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Displacement sensors that work by taking advantage of the nonlinear displacement-current rela-
tionship of an electron vacuum-tunneling probe (VTP) are theoretically analyzed in this paper. We
show, using the language of electromechanical two-port transducers, that the VTP is nonreciprocal
and that its noise is intrinsically quantum limited. We present a semiquantitative analysis of a VTP
used to monitor the displacement of a simple mechanical harmonic oscillator and show that the
Heisenberg uncertainty relation for the position and momentum of the mechanical oscillator is en-
forced by the noise in the VTP. The results of an optimal filter calculation of the sensitivity of the
VTP-mechanical oscillator system for impulsive force detection are presented. These results are
contrasted with results for a conventional capacitive transducer, and we show that the VTP may
offer vastly increased sensitivity as a consequence of its nonreciprocity. The maximum sensitivity of
the VTP system is calculated as a function of the temperature, the dc tunneling current, and the
mass, frequency, and quality factor of the mechanical oscillator. For typical operating conditions
the maximum sensitivity is obtained for small-mass systems, which makes the VTP ideal for minia-
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ture accelerometers and related devices.

I. INTRODUCTION AND OUTLINE

The marvelous capability of the scanning tunneling mi-
croscope! and the atomic force microscope? to produce
atomic-resolution images of surfaces is widely appreciat-
ed. However, the unique properties of a vacuum-
tunneling probe used as an electromechanical transducer
are not widely recognized. In this paper we theoretically
examine electromechanical transduction which is based
upon the vacuum-tunneling phenomenon, and present
some startling conclusions. The vacuum-tunneling
probe, which we shall refer to as the VTP, for fundamen-
tal reasons can be far superior to conventional means of
electromechanical transduction in some applications.
The VTP is active and nonreciprocal. We show that as a
consequence of nonreciprocity the noise of a VTP may be
thousands of times less than optimized conventional
transducer schemes. The VTP is especially well suited to
applications that involve monitoring very small test
masses characteristic of micrometer-size micromechani-
cal devices.

The essence of the VTP is that it is nonreciprocal. It is
a much better sensor that actuator. Therefore the back-
action force of the transducer on the test mass which is
monitored by the VTP is very weak. Unavoidable elec-
tronic noise is converted by a transducer to a fluctuating
back-action force on the mechanical test mass, which is a
significant factor in the determination of the sensitivity of
a transduction system. The near elimination of the
back-action force by the VTP allows substantial noise
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reduction and increased sensitivity.

For comparison consider another example of a nonre-
ciprocal electromechanical transducer, the so-called
back-action-evasion (BAE) scheme.>* The BAE strategy
is nonreciprocal by virtue of the time-dependent coupling
of the transducer to the mechanical test object, which is
conveniently modeled as a mechanical harmonic oscilla-
tor. The characteristic of the BAE scheme is that it is in-
trinsically phase sensitive; there is information about one
phase of the mechanical harmonic oscillator at the trans-
ducer output and the transducer back-action force is
confined to the orthogonal phase of the harmonic oscilla-
tor. The vacuum-tunneling probe displays another type
of back-action reduction, distinct from the phase-
sensitive BAE strategy. The VTP is phase insensitive,
and there is reduced back action on both phases as well.

One of the issues which we will explore in this paper is
the fundamental quantum limit to the sensitivity of a
VTP. The extraordinary feature of the VTP is that it
should be relatively easy to reach this limit. To achieve
quantum-limited performance with a conventional trans-
ducer requires that the amplifier following the transducer
be quantum limited. With a VTP transducer it should be
possible to make quantum-limited measurements using
common room-temperature amplifiers.

There are two equivalent points of view one may take
in discussing the quantum-mechanical limits of elec-
tromechanical transducer sensitivity. If we treat the
mechanical test mass as a quantum oscillator, the stan-
dard quantum limit for the sensitivity of a continuous
displacement measurement is given by, Ax > (#/2mw)!"?
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(see Ref. 3). This result follows from the Heisenberg un-
certainty relation between the momentum and the posi-
tion of the test mass. An alternate point of view, which
we prefer, is to ascribe quantum properties to the ap-
paratus which is used to make the measurement and to
treat the test mass classically. This is the point of view
taken in the Heisenberg microscope paradigm.’> One in-
vokes the deBroglie relation between the momentum and
wavelength of the photons used to locate a particle in the
microscope. The momentum kick to the particle is in in-
verse proportion to the diffraction-limited resolution of
the “microscope.” The compromise between the momen-
tum and position measurement accuracy is expressed by
the uncertainty relation, AxAp = #/2. To detect a force
which acts on the test mass one must make a series of
measurements. If, at one instant, one makes a precise po-
sition measurement at the expense of momentum pre-
cision, in accord with the Heisenberg uncertainty rela-
tion, the predictions of position at subsequent times will
be uncertain because the momentum ‘“feeds back” to
affect the position. The optimum strategy, which gives
the minimum position uncertainty for a continuous mea-
surement, leads to the above standard quantum limit.

In the same spirit one can represent the quantum-
measurement noise in a transducer by putting the quan-
tum fluctuations in the amplifier which follows the trans-
ducer. One model has noise generators at the input and
output of the amplifier, and the product of the spectral
densities of the two noise generators is constrained by
quantum mechanics to be greater than a minimum value.
If one accounts for the amplifier output noise and the
fluctuating back action caused by the amplifier input
noise, one finds that for measurements of the mechanical
harmonic oscillator position the standard quantum limit
Ax > (#/2mw)"’? is obeyed. If we adopt this point of
view it is easier to understand why the VTP is superior to
conventional transducers. The amplifier noise becomes
unimportant because of the gain of the transducer.

The paper is divided into the following sections. In the
next section we present a semiquantitative analysis of the
VTP, and we show that it is intrinsically quantum limit-
ed, i.e., that the tunneling probe enforces the Heisenberg
uncertainty principle for a position measurement of a
mechanical harmonic oscillator. In Sec. III we present
the two-port representation of the VTP so that we can
make a comparison to a conventional capacitive trans-
ducer to emphasize the essential features of the VTP. In
Sec. IV we present the results of a detailed calculation of
the sensitivity of a VTP which accounts for the noise of
the probe and the Brownian motion of the mechanical
test object. This calculation uses a random-variable ap-
proach and results from optimal filter theory. In the fol-
lowing section (Sec. V) we present the results a similar
calculation for a capacitive probe and a comparison of
the two schemes. The major conclusion of Sec. V is that
the tunneling probe offers the most advantage when used
to monitor small test masses. Following a summary we
include Appendixes A and B in which we discuss the lim-
its of applicability of our results. We determine the level
at which the amplifier noise may be disregarded and the
requirements for the VTP capacitance to be negligible.
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II. SIMPLIFIED THEORY OF THE
VACUUM-TUNNELING PROBE

The vacuum-tunneling probe is a pointed conducting
tip held a few A from the conducting surface of a test
mass, the motion of which we wish to monitor (see Fig.
1). Normally the scanning tunneling microscope is
operated with feedback to hold the tip a fixed distance
from a surface, but we assume that this distance is vari-
able and is given by d —x, where d is the nominal separa-
tion of the tip and test mass and x represents the small
deviation from the nominal gap. The test mass is as-
sumed to be voltage biased (+ V) positive with respect
to the tip, so electrons tunnel from the tip to the surface
of the test mass. One may define an effective tunneling
resistance R, which is dependent upon the separation of
the tip from the test-mass surface,

R;y=Rje =R (1—2kx) for 2xx <<1, (1)

where R, is typically 10’Q for a nominal separation of
several A, and k=(2m,¢)"? /%, where ¢ is the probe ma-
terial work function, m, is the electron mass, and # is
Planck’s constant.

There is also capacitance between the tunneling tip and
the test-mass surface which is a relatively large, stray ca-
pacitance from the fringing fields as well as a capacitance
which is dependent upon the separation of the tip from
the test-mass surface in the following manner:

C=Cy/(1—=x/d)=Cy(1+x/d) for x <<d . (2)

In our analysis it will be assumed that this capacitance is
small enough that its effects can be ignored. In an earlier
paper® we give the conditions under which the capaci-
tance can be ignored, and this issue is also addressed in
Appendix A. We defer a full treatment of the capaci-
tance effects to a planned forthcoming paper.’

With the tip voltage biased, the tunneling current will
be a function of the tip—to—test-mass separation. We as-
sume that one monitors the tunneling current to infer the
motion of the test mass,

I(1)=Iy(1+2x) , 3)

where I,=V, /R is the nominal tunneling current. The
quantity 2«I, gives the “forward” transfer characteristic
of a tunneling probe. For a value of I,=10"7 A and
k=10"m™! the sensitivity is 2 X 10° A/m.

The tunneling probe has an influence on the motion of
the test mass, the back action, because the tunneling elec-
trons transfer momentum. The rate of electron transfer
from the probe to the test mass is I(z)/e. If we assume
that each electron carries momentum p,, then the back-
action force of the probe on the test mass is
FBA:peI(t)/e.

To determine the minimum detectable motion of the
test mass, we must consider the fluctuations of the tun-
neling current and the back-action force. It is a general
feature that two sources of uncorrelated noise are re-
quired to properly describe the noise limits of a detection
system.® In the VTP these are the current-shot noise and
the momentum-transfer noise (back-action force). For
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now we neglect the noise of the amplifier which follows
the tunneling probe; we will show in a later section that
this can be safely ignored under quite lenient conditions.
The test mass Brownian motion is also left out at this
stage, but we show later that it can be a significant factor.

The fluctuation of the tunneling current Al is given by
the square root of the current-shot-noise spectral density

2el multiplied by the square root of the measurement
bandwidth, which is approximately 4 divided by the mea-
surement time.’ The measurement time is taken to be
the time for N electrons to arrive with the mean time be-
tween arrivals being e /I,. Then

AT =I,(8/N)'? . 4)

Thus the rms apparent displacement fluctuation is
Ax=AI/2kIy~(1/k)(2/N)'/? . (5

The fluctuations in the back-action force are the other
source of noise. The back-action force can be written
Fga=(1/e)I,+AI)p,+Ap); there are two ways in
which the back-action force may fluctuate—either by a
fluctuating rate of electron transfer Al (the current-shot
noise) or by the fluctuation about the mean of the
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momentum of the transferred electrons Ap. We have the
following expression for the fluctuating force of the VTP
on the test mass:

AFg,=(1/e)(IoAp +p Al +ApAl) . ©6)

We will ignore the last term which is second order in the
small fluctuating quantities. The second term in Eq. (6)
arises from the shot noise and therefore is completely
correlated with the apparent displacement noise. In the
presence of correlations there is always a way to make
such a term vanish, and the results of a detailed calcula-
tion (Sec. IV) demonstrate that this indeed may happen.
Furthermore, this term depends upon the mean momen-
tum of the tunneling electrons which could have nearly
any value with engineered band-gap materials. There-
fore, the first term remains as the irreducible part of the
back-action noise.

We can estimate a lower bound for this by considering
the quantum uncertainty of the tunneling electrons. We
assert our knowledge of the electrons which tunnel is
such that at some instant they are confined to the
probe—test-mass gap d. Using the Heisenberg relation
AxAp R #/2 and setting Ax =d, we have Ap X 7#/2d.
The quantity «d is roughly of order unity, although usu-
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FIG. 1. Electromechanical schematic of a motion transducing system using a vacuum-tunneling probe.
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ally closer to 10, so we have approximately Ap X #fik. This
is the momentum uncertainty imparted to the test mass
by a single-electron tunneling event. The test-mass
momentum uncertainty grows as a random walk because
the individual tunneling events are uncorrelated. Thus
the momentum uncertainty of the test mass after N
events is Ap . mass = KV N. Taking the product of Ax
and Ap, we see that the uncertainty relation for the test
mass is obeyed Ax Ap . mass = -

The preceding argument demonstrates that the tunnel-
ing probe is intrinsically a quantum-limited sensor. In
our argument we assert that the tunneling electrons are
confined to the gap and that this leads to a momentum
uncertainty of approximately #ik. It seems that increas-
ing the tip-mass separation d would decrease the momen-
tum uncertainty and allow the uncertainty product
(Ax Ap) to be made arbitrarily small. However, if d is in-
creased, the uncertainty product remains bounded.
While the momentum uncertainty does become smaller,
kd increases and the tunneling current is exponentially
dependent upon this quantity. The current quickly be-
comes so small that the shot noise is no longer the dom-
inant source of current fluctuation, and the amplifier
noise begins to dominate. Thus the apparent displace-
ment becomes inversely proportional to the square root
of the tunneling current, and Ax increases faster than Ap
decreases. A correct quantum-mechanical calculation of
the momentum uncertainty is necessary, but we believe
the result should not be significantly different from our
heuristic estimate.

III. TWO-PORT REPRESENTATION OF THE VTP
AND NONRECIPROCITY

A convenient representation of an electromechanical
transducer is as a two-port network. There is a matrix
which relates the mechanical variables (force F and veloc-
ity u) and the electrical variables (voltage V and current
i). One representation is the impedance matrix in which
the velocity and the current are treated as inputs:

Z, M,
Mm Z&’

F
4

B u
= i 0))

The constant M, is a measure of the transducer efficiency
at converting electrical current into mechanical force.
The constant Z, is the electrical input impedance of the
transducer, M,, is a measure of the transducer capacity
to convert mechanical velocity into electrical voltage, and
Z,, is the mechanical input impedance of the transducer.

A passive two-port device is one in which the energy
which flows into one port must equal the sum of the ener-
gy flowing out of the other port and the energy dissipated
within the network. The energy flowing into the mechan-
ical port is

P, =Re(Fu*/2), (8)

m

where Re( ) signifies the real part, and u* is the complex
conjugate of the velocity. The energy flowing into the
electrical port is
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P,=Re(Vi*/2), )

where i* is the complex conjugate of the current. An
ideal reciprocal two-port is described by P,=P,,, and it
follows that M,, = — M.

If M,,—M/}, then the transducer is nonreciprocal.
Therefore it is active in the sense that it either draws
power from a source or loses power to a sink. If the
difference of the magnitudes of M, and M, is large
enough to overcome any power dissipation which may be
present there can be an overall increase in signal power,
and the device has gain.

It is straightforward to determine M,, and M, for the
tunneling probe and a simple comparison case, a capaci-
tive probe. A capacitive probe normally operates with
zero-average velocity and zero-average current. Conse-
quently a small- and large-signal analysis of the device
are equivalent. A tunneling probe normally operates
with zero-average velocity but with some steady-state
current I,. A small-signal analysis will be done; the vari-
ables F, V, u, and i will represent fluctuations from the
average values.

First we present the result for a typical capacitive
probe. If we assume that there is an electric field Ej in a
capacitor (of nominal capacitance C,) which is coupled
to a test mass then the impedance matrix is

CoEj  Eq
jo jo
Z.= (10)
I T
Jjo JoCy

We are working in the frequency domain; j =V —1 and
w is the angular frequency. The ratio of output voltage to
velocity (V /u) is given by M,, =E,/jo and the ratio of
force to current (F /i) is given by M,=E/jw as well. In
this case M, = — M, and the device satisfies the recipro-
city condition.

A similar analysis for the tunneling probe leads to a
very different conclusion. When the basic equations
describing the vacuum-tunneling probe are put into im-
pedance matrix form and capacitance is neglected, the
small-signal impedance matrix is

Iyp,(1—2kd) p,

ed e

Z,= 2V, . (11)
. R,
jow

The ratio of the force exerted by the probe to the current
passing through the probe is M, =p, /e. The ratio of the
output voltage to the velocity of the test mass is
M, =2«V,/jo. This device is clearly nonreciprocal
since M, — M. The ratio of the magnitudes of M,, to
M, is

M

m

M

e

2keV,
p.

1
.

(12)

If we assume that the tunneling electrons have the Fermi
momentum and that the Fermi energy is equal to the
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work function of the tunneling probe material then we
have |M,,|/|M,|=eV,/#w. For a typical bias of 0.1 V
and a test-mass resonant frequency of 1 kHz, this quanti-
ty is approximately 10'°. The transfer characteristic for
mechanical-to-electrical conversion is vastly greater than
the reverse transfer characteristic for electrical-to-
mechanical conversion. The very weak coupling of the
electrical fluctuations in the tunneling probe to the test
mass via M, is the key to the noise reduction of the VTP.

In conventional transducers the optimum performance
is reached in a compromise between the apparent fluctua-
tions, or additive noise, and the back-acting noise. A test
mass which is sensed by a conventional probe is subjected
to the full effect of the electrical fluctuations. In the ex-
ample of a capacitive probe, a detailed analysis leads to
the conclusion that the dominant source of electrical fluc-
tuations is the amplifier which follows the transducer.
The limiting sensitivity is called the amplifier limit and
will be discussed in Sec. V.

At this point we come back to the problem of the tun-
neling probe capacitance. If the capacitance is too large,
the probe behaves as a conventional reciprocal capacitive
transducer which is subject to the amplifier limit. For
monitoring small masses ( S 10~ kg), capacitance of less
than 107" F is required for all capacitive effects to be
negligible. For larger masses the restrictions are less
severe. (See Appendix A for a detailed discussion.)

IV. OPTIMAL SIGNAL-TO-NOISE RATIO AND VTP
SENSITIVITY

The output of any transducer-amplifier system contains
both signal information and unwanted noise. We can ex-
press this as y (2)=f(z)+n(¢), where y(¢) is the output
of the transducer, f () is the output signal, and n(z) is
the noise. The output can be filtered to optimize the
signal-to-noise ratio. The maximum signal-to-noise ratio
for a linear system with stationary noise is given by'°

S

1 r+= |[Flo)|?
~ e

27 S(w)

max 2 —

do , (13)

where S (w) is the spectral density of the noise and F(w)
is the Fourier transform of the output signal. The filter
of the output which maximizes the signal-to-noise ratio is
called the optimal filter. It is implicit in the above and, in
fact, does not need to be explicitly specified to calculate
the maximum signal-to-noise ratio. It is straightforward
to find the optimal filter but for the present purpose we
omit this.

In the following we find the spectral density of the
noise at the output of the tunneling probe which, com-
bined with the expected signal, will allow us to evaluate
Eq. (13) for the optimal signal-to-noise ratio. We assume
that the object which is monitored by the tunneling probe
is a mechanical harmonic oscillator, with displacement x,
and which has the equation of motion

m

@g
¥+ —x+w}
Q O'x

m

=3 F, (14)

where m is the mass of the oscillator, w, is the resonant

6619

frequency, and Q,, is the mechanical quality factor which
is the number of cycles of oscillation for the amplitude to
decay by a factor of (1/e). The forces which act on the
mechanical oscillator include the back action force Fy,,
the Langevin force which is responsible for the Brownian
motion, and the signal force F,. Other forces such as
the Casimir force, van der Waals force, and magnetic
forces are assumed to be negligible.

The back action consists of two parts, one which is due
to the image charge force associated with the unavoidable
probe capacitance F,,, and a part F,,, which is the rate
of momentum transfer by the tunneling electrons. The
capacitive back-action force is given by

Fep=qE , (15)

where ¢ is the charge on the tunneling probe and E is the
electric field in the gap. For now we exclude this term
but it may become important if the mass of the mechani-
cal oscillator is less than 10~ ° kg and the probe capaci-
tance exceeds 10~ !7 F (refer to Appendix A). The
momentum transfer back action is given by

Fun=I(t)p, /e , (16)

where I(t) is the tunneling current, p, is the electron
momentum, and e is the electron charge. The tunneling
current I (¢) includes shot noise with a spectral density of
Siy=2e10. The momentum of the tunneling electrons p,

has an average value p; and fluctuations Ap which have a
spectral density S,,.

The exact expression for the spectral density of the
momentum fluctuations S, is an open question which
must be answered by a full quantum-mechanical calcula-
tion of the fluctuations in the momentum flux through
the tunneling probe gap. In the present paper we do not
attempt to solve this problem. Rather we present our re-
sults in a way that is independent of the value of S > and
we adopt an expression for S, which we derive heuristi-
cally.

One may assert that the tunneling electrons are local-
ized to the gap during the tunneling process and that the
electron’s wave function in the gap is a decreasing ex-
ponential = Ae ~**. The probability of finding the elec-
tron at a particular point is given by ¥*¥ and hence
equals A2e ~2<*. If the position uncertainty is defined as
the wavepacket width at half amplitude, then
Ax =(In2)/2k. By the Heisenberg uncertainty relation
the minimum momentum uncertainty of each electron is
#i/Ax or 27k /In2. The square of the momentum uncer-
tainty of one electron equals the momentum fluctuation
spectral density times an effective bandwidth which we
take to be four divided by the mean time between elec-
tron arrivals (e/I,). Thus the momentum fluctuation
spectral density is (#/x)% /[I,(In2)?] which we approxi-
mate by

S, ~2(#K) e /I . (17)

The Langevin force responsible for the Brownian
motion of the mechanical oscillator has a single-sided
spectral density given by
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SﬂzszT(l)om/Qm ’ (18)

where T is the absolute temperature and kjp is
Boltzmann’s constant.

There are a number of sources of electrical fluctuations
in the system, see the equivalent circuit in Fig. 1. The
Johnson-Nyquist noise from the bias resistance is depict-
ed by a voltage source (labeled v, ) and has a single-sided
spectral density S, given by S, =2kgTR,. The noise of
the current amplifier is represented by a current noise
source i, (with spectral density S,-n) which is purely addi-

tive and an input voltage noise source e, (with spectral
density S, ) which includes, in part, the fluctuations asso-
n

ciated with the input resistance of the amplifier R, .
Given the noise terms listed above, one can determine
both the signal part and the noise part of the output
current [ ,,,. We assume that the signal which we are try-
ing to detect is an impulse p,6(¢), which arrives at t =0,
that the capacitance is negligible and that the bias resis-
J

S;
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tance and the amplifier input resistance are both negligi-
ble compared to the tunneling resistance. The Fourier
transform of the signal is then

Polof 1
= _ 19
F(w) mw(z,d G (19)
where
E=2kd ,

G(y)=—y2+1éi+1+ge ,

_ Iop,
e= ST
emwyd
and
)
y=—".
@y

We find the following expression for the spectral density
of the noise in the output current:

n 1
S(o)=——= | y*yi+o+1)+y? [(y2+o+1) |[—2+—= | —2¢
|G (y)|2 Yt yt Q2 g
2
S, 13 Sq 1o
+ |y +o+(1+e£)?+E < , 20
Yt g ( Eg) Si" em w(z)d ‘S[’l em w(z)d ( )
[
where S; is the spectral density of the amplifier additive N = ,u\/i 1+ (e£)? S,y 2E, €& 172
noise, S, is the spectral density of the electron momen- Tiun €& u? #R2e Qn p
tum fluctuations, Sy is the spectral density of the ) S 1 2E 1,2 1,2
Langevin force, y,=e, /(i,R,) is the noise impedance of % | |1+ (e£)” ~pfo + i 33 -1 ,
the amplifier, and o is the ratio of the shot noise to the ur #k2e Q, u
amplifier additive noise. Under the assumption that the
signal is an impulse we calculate the impulse strength p,, (22)
which gives a signal-to-noise ratio of unity. The figure of where
merit we adopt is the noise number N;, which is defined
by P kyT
=——and E, = .
B b e,

2
=20 1)
2fmw,

The noise number of the transducer system is the number
of energy quanta which would be deposited in the unex-
cited mechanical oscillator by the minimum detectable
impulse, i.e., that which gives a signal-to-noise ratio of
unity.

Under the following set of assumptions that the tunnel-
ing probe capacitance is negligible, the current flowing
through the probe is large enough so that the shot noise
dominates the amplifier noise, and the bias resistance and
amplifier input resistance are small compared to the tun-
neling resistance, we find the following expressions for
the transducer noise number:

This expression is minimized when the term under the
first radical approaches unity. Then the last factor can be
simplified using the approximation V' (1+z)=~1+z/2 for
z << 1. The expression then reduces to

(e€)? Sy1o 4 2E, 23
ur #x2e  Q, u
172
Selo | 2B p
ke  Qn, €&

In principle the temperature can be lowered and the
mechanical quality factor increased so  that
E,/Q,, <<e&/u. In this case, and with all previous as-
sumptions including €£/u << 1, the quantum limit N;=1

172

N, =

tun

1+

(23)
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is approached if the spectral density of the momentum
fluctuations has the form given in Eq. (17).

V. SENSITIVITY OF A CAPACITIVE
(RECIPROCAL) TRANSDUCER

For comparison we include a noise number calculation
for a conventional, capacitive transducer, see Fig. 2. The
essential conclusions of this calculation are the same for
any conventional, passive transducer. We emphasize that
in this calculation we consider a purely capacitive probe,
J
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frequency = o,
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not the effect of the stray capacitance on the tunneling
probe result.

For a conventional capacitive probe the amplifier noise
and the Langevin force are the major limiting factors.
When the bias resistance and amplifier input resistance
are small compared to the impedance of the capacitor at
the mechanical frequency and the Johnson noise of the
bias resistance is negligible compared to the amplifier in-
put noise, the noise number of the capacitive transducer
is found to be

NA + o 1
N, = 2 2y +yt iyl | = —2 [+1
Icap Zﬁ')/c ﬂ[f_wy ’,V (7/5) y yc Q2
2 -1 —1
4E,By . 1
+yl | ———201—-B)+ | = | +y:|+(1—pP)?*| dy , (24)
N, 0| 7
f
where It can be shown that the minimum noise number for this
, transducer occurs when y2 >>(1—f)%. The noise number
enwoco el .. . .
Ye= , Ny= o has a minimum of N; =N ,, where N, is the noise
. cap
tn @o number of the amplifier, which is defined by N,
P CoV3 _ kT =(S, S; )!/?/fiw,. One says that N;=N, is the
mw(z)dz’ b o, amplifier limit. In summary conventional reciprocal
Mechanical : Capacitive : Voltage . Current
Oscillator : Probe . Bias ' Amplifier
: : Rb Vb : Rin €n
: 4 1w—O——w—O
X ' Vo X
X X . In
X ' X v
' €A X V. = 2k TR . N.= enip
Mass = m : C=d : b= B b : A= h oo,
resonant ' ) '

quality factor = Q

FIG. 2. Electromechanical schematic of a motion transducing system using a capacitive probe.
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FIG. 5. Calculated noise number of a vacuum-tunneling probe transducer and of a capacitive transducer at 4.2 K. The mechanical

quality factor Q is approximately 9 X 10°.
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transducers obey the constraint!!
N,2N,>1. (25)

In Figs. 3—6 we plot the noise number for the tunnel-
ing transducer and the purely capacitive transducer as a
function of the mass of the mechanical test body. For the
tunneling transducer the momentum fluctuations of the
electrons are assumed to take the form which was previ-
ously postulated (i.e., S,=#k*2e/I,). Figure 3 corre-
sponds to a system with a relatively low-quality oscillator
(Q ~600) near room temperature (7 =300 K). While
the capacitive transducer is more sensitive for kilogram-
scale masses, the tunneling transducer is much more sen-
sitive for small masses. One of the major noise sources is
the Brownian motion. The capacitive probe noise num-
ber approaches the amplifier limit as the mass is reduced
but the tunneling probe noise number continues to drop,
only limited by the Brownian noise which is a less severe
limitation than the amplifier noise.

Figure 4 corresponds to a system with a better
mechanical oscillator (Q =1.6X10°%) at liquid-nitrogen
temperatures (7 =77 K). Under these conditions the
capacitive transducer is completely limited by the
amplifier. However the tunneling transducer exceeds the
amplifier limit over most of the mass range, again being
limited by the Brownian motion.

Figure 5 and 6 continue the trend toward lower tem-
peratures and higher mechanical Q’s. Figure 5 is for a
mechanical oscillator with Q =9X10° at liquid-helium
temperatures (7 =4.2 K). Figure 4 is for an extremely
high-Q mechanical oscillator (Q =10%) at mK tempera-
tures (7' =0.05 K). In both cases the capacitive trans-
ducer is completely limited by the amplifier noise. The

STEPHENSON, BOCKO, AND KOCH 40

tunneling transducer performance continues to improve
until the quantum limit is reached. These two figures
also demonstrate that for the tunneling probe operated
with a specific average current, there is an optimum mass
which gives the best system sensitivity. This is due to a
tradeoff between two effects. As the oscillator mass is de-
creased the Brownian noise, in terms of the noise num-
ber, decreases. Simultaneously, the influence of the fluc-
tuations of the momentum of the tunneling electrons on
the mass of the mechanical oscillator becomes more dom-
inant. The optimum mass is that for which the fluctua-
tions which are due to Brownian motion are the same
magnitude as the noise which is due to the fluctuating
momentum transfer of the electrons. The mass which
represents the optimum is a function of the temperature,
the mechanical oscillator quality factor, and the current
flowing through the tunneling tip. For reasonable VTP
operating conditions the optimum mass is typically a few
micrograms or less.

Figure 7 shows the relation between the current and
the optimum mechanical oscillator mass. This figure
demonstrates that to optimize the VTP for masses in the
gram to kilogram range (which is typical of transducers
used in a gravitational wave detector), tunneling currents
many orders of magnitude greater than are currently
used would be required. This is presently a practical im-
possibility.

VI. SUMMARY

The vacuum tunneling probe (VTP) transducer is a new
type of transducer which is nonreciprocal and inherently
quantum limited. The nonreciprocal nature of the VTP
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FIG. 7. Noise number for the vacuum-tunneling probe system for various average tunneling currents.



40 REDUCED-NOISE NONRECIPROCAL TRANSDUCER BASED . ..

transducer makes it insensitive to the noise which is fed
back from the following amplifier which is a major limit-
ing factor in the performance of a conventional transduc-
er. This has the result of a greatly increased sensitivity.
A figure of merit for impulsive force detection using a
mechanical oscillator was defined and calculated for both
a VTP system and a capacitive transducer. While the
performance of the capacitive transducer is limited by the
noise of the following amplifier, the performance of the
vacuum-tunneling probe is only limited by quantum fluc-
tuations. If typical room-temperature amplifiers are
used, this difference can be many orders of magnitude.
The maximum sensitivity of the VTP system is a function
of the temperature, the steady-state tunneling current,
the mechanical quality factor, and the mass of the
mechanical oscillator. For typical operating conditions
the maximum sensitivity is obtained for small mechanical
oscillator masses—less than a microgram—making the
VTP ideal for miniature accelerometers and related de-
vices.
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APPENDIX A

In the text of the paper we assumed that the current-
shot noise was the predominate source of apparent noise
(noise at the system output which is not attributable to
noise present at the input). In order for this to be true,
the following conditions must apply: VvV 2el,>>i, and
V/'2ely>>e,/Ry. If the amplifier has S; =3.2X 10728

A%/Hz and S, =1.4X107% V?/Hz and a typical tunnel-

ing resistance is used (R,>10%° Q), then the most
stringent of these two requirements dictates that
I,>>107° A. These values correspond to an amplifier
with a noise number of N ,=10° and correspond to a
commercially available device. Bias currents of 1 nA to a
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few nanoamps are typical of VTP operation although
larger currents have been used.

The most stringent requirements for the capacitance is
a result of the capacitive back-action term. In order for
capacitive back action to be completely negligible, the re-
quirement is

252
L
Vo

If the operating conditions are assumed to be w,=10*
rad/sec, d =10"° m, V;,=0.1 V, Ry,=10" Q, and
m =107 kg, then the capacitance would have to be less
than 10”7 F. While capacitance in the range of 10" '3 F
have been reported for point contact junctions,!? clearly
the capacitive back action becomes a concern for very
small mass systems. Note also that the above operating
conditions correspond to a current of 10”8 A which only
marginally satisfies the requirements for the amplifier
noise being negligible. One way of alleviating this prob-
lem is to use an amplifier which has less additive noise,
thereby easing the minimum current requirement. Then
the current and voltage can be reduced, and the shot
noise will continue to dominate. Since the capacitance
requirement goes as Vg 2, an order-of-magnitude decrease
in the current and voltage would relax the capacitance re-
quirement by two orders of magnitude. For systems util-
izing larger mechanical oscillator masses the require-
ments of negligible capacitive back action are easily met
for typical operating conditions.

APPENDIX B

The sampling function in the time domain has a magni-
tude of one for |t| <t,/2, where t, is the sampling time.
The Fourier transform of this function is a sinc function
with ot as the argument and an amplitude of #,. The
sinc function is at half-height when the argument is ap-
proximately +1.90. This corresponds to w==x1.9/
to=~=%2/t,. If the bandwidth is taken to be the width at
half-height then Agyw=~4/t,.
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