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Self-organization in a kinetic Ising model
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We have analyzed a self-organization occurring in an open ferromagnetic Ising system on a
square lattice in contact with a heat bath and subject to an external source of energy. The system
follows a stochastic dynamics composed of two processes: one of the Czlauber type, which simulates
the contact of the system with the heat bath, and the other of the Kawasaki type, which simulates
the continuous flux of energy into the system. When the flux is small, the stationary state is

paramagnetic at high temperatures and ferromagnetic at low temperatures. By increasing the flux,
the ferromagnetic state is destroyed and the system reaches a new stationary state of high energy
identified with the antiferromagnetic ordered state.

I. INTRODUCTION

A system subject to an external source of energy may,
in certain circumstances, organize itself. This self-
organization results from the amplification of fluctuations
and is sustained by itself as long as the nonequilibrium
conditions are maintained. The structures arising from
self-organization processes, called dissipative structures,
have been observed experimentally and are an- object of
study in the areas of thermodynamics of nonequilibrium
systems and nonequilibrium statistical mechanics. Exam-
ples of dissipative structures are found in fluid dynamics
and physical-chemical reactions. '

In this paper we analyze a dissipative structure occur-
ring in an open ferromagnetic Ising system in contact
with a heat bath and subject to an external source of en-

ergy. The Ising system evolves in time according to sto-
chastic dynamics composed of two competing processes:
one of the Glauber type, which simulates the contact
with the heat bath, and the other of the Kawasaki type,
which simulates the continuous flux of energy. When the
intensity of the energy source is small we are in the linear
regime of the irreversible process and the system displays
(at low temperatures) an ordering similar to that occur-
ring in equilibrium. If the intensity is increased, this or-
dering will be destroyed, and at sufficiently large intensi-
ties we reach the nonlinear region of irreversible process
where a new order will occur.

We have analyzed the stationary states of the system as
a function of the flux of energy for the case of an Ising
model in a square lattice with ferromagnetic interactions
between nearest neighbors. In the linear regime, when
the flux is small, the Glauber process dominates and the
system will be in the ferromagnetic state below a certain
critical temperature. At high temperatures the stationary
state will be the paramagnetic state. By increasing the
flux the critical temperature decreases. In other words,
the flux of energy destroys the ferromagnetic ordered
state. In the nonlinear regime, when the flux is
sufficiently large, the Kawasaki process will prevail and
the system will be found in a stationary ordered state of
high energy which is identified with the antiferromagnet-

ic ordered state.
The problem was solved by using the dynamic pair ap-

proximation which leads to equations for the time evolu-
tion of the two sublattice magnetizations and the
nearest-neighbor pair correlation. At equilibrium this
approximation reduces to the Bethe-Peierls approxima-
tion.

II. MASTER EQUATION

Consider a lattice of N Ising spins with ferromagnetic
interactions. The state of the system is represented by
cr =(o, o.z, o.3, . . . , o~), where o, , the spin variable at
site i, takes the values +1. The energy of the system in
state o. is given by

F(o )= —J g o, o
(ij)

where the summation is over nearest-neighbor pairs and
J&0.

The state of the system evolves in time according to
stochastic dynamics. Let P(o, t ) be the probability of
state o at time t. The evolution of P(o, t ) is given by the
master equation

P ( o, t ) = g [P( o', t ) 8'( o ', o ) P. ( o, t ) 8'( cr, o—. ' )],
dt

where W(cr', o )/r is the probability, per unit time, of
transition from state o. ' to state o, if the system is in state
0

The transition probability W(o. , o ) is constructed in
order to describe the following processes: (a) the contact
of the system with a heat bath at temperature T, and (b)
the flux of energy into the system. We assume that

W(cr', cr) =pW~(o', o')+qWs(o', cr ),
where W„(o ', cr ) is associated to the process (a) and
W's(o', o ) to process (b). The process (a) occurs with
probability p and the process (b) with probability
v=& —s.
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The process (a) is simulated by Glauber dynamics
(one-spin flip) so that

W(o', cr)= $5,5, .5, . 5, w (cr),
~2~Z o,. —o, N N

(4)

where w;(o ) is the probability of flipping spin i T. he con-
tact with the heat bath at temperature T is obtained by
using the Metropolis prescription

1 for AE, ~0
W/(0 ) = '

AE IkT
e ' for AE, )0,

where (NN of i) denotes that the summation is over the
nearest neighbors of site i.

These equations have a simple interpretation. For ex-
ample, the quantity (o/cr. k

—o,ok) inside the bracket
((O/Crk —O Ok )W /( 0) ) equalS the VariatiOn Of Cr Ok in
the (b) process (Kawasaki process) in which spins j and 1

are exchanged.
The equations for (cr, ) and (cr crk ) are exact. How-

ever, they cannot be solved since their right-hand sides
(RHS) involve averages of other combinations of spin
variables besides ( cr, ) and ( o. 0 k ).

III. PAIR APPROXIMATION

8'j/(o' o. )= $ 5
(ij)

o lo'l cr, o. ,
l J

o' o.
J l ~x~x

Xw; (o),
where w,j(o ) is the probability of exchanging the
nearest-neighbor spins i and j. The Aux of energy into
the system is obtained by the prescription

0 when b,E, &0"
1 when hE, )0 ' (7)

where AE, is the change in energy obtained after ex-
changing spins i and j.

Let us denote by (f (cr ) ) the average of the state func-
tion f(cr ), that is,

( f(/T)) = g f(o )P(o, t) . (&)
o

The equations for the magnetization (cr, ) of spin i and
for the correlation (o ok ) of the nearest-neighbor spins

j and k can be derived in a straightforward way from the
master equation. With the notation introduced above we
get

where AE, is the change in energy obtained after Gipping
spin i.

The process (b) is simulated by Kawasaki dynamics
(two-spin flips), which describes the exchange of two
nearest-neighbor spins. That is,

P, ( 0, ) = —,
'

( 1+m, cr, ),
P2(o.2) = —,'(1+m2/r2),

P,2(0.„02}=—,'(1+m, o ]+m~cr~+ro ]cT7) . (17)

The right-hand sides of expressions (9) and (10) involve
the average of clusters of spins. In the case of the quanti-
ties A, and A k, the type of cluster to be considered con-
sists of a central spin and its nearest neighbors. In the
case of B,- and B k, the type of cluster to be examined is
formed by two nearest-neighbor spins and their nearest
neighbors. In order to obtain closed equations for (cr, )
and (o, crk ) we will use an approximation in which the
probability of these clusters are written in terms of the
probability of a pair of spins. Since the probability of
a pair of spins in turn can be obtained from the values of
(o; ) and (o.,o k ), a set of self-consistent equations are
therefore obtained.

We apply the results obtained so far to the case of a bi-
partite lattice. We look for solutions such that
(o, ) =m] for any spin belonging to sublattice 1,
(o, ) =m2 for any spin belonging to sublattice 2, and
(cr;o ) =r for any pair of nearest-neighbor spins i and j.
Let o. , and o.

2 be a pair of nearest-neighbor spins belong-
ing to sublattices 1 and 2, respectively. Then, the pair
probability P,2(0 „cr2) and the single-spin probabilities
P, (o., ) and Pz(/r2) are given by

and

(cr, ) =pA, +qB,
d
dt

d
&~ ok) =p'&,k+qB, kdt

where

&; = ( (
—2cr; ) w; ( cr ) ),

&,k =(( 2o, crk )w, (o ) )+—
&( 2o, ok )wk(o —

) ),
B, = g ((cr/ cr, )wl, (c—r ) ),

1

(NN of i)

Bjk X & (0/~k ~j~k )wj/(0 ) )
l(Wk)

(NN of j)

+ y ((O'Jcr/ 0jo/ ) //( ) )
I(&j)

(NN of k)

(9)

(10)

(12)

(13)

(14)

P~(o.2)
I

(NN of 2)

P,2(cr;, 02)
P2(cr2)

(19)

Finally, the third type of cluster is formed by a pair o.„o.z
of nearest-neighbor spins surrounded by their nearest
neighbors. The probability of this cluster is

We should examine three types of clusters. The first
one consists of a spin o.

&
of sublattice 1 surrounded by

spins o. of sublattice 2. The probability of such a cluster
is approximated by

P,2(o „o. )

n
J P, 0,

(NN of 1)

The second type of cluster has a spin cr2 of sublattice 2
surrounded by spins o.; of sublattice 1. The probability of
such a cluster is
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II P
' II

j&2 & & i&1
(NN of 1) (NN of 2)

P,z(o;, oz)
Pz(oz)

(20)

Inserting expressions (18)—(20) in the right-hand side
(rhs) of (11)—(14) and taking into account equations
(15)—(17) we obtain closed equations for mt t mz, and r

The equations for the evolution of the quantities m, ,
m2, and r are

d
m) =pA ((m), mz, r)+qB)(m), mz, r),

dt
(21) 0

0
1

2

d
mz =p A z(m ),mz, r )+qBz(m ), m z, r ),

dt
(22)

r =pA )z(m ), mz, r )+qB)z(m ),mz, r ),
dt

(23)

~ 1 ~2 ~ 12 ~1 ~2 and 812 are given in the
Appendix. Notice that the following properties
hold: Az(m&, m zr)= A &(mz, m&, r) and Bz(m&, mz, r)

B,(m, , mz—, r ).

IV. PHASE DIAGRAM

When the system evolves in time it will eventually
reach a stationary state characterized by constant values
of magnetization and other thermodynamic variables.
Three types of stationary states may occur: the paramag-
netic (m, =mz =0), the ferromagnetic (m, =mz&0),
and the antiferromagnetic (m, = —mz&0) states.

The paramagnetic state corresponds to the trivial solu-
tion of Eqs. (21)—(23). It is given by m& =mz=0 and
r =r * where r * is the solution of p A &z(0, 0, r *)
+qB~z(0, 0, r*)=0, that is,

FIG. 1. Phase diagram of the open ferromagnetic Ising sys-
tem. T is the temperature of the heat bath and the variable
Q=q/(1 —q) is related to the Aux of energy. The system may
exhibit one of the three stationary states: paramagnetic (P), fer-
romagnetic (F), and antiferromagnetic (A). The case Q =0
corresponds to the thermodynamic equilibrium.

of occurrence of each type of stationary state. The fer-
romagnetic state occurs at small values of q and at
sufficient low temperatures, whereas the antiferromagnet-
ic state happens at large values of q for any temperature.
The ferromagnetic and antiferrornagnetic regions are
separated by the paramagnetic region. The two transi-
tion lines are obtained by the analysis of the stability of
the paramagnetic solution. When this solution becomes
unstable a symmetry breaking takes place and the system
starts to display an ordered state: either a ferromagnetic
or an antiferromagnetic state.

The expansion of the rhs of Eqs. (21) and (22) up to
linear terms in m, and m2 gives

p( —t) z —2z)z u+2zu +u )

—24q(5z u +4z u +z u)=0, (24)

mF ~F F ~

dt
(25)

where z=(1+r*)/4, v =(1—r*)/4, and g=exp( —4J/
kT).

The second type of solution that may appear is the fer-
romagnetic state (m, =mz&0), described by the order
parameter mF =(m, +mz)/2. The ferromagnetic or-
dered state is the equilibrium type of order. It occurs, at
low temperatures, not only at equilibrium (q =0) but also
in the region near equilibrium, that is, for small values of
q. If q is increased, at low temperatures, the ferromag-
netic state eventually disappears giving place to the
paramagnetic state. In other words, the ordered state
that occurs at equilibrium is destroyed by the increase in
the flux of energy.

If, however, the flux of energy is sufficiently increased,
the system will organize itself in another type of ordering.
That is, by increasing q the system becomes more and
more far from equilibrium until a critical value of q is
reached where the paramagnetic state becomes unstable,
giving rise to a new stationary state. This new state is
identified with the antiferromagnetic ordered state de-
scribed by the order parameter m „=(m, —mz )/2.

The phase diagram shown in Fig. 1 displays the regions

mg kgmg
dt

where

A.F =16p[t) (6z —4z )+4g(6z —3z )v

+6(6z —2z)v +4(6z —1)u +6v ),
jt, „=16p[z) 6z +4z)z (6u —1)+6z (6u —2u)

+4z(6u —3v )+(6v"—4u )]

(26)

(27)

+512q[45z (4u —u )+12z (6v —u)+z (12v —1)],
(28)

with z =(1+r*)/4 and u =(1—r ")/4.
If A,F &0 and A, „&0, the paramagnetic solution is

stable. Therefore A,F=0 together with Eq. (24) define the
paraferro transition line, and A, „=O together with Eq.
(24) give the parantiferro transition line. The two transi-
tions defined by these lines are continuous since the order
parameters mF and m~ vanish continuously when they
are crossed.
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V. CONCLUSIONS APPENDIX

We have studied an open ferromagnetic Ising system in
contact with a heat bath and subject to a continuous flux
of energy from an external source. We have found that
the stationary states may be one of three types: paramag-
netic, ferromagnetic, and antiferromagnetic. The first
two states are the only stationary states observed in equi-
librium and when the flux of energy is small. We may say
then that the ferromagnetic state is of the equilibrium
type. The antiferromagnetic ordered state, on the other
hand, is the result, in the case considered here, of a far
from equilibrium process, namely, the continuous flux of
energy into the system. Thus an instability of the usual
(equilibrium) solutions leads the system toward states
with spatial self-organized structure.

The nonequilibrium antiferromagnetic ordered struc-
ture we have found is an indication that the study of sto-
chastic lattice systems may be useful to understand, at
the microscopic level, the occurrence of such dissipative
structures found in fluid dynamics and physical-chemical
reactions. Finally, the system we have studied here can
also be interpreted as a kinetic Ising model with competi-
tion between ferromagnetic Glauber dynamics at temper-
ature T and antiferromagnetic Kawasaki dynamics at
zero temperature.

x, =
—,'(1+m, ),

y, = —,'(1 —m, ),
x2 =

—,'(1+m 2 ),
y2 =

—,'(1 —m2),

z =
—,'(1+m, +m2+r ),

u, =
—,'(1+m, —m2 r), —

u2 =—'(1 —m] + m2 r)—,
w =

—,'(1 —m, —m2+r) .

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

Using these variable and 2) =exp( —4J /k T ), we have,
in the pair approximation,

Here we write down the quantities A, , Az, A, ~, B, ,

B2, and B]2 defined in Sec. II as a function of m] = (o ] ),
m2= (a 2), and r = (tT]o 2). Let us define first the quan-
tities x] =P](+ ), y] =P]—( —), x2=P2(+ ), y2 =P2( —),
z =P,2(++ ), u, =P,2(+ —), u2=P, 2(

—+ ), and
w =P, 2 ( ——). From Eqs. ( 15 ) —( 17 ) we get

A ( ]m, ]mr2)= —
(21 z +42)z u, +6z v, +4zu, +u, )+ (21 w +4 )w2'v2+6w u2+4wu2+u2),

X) y

A 2( m], m2r)= A](m2, m, ,r),

(A9)

(A 10)

A]2(m„m2, r)= ( —2ri z —421z v, +4zu, +2u, )+ (
—2' w 42)w —v2+4wu2+2u2)

X) y1

+ ( —22) z —42)z u2+4zv2+2u2)+ (
—2' w —42)w u, +4wv, +2v, ),

Xp 3'p

8B,(m, , m2, r)= — (3z wu, +3z w u]+z w u]+3zw v]+3z w v, +9z w u] )
X )gp

8+ (3w zu2'+3w z v2+w z v2+3wz u2+3w z v2+9w z u2),
X+

B2(m] m2 r) Bl(ml m2 r

12
B]2(m],m2, r)= — (z wv]+2z w v]+z w v]+zw u]+2z w u]+3z w v] )

X )P2

12
(w zv2+2w z v2+w z u2+wz v2+2w z u2+3w z u2) .

XQ)

(A 1 1)

(A12)

(A13)

(A14)
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