ln g e Pu(

1=0
(3.24)

It determines a critical line in the (/3, s ) plane, as
displayed in Fig. 6. We note that this critical curve s(P)
is a monotonically decreasing function that diverges at

/3*=1/(a+ I) . (3.25)

It is convenient to consider s instead of the pressure p,
and rather than regarding s as function of p and p, p is to
be considered as function of P and s, determined by either
(3.22) or (3.23). Thus we see already that this function
will not be analytic. Evidently, H(p, u ) is a monotonical-
ly increasing function of u. Let /3 and s be fixed. If, as u

increases from zero, there exists a value of u less than the
unity, u * & 1, such that H (P, u *

}=e ', then the external
condition is realized at u =u *, before the internal condi-
tion u =-1 is attained. In other words, Eq. (3.23) is to be
used to obtain the thermodynamic function p(p, s ).

On the other hand, if as u approaches the unity from
below, H(/3, u ) remains smaller than e', then the diver-
gence of 4(p, z, s) is to be attributed to the occurrence of
the internal condition, and p(p, s) is given by (3.22). »g-
ure 5 illustrates these two possibilities. The changeover
between the two is determined by the equality of the Eqs.
(2.22) and (2.23),

se)

( choo

I Line
ittent
se)

FIG. 6. Phase diagram in the (P,s). It is representative for
1 & a, then /3, & 1. The critical curve s, {p) divides the plane into
two parts, corresponding respectively the periodic and chaotic
states. A series of points of s, {P}are drawn to indicate a subdi-
vision of the curve into a countable number of pieces, each of
them has a difFerent order of phase transition. The intermittent
state with long-range correlations and abnormal fluctuations is
located on this curve of criticality. For 0(a(1, still another
phase, the sporadic state with stretched exponential instability is
present at the unique point P= 1, s ={}.
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lnz=lnu+s . (4.1) 0 & a & 1, then

This is a basic state equation of our system, where u is
now determined by either the internal condition u =1
(3.22), or the external condition (3.23). By the standard
thermodynamic calculus, we list the important quantities
of our interest: the specific volume

lim v =Ug 1 Ug v1 0
u~1

and if 1&+, then

vs=1, vs
—

vt =0 for P' &P&P, ,

vs &1; vg
—vi&0 for P, &P&1 .

(4. 1 1)

(4.12)

the isothermal compressibility

KT 1 Blnz
Bs

(4.3)

and the specific heat per unit volume

t) p B p 3 t) s 3 t) lnz

BT dT t)P t)P
(4.4)

B. The order of phase transition

We need to study the change of the density as the criti-
cality is crossed. On one hand, the ordered phase is given
by the internal condition, with a fixed specific volume

Hence, we see that the phase transition may be of first
order, in the case 1 &a. For fixed /3 satisfying P, &P& 1,
the function s(v) (the isotherm) presents a plateau at the
critical value of s =-s, (P). This function also has a
discontinuity at v =1 [in fact, the inverse function v(s)
has a plateau at v=1 for all the values s&s, (13)]. See
Fig. 7.

When P is decreased to P„ the phase transition will no
longer be of first order. For P* &P&P, (with 1 &a), as
well as for 0&et&1, both comprised as (a+1)P&2,
Blnz/Bs is continuous, and we shall consider higher-order
derivatives of lnz with respect to s. To this end, we ob-
serve that

X(co)=C, +C~l (2—(a+1)P)cv +"~ as tv~0+

al~
V1 =1

Bs
(4.5)

Consequently,

(4.13)

This corresponds to the periodic ("laminar" ) phase, for
which

S

( )2
—(a+ 1)P

tls CzI (2 —(a+ 1)P)
(4.14)

=1 or =0, (4 6) Moreover,

while on the other hand the disordered phase is given by
the external condition, and corresponds to the chaotic
("turbulent" ) phase. Let us make use of the external con-
dition to calculate the specific volume, and see if it tends
to the unity when the critical curve in the (p, s) plane is
approached (with fixed p, for instance). By differentiating
both sides of Eq. (3.23), with respect to lnz, one obtains

e'-e '+ dx e "x ' +"~+C co+0(co ),
0 0

where C0 is a constant. Therefore

(s —s, )-tv +"~ 'I (1 —(a+1)P)
+Coto+O(co ) .

We have

(4.15)

(4.16)

Let

dlnz

a.
1=0

e'

tu 'e
—Pu

(4.7)

u =e ", co~0+ as u ~1—, (4.8)

then, the denominator of the second term in (4.7) can be
rewritten as

X(co)=—g lu'e
1=0

—C+C dx e x'
1 2

1

(4.9)

where C, and C2 are constant. Then, v~,„01if this in-
tegral with co=0 is convergent, i.e., if

p& =13, —2
o.+1 (4.10)

Since the critical curve ends at p= 1 (Fig. 6), (4.10) can-
not be realized for 0 & a & 1. We conclude that if

FIG. 7. Three-dimensional sketch of the state equation for
the intermittent system with 1 &a. The origin of the axes is
(P=P*,v= l, s=0). For P, &P, the pressure function versus
density (the isothermsj presents a plateau at the criticality. On
the other hand, beyond the critical value of s, the density
remains constant, as indicated here by a vertical line at U = 1.
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a(~) a( —]~)
cps Bs

On the other hand, in the second case (a+ 1)/3 & 2 the
sum X(co) diverges at co =0, and one has

S—e'
C2r(2 —(a+ 1 )p)

S )[2—(a+1)P]/[(a+1)P—1]
C (4.17)

y( )
(a+ 1)t3—2

V
2 —(a+ 1)/ti

g

which in combination with (4.16) yields

5(P) = [(a+ 1)P—1]/[2 —(a+ 1)P] .

(4.25)

(4.26)

By definition,

1 Blnz
p v as

(a+1))3 a( lnu )

Bs

One remarks that this index is not bounded as
(a+ 1)P~2.

(ii) (ug
—u() as P~P,+. From (4.9) we have

X(cu)— 1 +g( (a+1))3—2
)(a+ 1)/3 —2

so that
)[3—2(a+ ) )ti]/[(a+ 1)t3—1]

C (4.18)
v —1+e '[(a+1)P—2], (4.27)

which will diverge if 3 (2(a+1)p, i.e. , either 1 & a (2
with 3/[2(a+1)] &p(2/(a+1); or —,

' &a &1 with

3/[2(a+1)] (p(1. More generally, it can be checked
that if

or

s {p=p )
v —

v( —(a+1)e ' ' (P—P, ) . (4.28)

((a+1)P&, n ~1
n+1 n

(4. 19)
Thus, the critical exponent is 1.

(iii) At p=p„(v —u() as s~s, . Since

then

8'lnz
k

gn+]1
=0, k=0, 1, . . . , n,

u =1

COX

X(tu)- f dx
1 X

Ei ( —cv )—— —]neo, (4.29)
co~0+

we have, with alnz/as —1+e '/( —Incu),

(4.20)

Observing that alnz/as is constant in the periodic ("lami-
nar") phase, thus its further derivatives are all zero, one
concludes from (4.20) that a"lnz/as" is continuous as the
critical point is crossed. Nevertheless, its next derivative
is infinite. This completes our consideration on the order
of the phase transition.

T

SSe'
v —v] — —,or s, —s -exp

In(s, —s) ' '
ug

—
u(

(4.30)

which is not a power law.
(iv) T(uo phase specifi-c heat. By definition (4.3), com-

bined with the fact that the chemical potential is identical
at the coexisting pressure, we have, as co~0+,

ci (g) —c),(I)=(us —1)P (4.31)

C. Asymptotic behavior in the critical region

We shall list a number of results, with necessary indi-
cations of their derivations. The method of analysis leans
essentially on the work of Fisher-Felderhof.

(i) v,
—v as s~s, . Let /3 be fixed. The specific volume

v approaches to v according to a certain power law,

which remains finite, although the higher derivatives may
be divergent.

(v) Entropy function. It follows from

s
s(/3, (Lt) =ppP —PA+ G(A, p), with A(P, p) =pp—

(4.32)
(s —s)-(u —v )

'
C (4.21) that the entropy function may be written as

One would like to determine the index function 5(P).
The argument is due to Fisher and Felderhof. Two
cases are to be distinguished depending on the asymptotic
behavior of the sum X(cu) (4.9), as co~0+. For the first
case 2 & (a+ 1)p this sum does converge, hence

G(A, p) =s(P,p) —P
Bs

It is evident that for the periodic ("laminar" ) phase,

s =lnz =P((t, G(A, p):—0 .

(4.33)

(4.34)

r(~) -r(~ =0)+C, r(2 —(a+1)P)~'+ '))'-',

and

(4.22) Whereas for the chaotic ("turbulent" ) phase,
differentiating the external condition (3.23) with respect
to P yields

S
v —v -e'

g
1

X(0)
(o.+ 1)P—2

which in combination with (4.16) yields

6(P) =1/[(a+1)/3 —2] .

(4.23)

(4.24)

—Sl —Pute 'z'( —u( )

c3s 1 =0

I+ )
1=0

e '( —u()
1=0

e '(I + 1)
1=0

(4.35)
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~"I gP l
—(a+ 1)P

1
1 —+ oo

(4.36)

we see that the denominator of the expression (4.36) will
diverge for 0&+ & 1, in which case the entropy will van-
ish at the codimension two critical point P= 1, s =0. This
corresponds to the sporadic state discussed in the previous
sections. For 1&a, on the other hand, it is easy to see
that

G(P= l,p=O) =
b, l in' I

1=0

(I+ 1)hi
1=0

(4.37)

which is just the Kolmogorov-Sinai entropy of the origi-

This is a nonpositive quantity. It is thus obvious that so
far as s, )0, the entropy function (4.34) will not vanish as
the criticality is approached from below. Consequently,
there is a finite jump in G(A, p).

For the particular case s, =O (this happens with p=O
so that u ~1—implies s ~0 and P~ 1), recalling that

hKs= —Xi; gp;, »p;,
J

to our systems (2.9) and (2.15).

D. The case @=0

(4.38)

It is of interest to discuss a little further the particular
case @=0, since that corresponds to the more familiar
situation discussed at the beginning of Sec. III. The pres-
sure function (3.16) is reduced to (3.1a), and the external
condition (3.23) to

—1 —P,e'=g e
1=0

(4.39)

Evidently, s(P= 1)=0. On the other side of the critical
point, the internal condition (3.22) gives s(P)=—0, /3) l.
We would like to see how s(P) approaches to zero as
P~ 1 —.Using (3.23) one can write

nal dynamical system. We would have obtained the same
expression, had we applied the formula of the entropy of
a Markov chain

e'-(1 —a)~+(aa)~ J dl e '1
1=1

T

S—(1—a )~+(aa)~ (a+ 1)P—1
s' +"~ 'l (2 —(a+1)P,s) (4.40)

s =e"(6+ce+ ) with v= 1/a,
and (b) if k &a &(k+1), k =1,2, . . . ,

k
s= g a, e'+a„+,e" with v=a,

i =1

(4.42a)

(4.42b)

and the coefficient al =hKs.
For 0&a &2, a&1, Eq. (4.42) recovers the results of

Eq. (1.2), which have been first derived in a very different
way. ' On the other hand, for 2&+, it should be em-
phasized that the local fluctuations are known to be
Gaussian [cf. (2.18)]. However, because of the existence
of long range correlation, the large or global fluctuations
described by the P(13) function are peculiar, and the pres-
sure function is still not analytic with respect to P.

V. CONCLUDING REMARKS

Let us summarize.
(i) In this paper we have made an explicit construction

for the associated statistical process of a class of temporal

Let e=l —P, one can show that as s~O and e~O,
(4.40) yields

g A „e s"+(aa)l (1 —a)s +O(es (ins), es )=0,
m, n

(4.41)

where 3 „are coefficients depending on a and a. Based
on this equation, it is easy to check that (a) if 0 & a & 1,

intermittent systems. We first converted the mapping
into a countable Markov chain and obtained the invari-
ant measure. The turbulent time N„ is shown to play an
important role, and its dynamical fluctuations, both local
and global, are studied at length.

(ii) The resulting system is shown to belong to the same
category as that of an abstract model already existing in
the literature. The latter model has been used by Gallo-
votti as an example of which the g function is not mero-
morphic; and by Hofbauer as an example with two
equilibrium states. These authors pointed out that the
statistical counterpart of their example is the Fisher's
droplet model of condensation in one dimension. We
have endeavored to establish the explicit equivalence of
our intermittent mapping (2.2) to a lattice gas with
many-body clustering interactions. It is indeed akin to a
special class of models proposed by Fisher and Felderhof,
with the surface energy of logarithmic type.

(iii) In the spirit of the thermodynamic formalism, a
"chemical potential" p is introduced, in addition to the
"inverse of temperature" P, and the phase transition of
our system is analyzed in the grand canonical formalism.
In particular, one shows that on the critical curve of the
pressure-temperature plane, there are a denumerable
number of points which divide the critical curve into
separate segments according to the distinct order of
phase transition. With 1&ca, the phase transition is of
first order for P, &P&1. The asymptotic behavior (e.g. ,
critical indices) near P =P, is independent of a.

(iv) The critical line in the pressure-temperature plane
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TABLE I. Classi6cation of the temporal intermittent behav-
iors.

In@(z)= ——
~
z

~

—iz ln ~z ~
.

2
(A2)

Characteristics

Dynamic
instability

Local
fluctuation

Large
deviations

chaos

Gauss

abnormal

a = 1/(z —1)
1&a&2

chaos

Levy

abnormal

0&a&1

sporadic

Levy

abnormal

Let us denote by Sk the time lapse up to and including
the kth occurrence of the state A 0..

Sk =X)+Xq+ . - +Xk, (A3)

where X is the recurrent time for Ap. We observe that

P(N„&k)=P(S„~n) . (A4)

Sk is the sum of mutually independent random variables
Xk, with a common probability distribution [cf. (2.16)],

1 F(x)—— A (x+ 1)
separates the two phases corresponding to chaotic and
periodic states, respectively, in the original dynamic sys-
tem. The intermittent state, on the other hand, is located
on the codimension-one critical curve. In this latter
state, the unusual global fluctuations and long range
correlation present manifestations of a phase transition,
disregarding whether the local fluctuations are Gaussian
or not. Besides, for 0&+&1, the sporadic state may
occur as a codimension-two phenomenon, at a unique
point of the pressure-temperature plane. Such a state has
its energy distributed on a fractal subset of the lattice,
with the consequence that the mean energy density per
site vanishes.

(v) The three types of temporal inermittency are sum-
marized in Table I. It is concluded that the thermo-
dynamic formalism describing large deviations allows a
remarkably fine understanding of the intermittent system,
and makes a universal classification possible. One may
ask next if this approach would be also useful for charac-
terizing the spatio-temporal intermittency, thus extending
the statistical mechanics to such intriguing nonequilibri-
um processes.
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Let b„be defined by

1 F(b„)——n ', b„—An

and a„be defined by

(A6a)

a„=f sin dF(x) .
0 n

(A6b)

The Fourier transform of F(x) is

y(z)= f e'"dF(x),
0

and we have

p(z/b„) —1=f (e " —l)dF(x)
0

e "~—1 dF b„y
0

then

(A7)

(A8)

n [q&(z/b„) —1 iza„]=n—f (e" 1 iz —sin—y )dF(b„y )

e "~—1 —iz siny
dg

~ ~

0 3'
(A9)

n fp(z/b„) —1 ia„z] ——log@(z), (A10)

which implies

fp(z/b„)e "]"-4(z) .

Therefore, we have proved that

(A 1 1)

The last integral can be readily shown to coincide with
log@(z) as given in (A2). Consequently,

APPENDIX A

P[S„~b„(na„+x)]~ G, (x) . (A12)

This and the next two appendixes contain some results
on the probabilistic properties of the turbulent time X„,
which is of major importance for the understanding of
the intermittent system. Here we shall prove the limit
theorem of N„ for a= 1, Eq. (2.21a). The other cases
with o.&1 may be treated similarly.

The stable law with its two-sided Laplace transform

g, (s) =exp(s lns )

has the Fourier transform @(z) given by

It now remains to determine a„. According to (A6b),

a„=f sinx dF(b„x )

= f [1 F(b„x)]cosx dx—
0

e 1—A f cosx dx — f cosx dxb„o x + 1/b„

(A13)

since
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cosx dx = —sin(c)si(c) —cos(c)ci(c)
0 X+C

The last quantity R(l) is finite for 2 & a.
Then, it can be shown that

——(C+ inc ),c~o

where C is the Euler constant, we conclude that

(A14)
U'(s)— 1 R (s)

r(1 —s ) rQ(s)
(89)

logna — lnbn g n
n

(A 15)
Clearly n(P„—1/r) is the coefficient of s" ' in (89). As
n ~ ~, it is given by the coefficient of s of

Equation (2.21a) follows from (A4) and (A12), with a„
and b„specified by (A6) and (A15).

—[R '(s)Q(s = 1)—R (s = 1)Q'(s)] .1

73
(810)

APPENDIX 8
Furthermore, it can be easily checked that, the coefficient
of s" ' in Q'(s) is

We would like to calculate the autocorrelation of the
random variable I(x) (2.23), which is the indicator of the
"turbulent" phase. One is only concerned with the case
2(a and would like to show that the correlation func-
tion decays in a power law, with the exponent v=(a —1)
[cf. discussion following Eq. (2.28)].

By definition,

n Qpok
k=n

and the coefficient of s" ' in R'(s) is

n g (k n)—pok —n'
k =n+1

(Bl la)

(81 lb)

Q„=E(I(x)I(f"(x)))—E (I(x)) .

Then, we have

E(I(x))=po, E(I(x)I(f"(x)))=poP„,

From (Bl 1) we conclude that
(81)

P„—I/r-n ' " with 1 &(a —1),
which leads to our conclusion.

(82)

(812)

where P„ is the probability that co„=0 under the condi-
tion coo=0, in an orbit x=(cvocal, co„. ). The fol-

lowing discussion on the asymptotic behavior of Pn is

largely based on Ref. 27. Observe that

APPENDIX C

Let us define a global function 6(q)
—qX„6(q)= lim —1n(e "), (C 1)

=Po —1 0+Po —2P1+ ' ' +POOP —1

with PO=1. Then, it can be proved that
00

n & X Pok —in~oo 7 k=0

(83)

(84)

It can be readily checked that for our Markov chain,

which describes large deviations of the random variable
N„. In Ref. 16, :"(q) instead of 6(q) was used for the
same quantity. Here the notation is changed in order to
avoid possible confusion with the grand partition func-
tion =(P,z, n ) (3.14). In fact, comparing (Cl) with (3.15),
we see that

=1Po= (85)
1

lim —ln=(P= l, z =e, n ) =6(q)+q .
n —+ oo

(C2)

U(s) = g s "P„, P(s) = g s "po„
n=0 n=1

(86)

qk= X poi
1=k

X qk
1=k+1

Q(s) = g qks",

(87)
(1 —k )po(, R (s) = g rks" .

1=k+1 k=0

Then, we have

U(s) =1/[1 —P(s)],
1 —P(s) =(1—s )Q(s), P'(1)=Q(1)=r,
r—Q(s)=(1—s)R(s), P"(1)=2Q'(1)=2R(1) .

(88)

Hence, combining (82) with (84) and (85), we see that the
correlation function does indeed decrease to zero. We
now would like to show that it decays in a power law.
Let

In this appendix, we would like to show that for
IqI «1,

(i) 1&a(2

IqI«+ ~IqI Il (1 —a)I/r +' if q «6'q'= o f o (C3a)0 if q&0,
(ii) 0&a(1

Iq I
' /[3 I'(1 —a))'r if q &0 .

6(q)
O if q&0. (C3b)

To this end the idea is to make a connection between the
behavior of 6(q) near q =0, and the local fluctuations de-
scribed by the Levy laws (cf. Sec. II C). Then the asymp-
totic properties of the Levy stable distributions (see Fig.
8) will be sufficient to prove Eq. (C3).

Notice that it has been argued in Ref. 16 that P(1 —P)
behaves qualitatively in a similar manner as (C3). Then,
Eq. (1.2) follows from (C3). Let us consider first case (i).
According to the local theorem (2.20a), we may write
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(e "& =f dPr(N„)e
0

dG (x)
g~(x)

X exp
'

n x An
a+1

1/a

(C4)

where the bounds of the integral are imposed by
O~X„&n, with

1/a

-o)x(

n' " x =(1—q)x (C5)

It can be seen that x~ and x„may be extended to the
infinity, provided that lql «1, and the integral (C4) be
convergent. Noting that

x "+ ' if x~+~

Jl
g fx)

1(Q(2

g~(x ) a/(a —) )

if
(C6)

with c & 0. lim„g (x) decreases faster than ex-
ponentially. Therefore, for q &0, it is indeed legitimate
to write

(e ")=e '" ' f dG (x)
1/a

AnX exp x
7- +'

An
a+1=exp —

Iq I+ II (1—a)l

q-

1/a

Iq I

a

FIG. 8. (Asymmetric) Levy stable probability density. The
critical case a= 1 is similar to the cases 1 & a, with g&(x) —1/x'
as x~+ oo, and g)(x)-exp[ —exp( —x)] as x~ —oo.

(C7)
The last equality follows from the definition of the La-
place transform (2.17). Consequently, we obtain, for
q&0,

density g (x) vanishes for all x & 0, with

x "+' ifx +~
go(X) ',„)/(o —) )

e ' if x~0+, (C13)

e(q)= lql «+ ~ lql lr(1 —a)l « +' (C8) with c & 0. According to Ref. 27, we can write

MF(c,xM)= f dG (x)e", c= An
a+1 (C9)

The asymptotic behavior of (C9) is related to a degenerate
hypergeometric function, and one can show that

F(c,xM)- —xM' + "e ~, cxM= —
q .

C
(C10)

The exact cancellation of the exponential factor by the
prefactor e '" ' yields

On the other hand, for q )0, taking the limit x~+ ~
would lead the integral to diverge, since the long tail of
g (x) cannot counterbalance the exponentially increasing
factor of the integrand. Nevertheless, let us define

1/a

00 k a
(e ")=—qN„ n n qA„=„,r(1+ak)' " Wr(1 —a) ' (C14)

which is the Mittag-LefHer function E (x) with argument
x = A „. It is known that

1/aE (x) — —e" (C15)x-+~ a
from which we see that

T

—qN„ n
I

I'/o
(e "& -exp (C16)[a r(1 —a)]'"

and the first part of (C3b), for q &0, is proved. On the
other hand, when q) 0, we have A„&0. We can make
use of the formula for x & 0,

and

(
—qx„)

n q

e(q)=0 for q &0 .

(Cl 1) oo
1E (x)= —g

k = i I (1—ak )x"

to conclude that, for q )0,

(C17)

Therefore, Eq. (C3a) is proved.
As for Eq. (C3b), we shall use a slightly different ap-

proach, since in the case 0 & a & 1, the stable distribution

(
—q)v„)

n q

and the second part of (C3b) follows from it.

(C18)
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