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Nonlinear model of the DNA molecule
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We study a simple nonlinear model that mimics many features of the DNA molecule, where the
source of the nonlinearity is the hydrogen bonds between nucleotides. We find an asymptotic solu-

tion of the equations of motion in the limit of small amplitudes. For an arbitrary initial condition,
however, the equations of motion have to be integrated numerically. In this case we find essentially
two different regimes, one in which an initial pulselike disturbance is pinned, and another one in

which it propagates along the chain. In this latter case, propagation is a linear effect, in which the
nonlinearity plays little role.

I. INTRODUCTION

Energy tranport along the DNA molcule has lately
been the topic of intensive research. Many authors have
considered modeling this molecule in such a way that the
energy transport is achieved by means of solitons. Muto
et al. ' have studied longitudinal propagation in a non-
linear elastic rod model of DNA. Yomosa considered
rotating bases about an axis parallel to the helical axis.
Takeno studied vibrating excitons that are nonlinearly
coupled to lattice phonons. There are several others.

Here we present a model of the DNA molecule consist-
ing of two harmonic chains coupled by a nonlinear poten-
tial representing the hydrogen bonds (HB) between bases.
This model was analyzed both theoretically and numeri-
cally with the aim of discovering possible quasisolitonic
properties arising from the nonlinearity which would
then provide a possible energy transport mechanism in
the molecule.

In Sec. II, we describe the simplified geometry used for
the calculations and we derive the corresponding equa-
tions of motion. After a brief description of the integra-
tion algorithm, we proceed in Sec. III to a detailed study
of several dynamical phenomena pertaining to this mod-
el. First, we show that in the small amplitude limit, the
equations of motion reduce to the nonlinear Schrodinger
(NLS) equation and verify numerically that its solutions
propagate in our system. Second, we show that an initial
pulse of arbitrary shape can either propagate or be
pinned depending on the relative importance of the linear
and nonlinear forces acting on it. Finally, the "degenera-
tion" of a small-amplitude vibrational mode of the system
is studied nufnerically. We state our conclusions in Sec.
IV.

II. MODEL

point is denoted by u„and v„ in the top and bottom
chain, respectively. Only transverse motions are con-
sidered. The equations of motion for u„and v„are

m u'„= k( u„+,+u„,—2u„)—
t) u„—v„)

amv'„= k(v„+,+v„,—2v„)+
t)( u„—v„)

(2)

x„= —(u„+v„),1

2
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where P is the nonlinear potential describing the
hydrogen-bond interaction. At this point, we want to
emphasize again that the source of the nonlinearity in the
model lies in the coupling between the strands, not be-
tween adjacent particles on the same strand. For the sake
of simplicity, we have assumed a homogeneous chain, i.e.,
latice points have identical masses m, and similarly the
shearing force constants k are the same throughout the
chain. In center-of-mass coordinates

We consider the following simplified geometry for the
DNA chain; the molecule is first untwisted and each
strand is then represented by a set of point masses (nu-
cleotides) connected by shearing linear springs while the
interstrand interaction (i.e., the hydrogen bonds between
base pairs) are modeled by a nonlinear spacing [see Fig.
1(a)]. The displacement from equilibrium of the nth mass

FIG. 1. (a) Simplified model for the DNA chain. Each base
pair is represented by a point mass. Along a strand, the masses
are connected by shearing linear springs. The hydrogen bonds
are modeled by nonlinear springs. Motions are constrained to
be transverse. (b) The equivalent one-dimensional chain with
longitudinal displacements.
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1—(u„—u„),
2

Eqs. (1) and (2) become

mx„= k(x„+,+x„,—2x„),
amy„=k (y„+,+y„,—2y„)—

~3'n

(4)

(6)

(y„)=V„(1—e

which, with suitably chosen parameters, can provide a
good description of a HB. It should be stressed, however,
that the use of a Morse potential is by no means crucial
in what follows. In fact, virtually any potential having
similar characteristics will do, and indeed we reproduced
our results with several other potentials.

III. RESULTS

A. Integration method and parametrization

The problem considered here implies the existence of
two well-distinct time scales, one corresponding with the
vibration of a single particle about some equilibrium posi-
tion and a second one corresponding to the propagation
and/or relaxation of a pulse in the chain. The existence
of different time scales is a well-known problem; it causes
the eigenvalues of the Jacobian matrix of the system of
differential equations to vary greatly in magnitude. This
renders the numerical integration extremely difficult, and
one has to make use of special techniques in order to deal
with these so-called stiff problems. The equation of
motion for y„[Eq. (6)] was integrated by using Gear's
method, which we believe is the best method currently
available to solve stiff differential equations.

We take special care to maintain energy conservation
(kinetic+ harmonic+ nonlinear) throughout the numeri-
cal integration procedure. In the following calculations,
we were always careful to maintain energy conservation
to a maximum discrepancy of 0.1%. This point has been
stressed by several authors since energy nonconservation
leads to observation of phenomena that are not represen-
tative of the actual physical system. Maintaining energy
conservation is, however, only a necessary condition, but
it is not enough to guarantee that the results are correct.
A more severe test of the integration procedure consists
in starting with a completely symmetric configuration
and checking that symmetry is conserved at any subse-

x„ is the motion of the center of mass and y„describes
the motion about the center of mass. (As positive y„
represents a stretch. ) The equations of motion are now
uncoupled. Equation (5) represents a pure harmonic lat-
tice with plane-wave solutions. In what follows, we shall
focus our attention on the motion about the center of
mass Eq. (6). This equation can be viewed as describing
longitudinal displacements in the one-dimensional chain
shown in Fig. 1(b).

The potential energy P is chosen to model the non-
linear HB interaction between base pairs. This is done by
using the Morse potential

—&ray
(7)

quent time. We used this test several times in order to
check the correctness of our integration procedure.

The distance between base pairs was taken to be
d=3 A. The ratio k/m equals 22.2 rad /ps corre-
sponds to a frequency of 25 cm '. The potential used
was the Morse potential Eq. (7) with the following pa-
rameters: a =2.5 A ' leading to a well width of approxi-
rnately 0.2 A and the depth V was taken to be 0.4 eV,
unless otherwise specified, in order to simulate two to
three HB. We studied a chain of 125 particles and used
periodic boundary conditions.

B. Asymptotic solution

BFi 8 Fi
i +P +Q)F, ( F, =O,

a(e't )
(10)

where g=z —u t and z denotes position in the (continu-
ous) chain. us is the group velocity and the constants P
and Q are given by

V„aQ=16
m co

y gP=
m co

(12)

The solution of the nonlinear Schrodinger equation is
well known and can be found in Ref. 11 for instance. For

To the best of our knowledge, Eq. (6) with a Morse po-
tential (or a potential of this type) has never been solved
analytically. In the solitary-wave analysis by Davydov
of the one-dimensional a helix, the equation describing
the system is the NLS equation. Prohofsky has suggest-
ed that the nonlinearity of the HB's stretching modes
might be important enough to support the same type of
solitary-wave behavior. Here we show how the equations
of motion for our model can be reduced to the NLS equa-
tion via the multiple-scale expansion method. '

First, the nonlinear term in Eq. (6) with the Morse po-
tential is expanded up to third-order terms in y„:

my'„= k (y„+,+y„,—2y„)—4 V„a~y„

+6&2V„a y„——", V„a y„.
This expansion is valid only for small displacements and
therefore we have to restrict ourselves to small-amplitude
pulses (the polynomial expansion in Eq. (8) is valid for
displacements smaller than the infiexion point). A solu-
tion of this equation can be obtained via the multiple-
scale expansion method

y„=F,(end, et)e'~ " ""+F', (end, et)e

+e[FO(end, et)+F&(endet)e ,
'~"

—2i (qnd —cot ) pp8

where d is the separation between successive base pairs,
and co and q are related by the lattice dispersion relation.
In the limit of long wavelengths (A, ))d), it is legitimate
to use a continuum approximation leading to the non-
linear Schrodinger equation
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our purpose here, it is su%cient to know that it consists
of a cosine wave modulated by a hyperbolic secant. We
used this solution as an initial condition in our model and
integrated the equations of motion numerically. In Fig. 2
we show that such solutions indeed propagate easil
along the chain. In addition, a collision between two
such pulses is shown to be nonlinear, with the pulses sur-
viving the collision. In order to test the robustness of the
solution, we replaced the hyperbolic secant by a Lorentzi-
an, and see that the pulse still propagates.

C. Purely harmonic limit

For future reference, we first consider the trivial case
where the nonlinear potential is completely omitted

5.
3.

O

7.
5-

t=5

t =l5

my„=k(y„+, +y„,—2y„} . (13) 3-

In this case, we find that pulses of virtually any shape
propagate without dispersing much over biologically
significant distances (hundreds of base pairs). An initial
condition that relates to solitary-wave solutions is, for ex-
ample,

I

25 50 75 100 25 50 75 IOO

PARTICLE NU!BRIBER

y„=3 sech(qnd rot)~, — (14}
0 0

with 3 =8 A and q =0.2 A ' corresponding to a width
at half-maximum of approximately six base pairs. We
gave to each particle in the pulse an initial velocity corre-
sponding to the time derivative of Eq. (14) with
U—:co/a=15 A/ps. This behavior is shown in Fig. 3. If
the pulse is given no initial velocity, it breaks up into two

FICr. 3. Propagation of a pulse [A =8 A, q =0.2 A ', see
Eq. (14)] with an initial velocity of 15 A/ps in the purely har-
monic case. Time is indicated in picoseconds.

smaller pulses propagating without dispersing in opposite
directions. This case is interesting for two reasons, first
because whatever the biochemical process which creates
an initial stretch is, it is questionable that it will give the
particles in the pulse a velocity corresponding precisely
to the derivative of Eq. (14); second, it allowed us to
check that our computer program was indeed working
properly. When propagation occurs and no nonlinear
forces are present, the pulse is a simple superposition or
wave packet which degrades in shape only at a rate deter-
mined by the dispersion among the various wave com-
ponents.

D. General (nonlinear) case

0.0 25.0 50.0 75.0
PARTICLE NUMBER

100 .0 125.0

FIG. 2. Collision between two solutions of the NLS equation
in our model. The amplitude of the initial pulse is 0.05 A and
the pulse width is approximately 30 A. The chain is shown
every 8 ps, starting at t =0. The vertical scale has been shifted
up by 0.1 A for each time. V =0.24 eV corresponding to two
hydrogen bonds.

Before proceeding to a detailed analysis of our work,
we want to mention here one of the conclusions of our
study, namely the existence of two distinct dynamical re-
gimes in the system (excluding the special case of the ex-
act asymptotic solution of Sec. IIIB). The first regime
corresponds to the propagation of an initial pulse along
t e chain while the second one is a regime where an ini-
tial pulse is pinned and does not propagate. As will be
shown in more detail below, the occurrence of one regime
or the other depends crucially on the relative values of a
few parameters describing the system.

The fact that the chain is described by a set of non-
linear differential equations makes it di%cult to find a cri-
terion for propagation. More precisely, one can ask the
question: When, given all the characteristics of the
chain, does an initial pulse of arbitrary shape propagate?
We resort to more heuristic arguments in order to find a
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O'M

ay„
(16)

[Here and henceforth, for the sake of definiteness, we use
the Morse potential Eq. (7).] At this point, in order to
make definite predictions, the shape of the the initial
pulse has to be selected; we took a hyperbolic secant

y„(x)= A sech(qx) . (17)

Several examples of the distribution of these forces along
the chain will be given later. For the time being, we can
obtain a rough idea of how the various parameters, for
example, the pulse width and height or the nonlinear po-
tential, affect the propagation by comparing the max-
imum shearing force to the maximum nonlinear force.
The calculations are somewhat tedious but straightfor-
ward and will not be reproduced here. One finds for the
maximum shearing force

Fmax
s

1

cosh[arccosh(1+ coshqd)+ qd]

+ 1

cosh [arccosh( 1+coshqd ) —qd ]
(18)

1+coshqd

and for the maximum non-linear force

ln2 V-
2 p

(20)

where d is the separation between base pairs, p is the
inflexion point of the Morse potential, and V„ is the
asymptotic value of the nonlinear potential.

A simple criterion for propagation would thus be

propagation criterion. When the nonlinear force is
present in the equation of motion for y„, propagation de-
pends crucially on the balance between the shearing
forces (acting between nearest neighbors) and the non-
linear force [acting wholly within a base pair, or in the
case of the equivalent model of Fig. 1(b), on each particle
individually]. If the forces acting on the particles in the
pulse are essentially shearing forces, then the pulse prop-
agates over long distances, but this case is merely the one
mentioned in Sec. IIIC where the nonlinear force was
omitted. On the other hand, if the nonlinear forces dom-
inate over, or at least are comparable to the shearing
forces, our numerical calculations indicate that the pulse
is pinned. This observation provides a basis for the
derivation of a simple propagation criterion. If the net
shearing force acting on most particles in the pulse is
greater than the nonlinear force, the pulse will propagate
since the harmonic terms dominate in the equations of
motion. We can illustrate this point in a more quantita-
tive way by calculating the net shearing force

F, =k (y„+,+y„,—2y„)

for each particle in the pulse and comparing it to the
nonlinear force acting on the corresponding particle

/max ) /max
s nl (21)

my„=k (y„+,+y„,—2y„)—4V„a'y„, (22)

which has plane-wave solutions of amplitude yo. These
can now be substituted into

This condition allows us to discuss, at least qualitatively,
the influence of various parameters on the propagation.

For example, increasing the nonlinear potential V or
moving the inflexion point of the potential towards 0; i.e.,
decreasing p sufficiently, pins the initial pulse; a small
value for V favors propagation, but in this case, as al-
ready mentioned before, we are essentially in a situation
where the harmonic forces dominate the nonlinear forces
and the propagation is mostly harmonic having little to
do with the nonlinearity. Even more interesting is the
influence of the pulse shape, namely its height 2 and
width -q '. The harmonic forces being proportional to
3, the higher the pulse, the better for propagating along
the chain. The influence of the pulse width is not as obvi-
ous, but a careful examination of Eq. (18) leads to the
conclusion that sufficiently narrow pulses (q large) propa-
gate whereas broad pulse do not. All these conclusions,
although obtained from a very rough analysis, have been
checked by numerous computer simulations. Some of the
results are presented below. Finally, one could argue that
this analysis depends strongly on the shape chosen for the
initial pulse, but if the pulse propagates, it does so
without dispersing to much and hence the previous
analysis can be repeated at any subsequent time. If the
pulse does not propagate initially, it rapidly becomes
jagged and it is very unlikely that for t )0 the shearing
forces will ever be able to dominate over the nonlinear
forces for most of the particles in the pulse. Let us now
examine several examples in more detail.

Pinning. Since we fixed V„and p at realistic values for
the DNA chain, let us pin the pulse by making it broad
(q =0.061S A '), corresponding to a width at half-
maximum of -40 A). The initial harmonic and non-
linear force distributions Eqs. (18)—(20) are shown in Fig.
4. It is clear from this figure that the harmonic forces
and the nonlinear forces have comparable magnitudes for
a large number of particles in the pulse, hence we do not
expect propagation to take place. Indeed, the peak dis-
placement fluctuates in the close vicinity of the initial po-
sition while the amplitude of the pulse oscillates wildly
between a maximum of 4.0 A, the initial amplitude, and
small amplitudes corresonding to a dispersed pulse. This
behavior is shown Fig. 5.

The form in which the energy is stored is the system is
plotted as a function of time in Fig. 6. It can be seen that
the system relaxes from its initial perturbed state to a
dynamically stable one in which its total kinetic energy,
shearing potential, and Morse potential energy fluctuate
about some constant value. In fact, we can approximate-
ly calculate these values by assuming that for large times
the amplitude of motion for the particles are fairly sma11
and thus expand the Morse potential in a harmonic ap-
proximation leading to
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FICx. 4. Force distribution functions for a pinned pulse. The
nonlinear force is the dominant term in the equation of motion

[Eq. (6)]. The dashed line indicates the initial pulse, Eq. (14)
(not to scale).

FIG. 6. Total kinetic, (shearing) harmonic, and nonlinear en-

ergy (in eV) in the pulse vs time (in picoseconds). The solid line
is the kinetic energy. The dashed line is the harmonic potential
energy and the dotted line is the nonlinear potential energy
stored in the hydrogen bonds.
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FICx. 5. Solution of the equation of motion for a pinned dis-
turbance. The stretch y„(in angstroms) is shown vs the position
of a particle in the chain. Time is in picoseconds.

0Morse

0shearing

V„a
sin (qd/2)

(2&)

where q=2~/A, is the wave number. When the above
linearization is valid, i.e., for large t, the chain has be-
come jagged (Fig. 5). The corresponding wavelength of
the spatial oscillations, however, cannot become smaller
than the separation 2d between base pairs because of the
discrete nature of the lattice. Hence, taking A. =2d (i.e. ,

q =m/d) in Eq. (24), the ratio becomes 2.8 for the numer-
ical values used previously, which is in good agreement
with the computed values (Fig. 6). As expected, the har-
monic energy fluctuates in phase with the nonlinear po-
tential energy since any stretching of the lattice will in-
crease both of them simultaneously. Both of these ener-
gies are, in turn, out of phase with the kinetic energy,
which is at a minimum when the stretches are at a max-
imum. Perhaps the most important feature of this system
is the fact that even though the system relaxes relatively
rapidly, the energy of an initial disturbance remains fairly
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localized for biologically significant durations.
Propagation. According to our simple propagation cri-

terion, for a given V and a given p, a suKciently narrow
pulse should propagate if its amplitude is not too small.
We took q=0. 2 A ' and 2 =8 A. The results are
shown in Fig. 7. The force distributions functions are
shown in Fig. 8 and it can be seen that the harmonic
(shearing) force largely overcomes the nonlinear force so
that propagation occurs. A rather high pulse had to be
used because of the rather large value of V„; this might
be a problem because the shearing forces in the pulse are
now quite large. Hence it suggests that if a V should be
large in a model representing the DNA molecule, pulses
are unlikely to propagate along the DNA chain.

Propagation in this case is similar to propagation in a
completely harmonic chain; the nonlinear forces are
negligible compared to the shearing harmonic forces and
play no role in the propagation. The pulses that propa-
gate are narrow and large-amplitude ones, i.e., those the
Fourier transform of which contains many short-
wavelength components, hence, as they propagate, they
will also disperse greatly. This appears clearly in Fig. 7.
One should compare Fig. 7 with Fig. 3; they correspond
to the propagation of the same initial pulse in the pres-
ence and in the absence of the nonlinear potential, respec-
tively. It can be seen that the addition of the nonlinear
forces does not cause any narrowing of the propagating
pulse. The nonlinear pulse is broadened compared to the
harmonic case. That propagation is primarily a linear
phenomenon is further supported by the fact that during
a collision of two pulses, the total displacement is the
sum of the two pulses.

At this point, it is useful to summarize the results we
have obtained as far as propagation is concerned. When
the initial pulse is of arbitrary shape, we have seen that it
propagates only if it is such that the linear forces dom-
inate in the equation of motion. This is the essence of the
propagation criterion described before. In particular, it
means that a small-amplitude pulse is unlikely to propa-

0.0
o~

U
f 5-

- 5.0 I

-20 0
(A}

DISTANCE ALONG CHAIN

20

FIG. 8. Force distribution function for the pulse of Fig. 7.
The linear (shearing) force largely dominates over the nonlinear
force. The dashed line indicates the initial pulse (not to scale).

gate because in that case, the linear forces are too small.
This is true except when the initial (small-amplitude)
pulse is a solution of the NLS equation. Then, the pulse
propagators (Fig. 2), and the forces responsible for the
propagation are the nonlinear forces (Fig. 4).

E. Degeneration of a small-amplitude vibrational mode

If one performs an expansion of the Morse potential
and only the linear terms are kept in the equations of
motion, the solutions are pure plane waves

y„=y„oexp[ i (qnd cot)] —. — (26)
t=0 t=5

4
K
CQ

0
C4

8-
t = I5

0 ~==-
I

25
I I I I I I

50 75 lOO 25 50 '75 lOO
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FlQ. '7. Propagation of a narrow, high pulse in a nonlinear
chain [p =g A, q =0.2 A, see Eq. (14)]. Notice that the
pulse disperses rather quickly. Time is indicated in pico-
seconds.

cu and q are related by the dispersion relation

k sin~ q +V a24 . dI 2
(27)

This is an optical dispersion branch. The simplification is
valid only for small amplitudes. It is easy to check that
with the values adopted in Sec. III D for the various pa-
rameters appearing in Eq. (27), co depends on q only very
weakly.

The nonlinearity has a dramatic effect on such vibra-
tional mode. In order to study this situation, we excited
the chain in one of its vibrational modes, Eqs. (26) and
(27) (the amplitude was taken to be O.OS A, the wave-
length was 7S A) and we integrated the equations of
motions [Eq. (6)] numerically. The results are shown in
Fig. 9. In time, the initial cosine wave becomes peaked,
i.e., large stretches appear and propagate in the chain.
This degeneration of a vibrational mode becomes even
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