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Virial coefficients in the presence of an infinite number of bound states
and strongly repulsive potentials: Application to the Efimov point
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Extending some previous work of Bolle [Phys. Rev. A 36, 3259 (1987)], we construct expressions
for the n-particle cluster coefticients that remedy diSculties associated with the presence of both an
infinite number of bound states and strongly repulsive potentials. Applying the existence theorems
for cluster coefficients implicit in the work of Ginibre [J. Math. Phys. 6, 238 (1965);6, 252 (1965); 6,
1432 (1965)], we demonstrate the validity of these expressions. We apply the formalism to obtain a
well-behaved expression for b3 at the Efimov point. As a by-product we are able to directly observe
the divergence in b3 due to the continuum part of the three-body resolvent together with the coun-
terterms that render it convergent.

I. INTRODUCTION

The incorporation of bound-state effects in the equa-
tion of state of an imperfect gas is usually a reasonably
straightforward matter. The equation of state is given
parametrically by the Mayer equations'
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where the cluster coefficients b„are defined as
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where the trace over the bound states has been done ex-
plicitly and the sum over the continuum eigenfunctions is
represented symbolically by the second term. E" are the
n-body bound-state energies. The standard Beth-
Uhlenbeck expression for b2 is of this form. ' As well as
explicitly displaying the bound-state contributions to b„,
the Beth-Uhlenbeck form, Eq. (3), also provides a con-
venient starting point for its exact evaluation.

In most cases the Beth-Uhlenbeck form is perfectly
well defined and each term can be evaluated separately.
Our concern here is in the instance where this form is not
well defined by virtue of the fact that the bound-state sum

The subscript c denotes that only the connected parts of
the Boltzmann operator are taken. H„denotes the n-
body Hamiltonian of the system. In these equations,
Boltzmann statistics are assumed and the notation for
thermodynamic variables is that of Huang. ' The contri-
bution of bound states (if any) to b„can be seen explicitly
by evaluating the trace using a basis of eigenfunctions.
Such an evaluation yields
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Here, C3 is an integral over configuration space of a poly-
nomial in the potential and its derivatives. D3 is defined
in terms of a multiple integral over energy of an in-
tegrand that consists of the three-particle resolvent with
various counterterms. In this expression one can see ex-
plicitly that the bound-state sum is convergent at the
Efimov point. This expression, however, cannot be used
to determine whether b3 is convergent under realistic
conditions. This is because of two limitations. Firstly,

is divergent. Such a divergence occurs when the bound-
state spectrum of the n-body problem has an infinite
number of bound states that accumulate at zero energy.
We know of two examples of this: the three-body prob-
lem when the pair potential is at the Efimov point (a pair
potential is said to be "at the Efimov point" when it has a
zero-energy bound state) and the Coulomb n-body prob-
lem.

The question that immediately arises is whether the
divergence in the bound-state sum causes the cluster
coefficients to diverge. If the cluster coefficients turn out
to be convergent, then we have the further task of finding
a representation for b„ to replace the Beth-Uhlenbeck
form. Let us first consider the case of the Efimov point,
where the strongest results will be determined, outlining
previous work carried out by other authors and then the
contribution to be made in this paper. In the case of the
Efimov point, this question was first examined by
Hoogeveen and Tjon for some simplified models of
binary-gas mixtures. They concluded that the divergence
of the bound-state sum is canceled by an equal but oppo-
site divergence in the continuum contribution and that
the resulting b3 is actually finite. This result was partial-
ly extended by Bolle to the more realistic case of a one-
component gas of particles interacting via bounded
short-range potentials. Bolle achieved this as a by-
product of the derivation of an alternative expression for
b3, the so-called Planck-Larkin structure,
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realistic systems interact via potentials that are strongly
repulsive at short range (e.g. , the Lennard-Jones form).
Evaluation of C3 with such potentials yields a divergent
expression. This limitation can be overcome via a
straightforward extension of Bolle's arguments. This ex-
tension occupies the main body of this paper. In Sec. II
we shall present the formalism we shall be working with
together with a rough outline of the derivation. In Sec.
III we illustrate our procedure by deriving the Planck-
Larkin structures for b2. In Sec. IV we derive the analo-
gous results for b3 and state the results for general b„.
The resulting generalized Planck-Larkin structures, like
Bolle s original expressions, have a further limitation.
When applied to the Efimov point there are no manifest
divergences in these expressions. However, it cannot be
claimed from this that b3 is finite at the Efimov point un-
less it can be established that the D3 term is also well
behaved. That this is indeed the case is established in
Sec. V. We do not do this by direct examination as this
would require knowledge of the behavior of the three-
particle resolvent at the Efimov point, which, as far as we
know, is not available in the literature. To derive this
knowledge would be a considerably involved task, requir-
ing a separate study. Instead we adopt a different, some-
what indirect, approach. It was our belief that the estab-
lished existence theorems for quantum cluster coefficients
would exclude the case of the Efimov point due to the
unusual nature of the Efimov effect. It came then as a
surprise to find that some results of Ginibre on the
infinite-volume limit of the fugacity expansion of the re-
duced density matrices do indeed imply that b3 is well
behaved at the Efimov point. This result only establishes
the existence of b3 at the Efimov point. It does not pro-
vide a well-behaved replacement for the Beth-Uhlenbeck
form. However, we can use this result to show that D3 is
well behaved. We do this in Sec. V. This establishes the
main result of this paper: a representation for b3 that can
be evaluated at the Efimov point. As we stated above, in-
formation about the behavior of the three-particle resol-
vent would determine whether D3 is well behaved. We
can turn this argument around. Since we can indirectly
determine that D3 is well behaved, we can then use this
to yield information concerning the three-particle resol-
vent at the Efimov point. This is done in Sec. VI, where
we also conclude with some comments.

The case of the Coulomb interaction is more compli-
cated. Previous attempts to remove the divergence in the
bound-state sum, to the best of our knowledge, have fal-
len into two categories. Firstly, it has been argued by
Jackson and Klein that in the many-body system the
Coulomb potential is screened and that therefore the po-
tential used in the evaluation of the cluster coefficients
should be the screened Coulomb potential. Here there
are, of course, a finite number of bound states and so the
problem of the divergence of the bound-state sum does
not arise. However, the arguments for using the screened
Coulomb potential, although plausible, are heuristic. (A
similar construction to that used by us in some work on
the enhancement of the Efimov effect could put this no-
tion on a firm foundation. ) In the second approach Bolle

C„' and D„' are similar to the analogous terms in Eq. (4).
In this expression the bound-state sums are convergent.
C„', however, is divergent. Our contribution to the
Coulomb case is the generalization of Eq. (5). This is
found in Secs. III and IV. Although the potential terms
in our generalization are convergent for strongly repul-
sive potentials, we find that they continue to diverge for
the Coulomb potential. Furthermore, to the best of our
knowledge, there are no existence theorems for Coulomb
cluster coefficients. As such our methods are of limited
validity for the Coulomb case. Our results, however, will
permit us to make some comments. These are included
in Sec. VI.

Before we begin, let us first make some comments con-
cerning our motivations. We have carried out some
work in which medium effects in a gas are partially tak-
en into account via density-dependent potentials. This al-
lows us to tune the density to the Efimov point. Our ulti-
mate aim is to apply this formalism to a gas of helium
atoms and to predict the behavior of this gas at the densi-
ty corresponding to the Efimov point. This would consti-
tute a means to display the full extent of the Efimov effect
in a real system. In order to do this we require a repre-
sentation for b3 which is not only valid at the Efimov
point, but can also accommodate the strongly repulsive
core of the helium-helium interaction.

II. FQRMAX. ISM

We concentrate in this and the following two sections
on b2 and b3 (we shall simply state the final results for
general b„at the end of Sec. IV),

3/2
b =— Tr(e ' —e ')
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Here A, =(2M P/m)'~, P= 1/kT, and H„=K„+V„,
where E„ is the n-body kinetic energy and V„ is the n-

body potential energy. In this work we shall assume that
the potential energy V„ is a pairwise sum of pair poten-
tials v," between particles i and j (inclusion of many-body
potentials in our work is straightforward). Note that in
expressions (6) and (7) the center-of-mass integrations
have been explicitly carried out. Thus Tr„here and

also considers this problem as the prime application of
the Planck-Larkin structures. In this case Eq. (4) is not
appropriate as the bound-state sums are still divergent.
Bolle overcomes this by deriving the following form for
b„, n =2, 3, also referred to as a Planck-Larkin structure:

1 1 V '' —OE"b„=, 3 g(e —1+pE" )+C„'+D„'
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b2= — Tr2 dz e 'R2 z
ni c

b 3 Tr3 dz e ~'R
3 z

3! g 2' c

where R„'(z) are the connected contributions of the n

particle resolvent (Green's function). In particular,

1 1R2(z)= (10)

henceforth shall denote the trace over the remaining
3(n —1) relative degrees of freedom.

We begin by using the Watson representation of the
Boltzmann factor to write Eqs. (6) and (7}as

where 1V„ is the number of n-body bound states. E" is
the mth n-body bound-state energy. (If N„= ao, then we
must, strictly speaking, take a sequence of contours c„',
where c„' encloses all but n of the bound-state poles and
then take n ~ ao at the end of the calculation. An alter-
native approach would be to regulate the potential with
some parameter p, which is zero for the actual potential,
to ensure a finite number of bound states. p is then taken
to zero at the end of the calculation. Here we simply
manipulate the expressions formally. )

The manipulations carried out to yield Eqs. (12) and
(13) from Eqs. (g) and (9) provide a clue as to the origin of
the divergences in the bound-state sum for the cases of in-
terest. Let us illustrate these manipulations for general
b„:

R3(z)=
H3 —z E3 —z

(j 3 K3 + U j Z E3 Z n!
3/2
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33/2 3 —PE 3
N
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+Tr3 f dz e ~'R 3(z)
1

2 ITl c'
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The contour in both cases is clockwise around the spec-
trum of the respective resolvents (see Fig. 1). Note that
the singularities of each resolvent are at the eigenvalues
of the related Hamiltonian.

By deforming the contours as in Fig. 2 we can derive
Beth-Uhlenbeck forms for b2 and b 3

..

N2 —PE 2

e

+ dze ~'R„' z
1

2&l c'
(14)
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n!

N
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e
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+Tr„ f dz e ~'R„'(z)1

2VTl c'
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where ~4 ) are the n-body bound-state eigenvectors. In
going from Eq. (14) to Eq. (15) one implicitly assumes
that the trace of a sum is the sum of the traces. This is
true only if each of the latter traces exist. This is clearly
not the case if the bound-state sum diverges. As such our
starting point in the calculation of b„must be Eq. (14).
(This argument is, of course, formal in that it assumes the
convergence of b„. We shall give conditions when this

C'
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(b)

FIG. 1. (a) Contour for the Watson representation, Eq. (8).
(b) Contour for the Watson representation, Eq. (9).

FIG. 2. (a) Deformation of contour in Fig. 1(a), which yields
Eq. (12)~ (b) Deformation of contour in Fig. 1(b), which yields
Eq. (13).
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assumption is justified in Sec. V.)

Equation (14) is difficult to calculate with. It would be
preferable to have an expression with the calculational
advantages of the Beth-Uhlenbeck form. This form per-
mits the evaluation of b„with a knowledge solely of the
bound-state energies and the continuum density of states.
Equation (14) requires not only the eigenfunctions, but
also requires that the bound-state and continuum contri-
butions be combined before the trace can be evaluated.
To derive a representation for b„ that is valid in the cases
of interest and has essentially the calculational advan-
tages of the Beth-Uhlenbeck form we follow a procedure
originally due to Bolle. However, in doing this we shall
differ from Bolle's derivation in a number of regards.

Firstly, like Bolle, we manipulate the contour integral
over C' in Eq. (14), essentially by adding and subtracting
certain terms, to obtain an alternative expression. We
then use the analytic and high-energy properties of the
resolvent to rewrite the C' integration. This results in an
expression for the argument of the trace in b„(henceforth
denoted as B„)of the form

B„=S„+I„,
where S„(I„)is a modified bound-state (continuum) sum
(integration). As Bolle has shown, the modification of the
bound-state sum can be arranged to ensure that Tr„(S„)
is convergent for the cases of interest. Bolle's use of the
analytic and high-energy properties of the resolvent is
somewhat indirect. Bolle, in a paper with Osborn, used
these properties to derive certain sum rules. Bolle's
derivation of the Planck-Larkin structures is an applica-
tion of these sum rules. We use the analytic and high-
energy properties directly. In this respect, we differ with
Bolle in only a cosmetic manner.

Another, more substantial point where we differ with
Bolle is that we begin with a different representation for
the high-energy series of the resolvent. It is this
difference that renders our Planck-Larkin structures valid
for strongly repulsive potentials. Working in a
coordinate-space representation we calculate the high-
energy expansion of the resolvent, as does Bolle, by
evaluating the Laplace transform of a high-temperature
expansion for the Boltzmann operator (the inverse of the
Watson representation):

& xl&, (z)lx' &
= f e'~& xle "lx' &dP,

0

where
ca

( )m
1nF„(x,x', 13,q) = g W" (x,x', q),

m=& m.

K„ is the n-body kinetic energy and the 8'" are polyno-
mials in the n-body potential energy and its derivatives.
The evaluation of (16) with this for the Boltzmann factor
is intractable. The evaluation can, however, be made if
we use the expansion

F„( x, x';/3, q)=e ' ' ' g Q" (x, x';q) .
—PW&(x, x';q) (

—
)

m=0

(19)

As we shall only need the diagonal elements, we write
down the first few of these for reference:

IV", (x, x', q) = V„(x),

Qo(x, x';q) = 1,
Q", (x,x';q) =0,
Qz(x, x', q) = —

—,'qhV„(x),

Q3(x, x', q)= —
—,'q[V'V„(x)] + —,', q b, V„(x) .

(20)

We refer the reader to the original papers for further de-
tails.

Substituting (19) into (16) we obtain

Q. (x,.;q)
(
—1)
m!

X f e
' ' P &xle "lx'&dP .

(21)

where q =A /2m and the P" are polynomials in the po-
tential and its derivatives (as we shall not need these here,
we refer the reader to the original work for the explicit
form of these). We begin with a renormalized form of
Eq. (17), derived in a another paper, also by Fujiwara,
Osborn, and Wilk:"

"lx' &F.(x,x';P, q),

Re(z) (in'(H„) (16)
Using the result

where P(H„) is the spectrum of H„and x denotes the
3( n —1 ) relative coordinates. —PH„

The high-temperature expansion of (xle "lx'& that
we use is essentially a renormalized version of the one
Bolle uses. Bolle uses the asymptotic series derived by
Wilk, Fujiwara, and Osborn'

(xle "lx'&= &xle "lx'& g I'"(x,x';q),
ml

(17)

—f3K„ (x —x')
&xle "lx'& = „,exp

(4qrPq) 4Pq
(22)

where d is the dimension of the Laplacian [which is
3(n —1) here], we find that the (3 integral is identical to
that in Eqs. (2.1)—(2.4) and (3.4) of Wilk, Fujiwara, and
Osborn' except that z in their paper is replaced by
z —8'I to obtain the integral required here. With their
result (which incorporates an analytic continuation) Eq.
(21) becomes
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(.—IV;)«2-' y Q (., ';q)
(4rrq)d/2 1 m! m '

(z IVn )m

m +1—d/2

H~/2 —i-(1)
I

where s „=q ' (z —IV", )' Ix —x'I and H ') denotes the ith order Bessel function of the third kind. ' This high-
1

energy series is our starting point and it is here that the essential difference with the analysis of Bolle lies. Knowledge
of the large-z behavior and the qualitative behavior of the singularity spectrum for the resolvents is all that we require.
Let us now go on to derive the generalized Planck-Larkin structures.

III. PLANCK-LARKIN STRUCTURE FOR b2

We begin with the coordinate representation of Eq. (14) for n =2:
—PE 1b2= —

3 Tr2 g e I%' (x)I + . f dz e ~'&xIRz(z)Ix)
27Tl c'

(24)

[Tr„here and in similar contexts later denotes integration over the 3(n —1) dimensional configuration space]. The
high-energy series for R 2(z) is

& xIR 2(z) lx) =
& xIR2(z) —Ro(z) Ix &

=lim ' „, (z —IV, )'/2
(4~q)3/2

—1/2

H"' (. )
—z'" —'

1/2 W1

' —1/2

H i/2(Eo)
(1)

Q (x,x', q)
m 1

( IV )m
—1/2

m —1/2

H )/2(Ew, )
(1) (25)

where 6 =
I
x —x'I and on the m ~ 2 terms we have used the result

H(1) (z) —e invH(1) (z)V V (26)

FN)(z;x, q)=z &xIR2(z)Ix) —lim
'

(z —W, )'/
a-o (42rq)3/2

H i/2(Eo)(1)
2

In these expressions we have dropped superscripts from the Q's, W's, and E 's as it is clear from the context that the
two-body version of these quantities are being used. We shall follow this practice whenever confusion is unlikely to
arise.

Anticipating the ultimate use of the high-energy series we construct the following auxiliary function:
—1/2 ' —1/2

E,

N+1
1 Q (x q)

(4~q)3/2 in 1 (z V)m
—1/2

r(m ——')
2

(27)

Using Eq. (25), it is apparent that

1
IFN I

—O (28)

The analytic structure of F& ' is readily apparent from its defining expression. It has poles and cuts corresponding to
those of the resolvent, square-root branch cuts from the arguments of the Hankel functions and the analytic structure
of the (z —V) +'/ terms. These singularities all lie on the real axis. We define a contour C which encloses these
singularities in a clockwise direction. Note that the (z —V)' cut will overtake the bound states for various
configurations. The contour C thus goes beyond a value cr where (7 =inf[ V2(x)]. Henceforth we shall assume that all
contours, unless stated otherwise, are over the contour C. With this change of contour Eq. (24) becomes

/ PE Ie, (x)I'
b2= — Tr2 g e I)I( (x)I + f dz e ~' &xIRz(z)Ix) —g (29)

E; —z

where the extension of the contour requires the subtraction of the pole terms. For future reference, we denote B2 here
schematically as

82 =So+Eo,
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where So (Eo) denotes the sum (integral) in the argument of the trace in Eq. (29). Using our knowledge of F~~~ we can
now derive the Planck-Larkin structure for b2.

From (27) we have

(x~R2(z)~x) =Fo I(z;x,q)+ lim (z —8', )'~
~-o (4~q)'"

~w
1

2

—1/2 —1/2

(1jH)iz(&0) (30)

Substituting this into the argument of the trace in Eq. (29) we obtain

+ dz e ~' lim (z —
W& )'1 z le

2~i c a-o (4~q)3~2

&w
1

(3E — 1,,
1%;(x)IB2= g e ~4 (x)~ + f dz e ~' Fo '(z;x, q) —g27TI c E; —z

—1/2 —1/2

H 1/2(e0)
(1) (31)

The second integral can be evaluated explicitly and this is
done in Appendix A. With some further manipulation of
the third term Eq. (31) becomes

I

where the pole integrations in the fourth term are
straightforward and we have used the result

N2

B2= g e ~% (x)~ + (e "—1)
m =1

1
dz Fo '(z;x, q) =0 .

2&l c
(34)

ie, (x)i'
+ f dz Fo '(z;x, q) — . f dz g277l c 2&l c,. E; —z

|%';(x)
i+ f dz(e ~' —1) Fo '(z;x, q) —g2&l c E; —z

N2

(32)

This result, which is essentially a restatement of one of
the sum rules derived by Bolle and Osborn, is readily
verified by evaluating Fo ' on the contour shown in Fig. 3
and taking R ~~. The contour over the arc vanishes in
this limit by Eq. (28) yielding the result. Let us denote
Eq. (33) in the following, schematic manner:

B2 =S1+C1+E1 .

+ f dz(e ~' —1)
1

27Tl c

ie, (x)f'
X Fo '(z;x, q) —g E; —z

(33)

If the trace of each individual term exists we can express
b2 as

b2= g (e —1)+— d x(e "—1)
—pE 1 l —pU

2!A,3

23/2
+ Tr2 . f dz(e ~' —1)

2!g 27rl c

X F(') '(z;x, q)

fe, (x)/'—X (35)

LLXiLLLLLLLLLLLLLLLLLLLLLLLLLLLLLN

FICx. 3. Contour used to establish Eq. (34).

~e refer to Eq. (35) as the first-order Planck-Larkin
structure for b2. The second term here is precisely the
classical expression for b2 'As P~.O, the classical term
will dominate so that for sufficiently high temperature the
bound-state sum, and the remainder term (i.e. , E, ) will be
negligible. In this expression the classical terms are con-
vergent for potentials with strongly repulsive cores, un-
like the expressions of Bolle. Note also that our treat-
ment di6'ers from that of Bolle in that it avoids the ap-
pearance of factors containing o.. Such factors hinder the
usefulness of resulting Planck-Larkin expressions.

We can continue this construction. To do this we
manipulate the remainder term in Eq. (33) as follows:
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E, = f dz(e ~' —1)
1

27Tl c

f dz(e ~' —1)
1

2&l c

Fo '(z;x, q) —g E; —z
L

Iq';(x) I' 1 Q, (x;q) &( —,
'

)—FI '(z;x, q) —g +
z ' ',. E, —z (4~q)' ' 2.' (z —W, )' '

(36)

(37)

3 z
—Q2(;q) . dz —p dzFi '(z;x, q)2&i(4'~q)3~ 2! ' i ~ c (z —W )3~~ 2~i c

1 I4(x)l 1 1, ,
l+(x)l+ . f dz +Pz ' + . f dz(e P' —1+Pz) F'i '—(z x, q) —g

27Tl c, E; z 27Tl c

The first term in Eq. (38) is evaluated in Appendix A. The second term is zero by construction, in direct analogy to Eq.
(34). Evaluation of the third term is straightforward. Collecting this result with the other terms in Eq. (33) we obtain

B~= g (e —1+PE ) 4 (x)l + (e "—1)+
3 3P —Q2(x;q)e

I
p ' ( x ) I+ f dz(e ~' —1+pz) F'i '(z—;x,q) —g2&l c

(39)

We denote this schematically as

B2 —S2+C2+E2 .

If the trace of each individual term exists we can thus express b2 as

23/2 ~2
bz= g (e —1+PE )+— f d x(e "—1)+— P —f d xg2(x;q)e

2!~3 . ,

+
3 Tr2 dz e ~' —1 + z —F'& ' z; x, q2!g3 2mi c

(40a)

We refer to this expression as the second-order Planck-Larkin structure for b2.
We can continue this construction. Using the result

f dz e ~' —1+Pz+ . —
(
—1 Y (z —Wi ) " =2e P" P —,

' —p), (pz) —1/2 } 1
—1/2

c (p —1)!
(40b)

(readily proven by induction from the p = 1 case given in Appendix A) one can obtain by induction a pth-order repre-
sentation for B2

B2=S +C +F
If the individual traces exist we obtain

23/2 2 —I3E , (PE )—1+PE —.. . —( —1)I'
(p —1)!

m

m =2

+ . Trz dz e ~' —1+Pz+ . —
(
—1)i' , (pz)

2!g3 2mi c (p —1)!
le, (x)l'

,
FI 'i(z;x, q) —g (41)

which is referred to as the pth-order Planck-Larkin struc-
ture for b2. If the remainder term tends to zero as
p~ ~, then in this limit

+— g fd xg (xq)e ". (42)

I

This is the Wigner-Kirkwood series for b2, which is
directly obtainable from Eq. (19). The phoo limit thus
provides a check on our procedure. If the remainder
does not tend to zero, then the Wigner-Kirkwood series
is asymptotic and our construction must be terminated at
some optimally chosen p.

If we denote Co =0, then this section has done nothing
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more than provide a class of representations for B2

B2=S +C +E
In the usual representation, p =0, Tr2(Sp) does not exist
for the cases of interest. The hope behind the construc-
tion of this class of representations is that for some p, the
trace of each individual term will exist. This would es-
tablish the convergence of b2 for the cases of interest and
simultaneously provide a convenient representation of b2
for calculational purposes.

For b2 we have one example with which to test this
program, the Coulomb interaction. In this case we readi-
ly observe that

Tr~(S ) ( ~

for p ~2. Unfortunately, the trace of C for all p ~2 is
still divergent due to the long-range nature of the
Coulomb force. In the full, two-component, charge neu-
tral theory, this infrared divergence is only reduced from
quadratic to linear. The persistence of divergences in the
Coulomb problem is not surprising. Such divergences
also occur in the fully classical problem and are taken to

be indicative of collective behavior such as screening. ' '
They are removed by partial summation. The diver-
gences here would appear then to correspond to the semi-
classical corrections to this collective behavior. We shall
have more to say about this in Sec. VI. Even if we could
remove these divergences we would still have to deter-
mine the behavior of the trace of E . This would be most
difficult and would take us far afield. Such a task thus re-
quires a separate study. Thus the Planck-Larkin struc-
ture, although improving the situation for the Coulomb
case by rendering the bound-state sum finite, does not
shed any light on whether the Coulomb b2 is convergent.
With the experience of this section we go on now to find
Planck-Larkin representations for b3 and higher cluster
coe ancients.

IV. PLANCK-LARKIN STRUCTURE FOR b3
AND HIGHER CLUSTER COEFFICIENTS

The calculation of the Planck-Larkin structure for b3
is the calculation we are most interested in because of its
applications to the case of the Efimov point. The con-
struction follows analogously to that of Sec. III:

33/2 3 —pE 1

, Tr, y e -le. (x)~'+ J dze-~'&x~Z3(z)~x)
m =1 277 l c'

L

(43)

where

(x ZlIzIlx&=(x 1

H3 —Z K3 z J( (3 K3+v]' z K3 z
(44)

lim (z —W, )a-o (4~q)
H'"(s )

—z

—2

H', "(E,)

(z —W, )
2

—2

H (e )
—z(I) ~o

w) 2

—2

H"'(E )

+ lim
2&-0 (4vrq) =q m ' (z —W, )

Ew
I

m 2

H" —'2(&w, )

Q (x,x', q)
Wa )m

—2

'w.
I

2

m 2

(45)

Here, as is standard in the three-body problem, we use the odd person out notation v, = v23 and cyclic. Also the e sum
is from l to 3. Q is the same as Q except that the full three-particle potential energy V3 in the latter is replaced by
v to obtain the former.

The auxiliary function for the derivation of the Planck-Larkin structure of b3 is

++3 r(m —2)F~ '(z;x, q) =z r(z; qx)—
(4~q)' m =~

Q (x, q)

(
—W )m

Q (x,q)
Wa )m

—2 (46)

where
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r(z;x, q)= lim (xIR3(z)Ix') — (z —W, )5~0 (4m.q)'

&w
1

—2

H' "(E ) —z' —'
—2

H',"(.,)

(z —W, )
W

1

2

—2 —2

H',"(.,)

Q2(x x'q)Ho (Ew, ) XQz(x x q)Ho'(E, ) (47)

IF„'"I = o 1

z —+ oo
(4&)

We have split F~', Eq. (46), into two terms. The
second term comes from the m =3 to %+3 terms in Eq.
(45) in which the b, ~O can be explicitly taken. The other
terms in F~', r(z;x, q), comprise those terms where the
6~0 limit is most readily taken after the contour in-
tegration we shall be doing.

By construction

I

The analytic structure of F~' comprises that of the
three-body resolvent, the square-root branch cuts in the
arguments of the Hankel functions in r(z;x, q) and the
poles at Wi and Wi in Eq. (46). We define a contour C
that wraps clockwise around the singularities of F&'. C
goes beyond a value o where now o =infV3(x). Here x
represents the six relative degrees of freedom in the
three-body problem.

To calculate the first-order Planck-Larkin structure,
we proceed as in Sec. III. From Eq. (46) we have that

1 1 1
Fo '(z;x, q)=r(z;x, q) —

3
—Q3(x, q)

(4~q)' 3! z —W,
—g Q3 (x, q)

z —8'i
(49)

Thus the argument of the trace in Eq. (43) becomes

&E-, I, , Iq, (x) I'
B3= g e

I

(II (x)I + f dz e ~' (xIR3(z)Ix) —g27Tl c E; —z

,Eg e I4 (x)I + f dze ~' Fo'(z xq) —g
27Tl c E; —z

Wl
+ lim

3 f dze ~' (z —W)
2ni a-o (4~q)3 c 2

—2

H'"(. ) —z' —'
2 Wl

—2

H"'(e )

(z —W', )
W

1

2

—2

H' "(. ) —z' —'
2

—2

H(1((E

+ lim f dz e '—Qz(x, x', q)Ho" (Eii ) —g Qz(x, x', q)Ho" (e )
2ni a-o (4~q)3 c 2!

1 1 1 e
—Pz —Pz

+ . —Q3(x, q) f dz —g Q3(x, q) f dz
2mi (4~q)3 3! ' z —Wi z —Wi

(5O)

The 6~0 limits can be taken separately as each contour integral separately exists in this limit. The calculation of the
third and fourth terms is outlined in Appendix A. The fifth term is trivially evaluated. We obtain&E-B3= g e Iq( (x)I + . f dz e ~' Fo '(z;x, q)

2'lTl c E; —z

a a
T

a
(5l)
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In (51)

/ql;(x)/f dz e ~' Fo '(z;x, q) —g27Tl c E; —z

3

(x)~ + . f dz(e ~' —1) Fo '(z;x, q) —g2mi c
' ', E, —z

(52)

as

1
dz Fo '(z;x, q) =0,

27Tl c
(&3)

in direct analogy with Eq. (34). We now have a representation for B3 of the form

B3=Si+Ci+Ei .

If we can take the trace term by term we obtain the first-order Planck-Larkin structure for b3

33/2 3 p~ 33/2
b3 =

3 g (e —1)+ [Tr3(Ci )+Tr3(Ei )],
3!k 3!k' (54)

where

3 l l —P(v „+v/3+ v3I )
3/2 —Pv—Tr3( C, ) =— Tr3 e —1 —g (e —1)

+ g, P Tr3 Q (x, q)e " " " —gQ (x, q)e
m =2 0.'

(55)

Note that if we write f =e
b3. ' Also

/q, (x)/'
Tr3(E, ) = f dz(e ~' —1)Tr3 Fo '(z;x, q) —g2&l c E; —z

(56)

—Pv —1, then the first term on the right-hand side of Eq. (55) is the classical expression for

As with B2 we can continue to get pth-order representations of B3 and the corresponding pth-order Planck-Larkin
structures. As the derivation is a straightforward generalization of Sec. III we simply quote the pth-order Planck-
Larkin structures for b3 ..

33/2 3

b, =, g e
m =1

where

33/2

—PE , (PE )i'—1+PE — —
(
—1)

(p —1)i

33/2
+ [Tr3(C )+Tr, (E )],3L

(57)

@+2 1
m

+ g P Tr3 Q (x, q)e " " " —g Q (x, q)e
m —2 CX

Tr3(E )= dz e ~' —1+Pz —. . —
(
—1P1 , (pz)

2+i c (p —1)I

/4;(x)/
,
F' ', (z;x, q) —g (58)

Again we recover the Wigner-Kirkwood expansion in the
p~~ limit.

For the Coulomb problem this construction throws as
much light on the convergence of b3 as the analogous
construction does for b2. As such the comments made
for the Coulomb b2 apply here. For the case of the
Efimov point, the picture is a little more rosy. Here we
have both

Tr3($ ) & ~ for p ~ 1,
Tr3(C ) & oo for all p

(where the latter condition is not satisfied in Bolle's
Planck-Larkin structures for strongly repulsive poten-
tials). The manifest divergences, which previously caused
concern, are thus absent in the generalized Planck-Larkin
structures. The behavior of Tr3(E ), however, remains
unknown. E involves the full three-particle resolvent at
the Efimov point. This is a complicated object of which,
to the best of our knowledge, little is known. As a conse-
quence, the direct examination of Tr3(E ) is a difficult
task whose pursual would take us far afield. However,
without knowledge of its behavior, the application of the
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Planck-Larkin structures is conditional. In Sec. V we
shall take up the behavior of Tr3(E ) in a somewhat in-
direct manner, showing that b3 is finite and that, as a
consequence, the first-order Planck-Larkin structure is a
valid representation of it. Before we do this we consider
the results for general b„.

The arguments of this and the previous section are
readily extended to general b„. The calculation of the
even cluster coefficients follows that of b2, involving
half-integer —order Hankel functions while the calcula-
tion of the odd cluster coefficients follows that of b3, in-
volving integer-order Hankel functions. The only por-
tions of the expressions derived that differ nontrivially for
different n are the number of classical terms in the pth-
order Planck-Larkin structures and the form of the auxi-
liary function. We simply quote the results. The pth-
order Planck-Larkin structure for b„ is

where

3/2
Tr„(C )

n!A,

Tr„[e ('~],1 1

p+s
( 1)m+ g P Tr„[Q (x, q)e ~ ],

m=2 m!

(60)

and

Ep = dz e @—1+Pz — —
(
—1)P (pz)p

2&l e (p —1 )I

~nb„=, g e
n!A,

—1+PE , Fp"', (z;x, q) —gZ&-' ' '' E —ZI

(61)
, (PE )". —( —1)' '

(p —1)!

Tr„(E ),
n lg

3/2 3/2
+ Tr„(C )+

n!A.

where s = ,'n ——3 ( ,'n ———,') for n even (odd). [A], denotes
the connected part of A. The corresponding auxiliary
function is

a 1(m+1 —d)F~" (z;x, q) =z r "(z;x,q)—
(4~q) = b

m!
Q (x, q)

gr )m+1 —d
Z

C

where

a —
( 1 )(3/2)n 1/2 for n odd

=i ( —1)' '" for n even,

b =—', (n —1) for n odd

=
—,'n —2 for n even,

d =—', (n —1),
and

b —1
( 1)m

r"(z;x,q)= lim (x~R„'(z)~x') —
(3/2)(

1

( ~ )m
—(3/2)n + 5/2Q ( , xqx)

Z

2

m —(3/2)n + 5/2
(1)
( 3 /2 )n —5 /2 —m ( e W

)
(63)

V. BEHAVIOR OF Tr„(E~ )

Sections III and IV have done nothing more than to
derive a class of partitions for B„ofthe form

B„=S+C +E (64)

As we have seen, we have insufficient knowledge of E to
determine, from this partition, the behavior of the cluster
coefficients. The further information required, as we
have pointed out, can be obtained only with considerable

E =B„—S —C (65)

It is clear from this that if we can establish the conver-

I

effort. Such effort demands a separate study. For the
case of the Efimov point, however, we can obtain the fur-
ther information required with only a little extra efFort by
using an alternative approach.

The idea is simple. The further information required
in the case of the Efimov point is the behavior of Tr3(E ).
Let us rearrange our usual expression for B„
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gence of the trace of B„ independently, then Tr3(E ) is
convergent for p )0. As a result, the trace of each term
on the right-hand side of Eq. (64) is convergent. One can
then take the trace of B„ term by term. It follows that
the corresponding Planck-Larkin structure is well
behaved. This alternative approach separates our two
main issues. The original approach attempted to use the
partitions of B„ to simultaneously establish the conver-
gence of b„as well as yield replacements for the ill-
defined Beth-Uhlenbeck form. This alternative approach
seeks to establish the convergence of b„separately,
without being concerned with explicit representations,
and then use this to validate our Planck-Larkin expres-
sions through the argument above. We were motivated
to consider this alternative in the hope that the literature
on rigorous results in statistical mechanics contained
quantum analogs of the well-known theorems for the
thermodynamic limit of the classical cluster coefficients.
While we had some confidence that the quantum general-
izations did exist, we felt that the unusual behavior of the
cases of interest would result in their exclusion from
these theorems. We have found that existence theorems
for quantum cluster coefficients are implicit in some re-
sults of Ginibre. Not surprisingly, the conditions on
Ginibre's results are not satisfied for the Coulomb prob-
lem. Somewhat to our surprise, however, the conditions
are satisfied in the case of the Efimov point. As a result
of this and our argument above, the Planck-Larkin struc-
tures for p & 0 provide well-defined expressions for the
convergent third cluster coefficient at the Efimov point.

To demonstrate the assertions made above we consider
Ginibre's results in some detail. The main result is given
as a theorem (of which we refer the reader to Ginibre for
further details).

Theorem. Consider a system of particles interacting
pairwise via a pair potential N(x). If @(x) satisfies the
following conditions, (a) 4&(x) is continuous for all x (ex-
cept perhaps at the origin) and N(x) =N( —x); (b) (stabili-
ty) g~~;&&& 4(x; —x )~ —mB for some B; and (c)

f „,d x ~4&(x)~ & ~ for some c &0, then (i) the finite-

volurne reduced density matrices of the system are ana-
lytic functions of the fugacity for ~z~ & R where R )0 and
(ii) for ~z~ &R the infinite-volume limit of the reduced
density matrices exists. The convergence is uniform for
~z~ & R ' & R and thus the limit is analytic in this region.

Note that there is no explicit expression for R. In oth-
er versions of the theorem, which have somewhat
stronger conditions on the potential, an explicit expres-
sion can be found. These conditions are not satisfied for
the cases of interest here. Note also that the strongly
repulsive intermolecular potentials with which we are
concerned satisfy the above conditions. The Coulomb
potential does not.

The diagonal part of the one-particle reduced density
matrix (which is constant by translational invariance) is
simply the average density. As such the power series in z,
referred to in part (ii) of the theorem above, is simply the
second Mayer equation [Eq. (1(b)]. As a result (ii) implies
that the cluster coefficients are convergent. (We use the
term "cluster coefficient" here to denote the infinite-

volume limit of the finite-volume cluster coefficients as
this is the meaning we have implicitly attached to this
term in the sections prior to this one. ) Actually, although
it is not explicitly stated, Ginibre essentially proves the
existence of the cluster coefficients in the process of estab-
lishing (ii). However, because Ginibre s proof is quite
technical and involved, it is somewhat difficult to see this.
To assist the interested reader we provide in Appendix B
a guided tour of Ginibre's work, emphasizing the ele-
rnents we require. The remarkable aspect of Ginibre's
theorem is that its conditions are independent of proper-
ties of a quantum-mechanical nature. This is possible be-
cause the theorem is established using path integral rep-
resentations for operators. As a result the presence of the
Efimov effect does not spoil the result. (One of the
motivations of the work of Hoogeveen and Tjon was the
concern that if a system was even near the Efimov point,
let alone at it, that this may effect the convergence of the
cluster expansion. Ginibre's results show that this is not
the case. )

VI. DISCUSSION

We would like to conclude with some comments to-
gether with some discussion concerning further work to
be done. In Sec. V we demonstrated that Tr3(E ) is con-
vergent at the Efimov point for p ~ 1. As we have point-
ed out we can use this result to say something about the
behavior of the three-particle resolvent at the Efimov
point. This can be done by considering the p =1 and

p =0 remainder terms. Let us first consider the p =1
term. We know that

Tr3 f dz(e ~' —1) Fo '(z;x, q)
2&l c

/q, (x)/'

E, —z
(66)

Since

Tr3 dz Fo (z;x, q)
1 (3)

27Tl c

and

Tr3 J dz e ~'[Fo' '(z;x, q) —(x~R, (z)~x)]1

C

(67)

(68)

where we have reverted to the contour used in Fig. 2.
Comparing this to the p =0 case

are both convergent (they have been explicitly calculated)
Eq. (66) implies that

Tr3 dze ~' xR3z x + +, x1

27Tl c'
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Tr, . f dz e ~'&xIR;(z)Ix) = oo,1

27Tl c'
L

(69)

we can explicitly observe the counterterm required to en-
sure the convergence of the continuum integration. Note
that we have formally evaluated a contour integral to ob-
tain the second term in the argument of the trace in Eq.
(68). Strictly speaking, we cannot do this. The reason is
that we do not know whether the divergence, which the
counterterm removes, is in the trace or whether it is in
the contour integral. If it is in the trace, then Eqs. (68)

and (69) are the ones that illustrate the removal of the
divergence. We are inclined to think, however, that the
divergence is in the small-z behavior of the resolvent and
that the counterterm to this divergence is the sum over
the bound states in Eq. (66).

With regards to the Efimov point, as we have stated a
number of times, our aim has been to (a) establish the be-
havior of b3 and (b) if b3 is convergent, to find a replace-
ment for the Beth-Uhlenbeck form. We have followed
the previous work of Bolle in order to pursue these aims.
The reader may have noticed, however, that in the argu-
ment above the convergent terms in Eq. (67) exactly can-
cel the classical terms, resulting in

33/2 3 —pE Iq, (x)I'
b3= g (e —1)+Tr3 f dz e ~' &xIR3(z)Ix) —g

I%;(x)I+g (70)

=S+I .

This expression actually fulfills our two aims. In fact, it can be obtained though a simple formal argument. Start with
the zeroth-order representation of B3. Adding and subtracting the bound-state part of the resolvent in the contour in-

tegral, followed by a simple contour integration, yields the following representation for B3..

1 I q;(x) I'
I +;(x)I'

B3= g (e —I)I4 (x)I + f dz e ~' &xIR3(z)Ix) —g +g (71)
27Tl c E; —z,. E, —z

Tr3(S) is convergent by inspection. Tr3(B3) is conver-
gent by Ginibre's theorem. It thus follows that Tr3(I) is
convergent and that Eq. (70) is well behaved. This simple
argument satisfies both (a) and (b). At this stage we must
enquire as to the relationship between the above expres-
sions and the Planck-Larkin structures. The relationship
is clear. The Planck-Larkin structures not only satisfy (a)
and (b) above, but they also provide asymptotic expres-
sions for the high-temperature limit. Such expressions
can only be obtained from Eq. (70) via arguments essen-
tially equivalent to our previous derivation. We might
also point out that it is the high-temperature expressions
that are required in our previous work.

Of the cases of interest only that of the Efimov point
has yielded to our techniques. We have already outlined
why we cannot treat the Coulomb problem any further.
We would, however, like to suggest a procedure that may
remove the manifest divergences in the classical terms of
the Coulomb case. This procedure is essentially a gen-
eralization of the well-known techniques used in the fully
classical problem. Start with a two-component charge
neutral system (our work can accommodate two-
component systems with only a little further effort). Sub-
stitute the second-order Planck-Larkin structure for b„
into the Mayer equations (of course, any p ~ 2 may be
used). The bound-state sums are convergent. Gather the
so-called ring diagrams' ' in the fully classical parts of
the Planck-Larkin structures. It is well known that while
each individual diagram diverges, the sum is actually
convergent. The need for this partial summation rejects
the phenomenon of screening in the Coulomb problem.
It is our proposition that all classical terms from the
Planck-Larkin structures can be grouped into such series
and that, after their summation divergences, no longer
appear. This procedure would yield semiclassical correc-

tions to the usual Debye-Hiickel theory not only from the
classical terms (these could be obtained using a Wigner-
Kirkwood expansion), but also from the bound-state
sums. It is evident that a considerable effort is required
in order to carry out this suggestion. As such we present
it here only as a conjecture. Its verification clearly re-
quires a separate study. Before this study is carried out,
however, we believe a further avenue should be explored.

It is implicit in the above that the Coulomb cluster
coefficients are intrinsically divergent. We know of no
proof that establishes this. It thus remains possible that
the Coulomb cluster coefficients are actually finite. There
can only be two ways for this to occur. The first is if our
expressions are approximate in some way, and that com-
pensating divergences have been thrown away in this ap-
proximation. The second ease requires that the manifest
divergences in the classical terms be compensated by op-
posite divergences in the remainder term. The difficulties
encountered in examining this second case are apparent
from our previous discussion. The first scenario is more
interesting. Our expressions are approximate in that we
have been assuming Boltzmann statistics throughout. It
is well known that Fermi statistics are of considerable im-
portance in maintaining the stability of the Coulomb n-
body problem. It may be that they have some role to
play in diminishing the remaining divergences. Unfor-
tunately, generalizing our results to quantum statistics is
not the simple matter is may seem. The problem arises
right at the very first step, in the high-temperature series
of Fujiwara, Osborn, and Wilk. " We illustrate the prob-
lem in the simple case of b2. The exchange contribution
to b2 requires matrix elements of the form

&xIe 'I —x) .

The high-temperature series for this matrix element in-
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volves various scalar functions 8 „which are essentially
averages of polynomials of the potential and its deriva-
tives on a straight line from —x to X. Since this line goes
through the origin these functions are divergent. This
divergence, if it were isolated to the Coulomb problem,
would not cause any surprise. Unfortunately, the prob-
lem is much more serious as these divergences also occur
in the Bose statistics correction at the Efimov point (actu-
ally they occur for all strongly repulsive potentials).
However, Ginibre's theorem is true for both Boltzmann
and quantum statistics. We know then that these diver-
gences are a result of the means used to derive these
series and are not intrinsic. To generalize our results so
that we can calculate corrections due to quantum statis-
tics, we thus need to derive an alternative high-
temperature series for the exchange matrix elements. We
are currently attempting such a derivation.

We would like to conclude with a general comment
concerning the Planck-Larkin structures. If we observe
these structures away from the present context they look
somewhat strange. This is because we have, in the one
expression, contributions that are usually associated with
the low-temperature limit (i.e., the bound-states sums)
and contributions usually associated with the high-
temperature limit (the classical terms). It is clear that
this peaceful coexistence arises because we have used

analyticity to relate high- and low-energy properties. The
hybrid nature of these expressions elicits the hope that
various truncations of them may approximately represent
the cluster coefficients over the full temperature range.
This too is a subject for further work.
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APPENDIX A

Here we outline the evaluation of various integrals
whose results are quoted in the text. Note that
throughout this appendix the following definition of the
square root is taken:

z =re~e, Q&r & oo, Q&e &2m, Qz =r e

i.e., we select the square root with the positive imaginary
part. This choice is dictated in the integral identity used
in going from Eq. (21) to Eq. (23).

To obtain Eq. (32) we require the result

1 7Tl
dz e i" lim (z —W, )'
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The integral in (Al) can be written
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where we have used the results

)
(
—E)=Hi ) (E) Hi +Hi~) =2J

and the small argument expansion of J . 8(E) is a Heaviside step function. Similarly for the first difference. The in-
tegral in (Al) becomes

f dE e ~ [8(E—Wi )(E —Wi )' 8(—E)E'~ ]f'(-', ) (4~q)'" (A6)

(e "—1) as (4vrqP)'~ =&2k. (A7)

as required.
Next we consider the integral in Eq. (38)

f dz(e ~' —l)(z —W, )
C

= —2 f dz Pe ~'(z —W )
C

using integration by parts . (A8)

= —4/3 dEe ~ (E —W )
w) I

=2P'"e ' )r( —') .
2

The result given in the text follows. The result in Eq.
(40b) follows in a similar manner by induction.

The third term in Eq. (50) is evaluated as follows. We
write the contour integral

lim f dz e ~' ' (z —W) )5~0 C

Ew
l

2

—2 —2

H "(e )

(z —W'i )

'w.
1

2

—2

H")(e ) —z'—
w

—2

Hii)(e )

as

f dEe ~ f(E) .
a

similarly for the other expressions in the integrand. The
integral in question becomes

The contribution to the integrand f (E) from the Wi
term —2

dE e ~ (E —W, )'8(E —W, )
—E'8(E)

O'

(E+ —Wi ) H2" (e~ )

—(E —W, )

—2

H2" (eii ), (A 10)

—g [(E—W, ) 8(E —W, ) —E'8(E)]

(A13)

where

E
—=q '~~(E ——x)' 6, E =E+ig— from which the answer given in the text follows readily.

The other integral in Eq. (50) follows in a similar manner.

now

s~ =+q '~2(E —Wi )' i) =+a for E ) Wi
1

—)Z2~E
APPENDIX 8

Thus (A10) becomes
—2

(E —Wi ) — [H~" (E)—H~" ( —e)]

for E&8', .

(Al 1)

(A12)

XB(E—Wi )+O(g)
—2

=(E —W, )
— 2J~(E)8(E —W'i )+Q (g)

=(E —W, ) 8(E —W', )+O(g)+O(b, ),

We present in this appendix an outline of Ginibre's
proof, emphasizing the elements that imply the existence
of the cluster coe%cients. The interested reader can find
full details in Refs. 5 and I5. Ginibre's theorem is essen-
tially the quantum analog of a classical result due to
Ruelle. ' The analogy is a fairly direct one because of the
use of path integral representations. We thus commend
to the interested reader a prior examination of Ruelle's
work.

Ginibre begins with the definition of the configuration
space I-particle reduced density matrices:
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PA(xi, . . . , X,yi, . . . , y )=—Z d u1' ' ' d u„(xi, . . . , x,ui, . . . , u„(e '~y 1, . . . , y, ui, . . . , u„)

(B1)

where A is the volume of the system, Z is the grand partition function, and Boltzmann statistics are used. %'e refer the
reader to Ginibre for the generalization to quantum statistics. Using the Feynman-Kac formula the Boltzmann factor
is written as a path integral:

&X, , . . . , X le 1'
~y, , . . . , y &= fPt'„(d~, ) (B2)

where P~ „(dco; ) are Wiener measures on the trajectory space and

U(coi, . . . , co ) = dt0
0

1 i(j m

@[co;(t)—co, (t)] . (83)

The reduced density matrices are then written as

PA(X1 x yi y ) fP,3, (dco1) ' P „(dco )pp(co1, co )a(coi ) ' ' ' a(co ), (B4)

a(co;)=1 if co, eA
=0 otherwise,

and the pA(co1, . . . , co ) satisfy an infinite set of coupled integral equations, referred to as the Kirkwood-Salzburg equa-
tions:

00 ]
pA(co, )=za(co, ) 1+ g —f d uP ~ (dp, ) . d u, P~ „(dp, )K(co, lp, ) . . K(co, lp, )pA(p„. . . , p, )

s = I

—U( 1, . . . , )

p~(co, , . . . , co )= za(co, ) a(co )e
(B5)

X p~(coz, . . . , co )+ g —,f d u, p~ „(dp, ) d u, p~ „(dp, )
s =1

X K ( co,
~ p, ) K ( co,

~ p, )p~( coz, . . . , co,p1, . . . , p, )

Defining vectors

(pw(coi) p~(coi coz) pA(col coz co3) pA(col

and

g=(z, 0, 0, . . . )

and defining the operator A~ by

AAh =(a(coi)h (co, ),a(co1)a(coz)h (co„coz),a(co1)a(coz)a(co3)h (coi, coz, co3), . . . , a(co, ) a(co, )h (co„. . . , co, ), . . . )

the Kirkwood-Salzburg equations can be written as

r, = W, (g+Kr, ) . (B6)

Note that Ginibre s K is modified slightly from the one implied by (B5). This is done for technical reasons. The best ex-
planation of this modification and the reason for it can be found in Ref. 17.

I ~ is an element of a space whose general element is denoted

h = (h (coi ), h (coi, coz), h (co i& coz, co3) y y h (co, , . . . , co, ), . . . ) .

By defining a norm on this space, Ginibre constructs a
Banach space. The definition of the norm depends on the
conditions on the potential. For the conditions we have
quoted in the text, the norm is

/[h i[
= sup sup

m (col, . . . , co )

/h (co„.. . , co )/

Q h(co;)
i =1

(B7)
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I ~= A~/+ A~(KA~)g+ A~(KA~) g+ (88)

converges. As z appears linearly in K, this result estab-
lishes the analyticity of I z. Using (84), the analyticity in
z of the reduced density matrices follow, proving part (i)
of Ginibre's theorem.

where b, (co;) is an auxiliary function, satisfying various
conditions (see p. 382 of the first entry in Ref. 15) and
whose functional form is constrained to ensure that the
operator K is bounded. [Ginibre also considers the case
of absolutely integrable potentials, i.e., c =0 in condition
(c) in Sec. V. In this case one can ensure that K is bound-
ed by choosing 6 as a suitably constrained constant. The
c =0 case, of course, does not cover the potentials of in-
terest to us. However, we found that going through the
c =0 case first provided a valuable guide to the more
complicated c & 0 case, which is the one of interest. ] The
norm (87) induces a corresponding operator norm. Gini-
bre shows that for IzI & R, IIK II

& l. It then follows' that

lemma to show that

II& ( ) (810)

for m'&m &0. This is a Cauchy criterion for A&I L+
as m ~~. As a result each element of the vector
Ar I L + tends to a limit as m ~ ao (recall that
ALI L+ are elements of a Banach space which, by
definition, is complete). This limit is denoted by AI I
and one has

II AJ I' ALI L+ II «(rn} . (811)

From this result Ginibre proves part (ii) of the theorem:
if x, , y; ED, where D is a compact subset of the sphere of
radius L, then pI (x„.. . , x,y„. . . , y ) tends to a lim-
it, denoted p(x„. . . , x,y„. . . , y ) as L~~. This
limit is uniform in z for IzI & R' & R. The results for the
cluster coefficients are clearly contained in this result. To
see this explicitly, consider the definition of the cluster
coefficients:

Ginibre proves his second result with the aid of the fol-
lowing lemma.

Lemma. Without loss of generality, let A be a sphere
of radius L centered on the origin. Let m' & m )0. Then

nb„(x)= lim fP~„(d~}[AL(KA~)" 'g], .z" (812)

II A, KA, ~, A, KA,—+ II g(m), (89)

where il(m) tends to zero as m~~. Ginibre uses this

The subscript 1 denotes the first element of the vector in-
side the brackets. To establish the existence of the limit
consider, for m') m )0,

(x)—nb„'+ (x) I

= „fP~„(d~)I[A„.(KA, + . )" 'g], —[ A, + (KA, + )" 'g], I

fP~„(d~)II A, + (KA, +,)" ' A, + -(K—A, +z " infra co
(813)

=
II AL(KAL+ }" ' —AL (KAL+ )" (814)

The lemma can be used to bound (814) via simple manip-
ulations. The path integration over A is then bounded by

ki7(rn) f P~„(den)b(co), (815)

where k is some constant. Since b(co) is integrable, the
integration over the A domain can be made arbitrarily
small by making m suSciently large. For the integration
over the B domain the trajectory co must travel at least a
distance r in a "time" P. Since the integrand can be
bounded by some constant k' this integration can be es-

where x&D. Let D be contained in a sphere of radius
L —r. The integration over co in Eq. (814) is split into
two subdomains A and B. In 3, ~ is contained com-
pletely in the sphere of radius L. For this part of the in-
tegration we have

(KAL+ )" ' —AL+ (KAL+ )"

timated by

k' f P~„(dc')h(cu) .
B

Ginibre has some estimates that show that this integral
can be made arbitrarily small by letting r become
sufficiently large (with an adjustment of L if necessary).
This establishes a Cauchy criterion for nb„(x). As a re-
sult the limit exists as L ~ ~ provided x is in D (as D is
arbitrary this is not a restriction). We denote this limit
by nb„(x). By considering the explicit integral represen-
tation, Eq. (812), we can see that for x, x'GD, transla-
tional invariance implies that nb„(x)=nb„(x'). As D is
arbitrary, it follows that nb„(x) is independent of x.

The argument above provides an outline of the explicit
demonstration that Ginibre's results imply the existence
of the cluster coefficients. The reader interested in a
more detailed demonstration can supplement this outline
with a detailed study of Ginibre's original work.
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