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Transition sequence and birhythmicity in a chemical oscillation model showing chaos
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Using a chemical oscillation model, a transition sequence in a chaotic region was studied in de-

tail, and its fine structure in the vicinity of a critical point where a simple oscillation with a small
amplitude becomes unstable and diverges to a new oscillatory state was reported. Neither a com-
bined complex oscillation nor a chaotic oscillation appears between the two complex oscillations in

this region, contrary to other cases reported already. Moreover, coexistence of a complex oscilla-
tion and a simple oscillation with a small amplitude was found to appear.

I. INTRODUCTION

One of the most active subjects in the field of non-
equilibrium thermodynamics is the investigation of the
transition sequence in a chaotic region, ' and the period
doubling sequence, the discontinuous transition and
the intermittency ' have been reported. Especially the
period doubling sequence has been intensively studied
and is called a U sequence (or universal sequence) because
of its system-independent properties. The Belousov-
Zhabotinskii (BZ) reaction is the most well-known experi-
mental system which exhibits chaotic oscillations, '

and the period-doubling sequences' and intermittency '

have been observed. Moreover, some periodic states
formed from combinations of large- and small-amplitude
oscillations appear. Swinney et aI carried out a detailed
examination on the BZ reaction in a continuous-Aow
stirred tank reactor (CSTR) and revealed a staircase rela-
tionship by plotting a ratio 8' of the number of small-
amplitude oscillations to the total number of oscillations
per period. ' As the control parameter, the How rate of
chemicals was used.

In our previous paper, ' a three-variable model chemi-
cal system was studied and its bifurcation structures from
a complex oscillation to a chaotic or a combined complex
oscillations have been reported. A whole profile of the
transitions from a simple oscillation with a small ampli-
tude to a simple oscillation with a large amplitude was
figured in the F-P phase plane, according to the way of
Swinney et al. ' The resulting staircase function of F
versus P is very similar to the F-P diagram observed for
the BZ reaction and this result strongly suggests a simi-
larity of mathematical structures between the BZ reac-
tion and the present model.

Here, the terms, "complex oscillation, " "combined
complex oscillation, " "pseudoperiodic oscillation, " and
"simple oscillation" are defined as follows. A complex
oscillation is an oscillatory state formed of one large-
amplitude oscillation and (n —1 ) small-amplitude oscilla-
tions, for which the symbol tr(n) is used hereafter. A
combined complex oscillation means a combination of
two or more complex oscillations and the symbol
tr(m)sr(n) is used for the combined complex oscillation
formed of complex oscillations tr(m) and tr(n). The term

of pseudoperiodic oscillation is used for a long-period os-
cillation for which it is hard to determine definitely
whether it is chaotic or not. A simple oscillation is the
oscillation with a single amplitude. There are two kinds
of single oscillations; one is a large amplitude oscillation
and the other is a small amplitude one. The complicated
oscillatory behaviors in which we are concerned appear
between these simple oscillations.

The transition sequence starting from the simple oscil-
lation with a large amplitude is the period-doubling one,
where no special behavior is found to appear. ' A similar
period-doubling sequence has been observed in the exper-
iment of the BZ reaction. ' However, the transition se-
quence starting from the simple oscillation with a small
amplitude is quite a novel one, on which we will report in
this paper.

II. CHEMICAL OSCILLATION MODEL

In the present investigation, the system consisting of
the following chemical reactions is considered:

kl

P+Z~E+Z,

E+X~R +X,
k3

3 +2X+E~~3X+E,
k4

k~

B +X~~C,
k6

k7

Q~Z,
k~

Z +X~D +X,
where 3, B, P, and Q are reactants, C, D, and R are
products, and E, X, and Z are intermediates. In order to
sustain the system far from equilibrium, the concentra-
tions of the reactants and the products are assumed to be
constant.
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III. KINETIC EQUATIONS

The kinetic equations tracing the concentration
changes of the intermediates E, X, and Z are given by the
following differential equations:

PZ —k

k 3 HEX k4EX k58X +k6C

dz
dt

=k Q
—kXZ. (9)

The following values were selected for the respective pa-

1.0—

FIG. 1. The phase diagram of the periodic states in the re-
gion between two stable steady-state regions. The stable
steady-state regions are shown by SS, and the region shown by
SOSA is of the simple oscillation with a small amplitude. In
Region A, complex oscillations, combined complex oscillations,
and chaotic oscillations appear in sequence by a change of P. In
Region B, coexistence of complex oscillations and simple oscil-
lation with a small amplitude is observed.

FIG. 3. A staircase function of F vs P near the transition
point from ~(~ } to the complex oscillations. Coexistence of
complex oscillations and vr( ~ } is shown. As P increases beyond
over Po, m(~ } becomes unstable and period doubling begins.
Po = 1.1036.

rameters and all the calculations were executed for
respective P values, if not specially mentioned: k& =1.0,
k~ =5.0, k3 100.0, k4 =50.0, k5 = 10.0, k6 = 1.0,
k7 =0.1, ks =04, 3 = 1.3, B=5.0, C=5.3, and Q= 1.0.

IV. RESULTS AND DISCUSSION

According to the standard linearized stability analysis,
Eqs. (7)—(9) have one unstab1e steady state in a region of I'
from 1.05 to 14.2, and one or multiple oscillatory states
appear for the respective P values in this region. Simple
oscillations, complex oscillations, combined complex os-
cillations, and chaotic oscillations were found to appear.
A phase diagram of the present model system is shown in
Fig. 1. In Region A and Region B, there appear complex
oscillations, combined complex oscillations, and chaotic
oscillations in sequence by changing P continuously, and
the staircase relationships of the Firing number F (Ref.
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FIG. 2. The staircase relation formed by plotting the ratio F
of the number of large amplitude oscillations to the total nurn-
ber of oscillations for each periodic state of P.

FIG. 4. Oscillatory states and their three-dimensional views
at P= 1.093. Both the oscillatory states ~( ~ }and ~(9}are coex-
isting.
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16) was reported already (Fig. 2). Swinney et al. ' car-
ried out the BZ reaction in the CSTR and plotted the ra-
tio 8 against the Bow rate of the chemicals, showing a
staircase relation. The staircase in the BZ reaction is
very similar to that of the present model system, suggest-
ing a general structure in the system containing
complex-combined complex-chaotic oscillation se-
quences. Under these circumstances, we push analyses of
the present model system because we can get much
knowledge about the transition sequence of periodic
states in the BZ reaction by means of computer simula»»

tions with ease, compared to the experimental study on
the actual system which is usually accompanied by time-
consuming experiments. Moreover, changes of experi-
mental conditions often necessitate the modification of
the size or shape of the reaction cell or so on, but in the
model system this can be attained easily by changing pa-
rameter values.

The detailed structure in Region B is quite dift'erent
from that of Region A, that is, coexistence of complex os-
cillation and simple oscillation is characteristic in this re-
gion. Figure 3 illustrates the stepwise increasing function
of I in the near region of the transition from a simple os-
cillation with a small amplitude to a complex oscillatory
state. F=O and vr( ~ ) corresponds to the simple oscilla-
tion with a small amplitude. Within our calculations,
n= 12 was the largest in the Ir(n) oscillation to appear.
According to the previous work, ' there should appear
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combined complex oscillations or chaotic oscillations be-
tween the two neighboring complex oscillations, n(n ) and
vr(n —1). However, no such combined complex oscilla-
tion nor chaotic oscillation appears in these regions, only
the simple oscillation m. ( ~ ) appears. To our knowledge,
this kind of transition sequences has never been reported.
We will describe some peculiar behaviors found in this
transition sequence.

Figure 3 also shows the coexistence of vr( oo ) and m(n)
where n =7, 8, 9, 10, 11, and 12. Although no finite stair-
case structure between vr(7) and vr(6) is shown in Fig. 3, a
combined complex oscillation and a pseudoperiodic oscil-
lation appear in this region as usual. Both of the oscilla»»

tions, vr(n ) and vr( ~ ), were confirmed to be asymptotical-
ly stable by respective calculations. Figure 4 shows
which of the coexisting oscillations, rr( ~ ) and 7r(9), is
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FICx. 5. Dependence of the bifurcation diagram on the
changing direction of P. Arrows in the figure show the chang-
ing direction of P. ~{8)is also shown.

FIG. 6. Dependence of the bifurcation diagram on the
changing direction of P at A = 1.275. No hysteresis is observed.
When the same calculation was started from P= 1.132 to the in-
creasing and decreasing directions of P, ~{7)appears initially, as
shown in {c). In case {c),~{7)does not last to the bifurcated os-
cillatory region continuously but changes to the high-order cy-
clic state of n{ ~ ) discontinuously with the increasing P.
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realized depending on the initial conditions. In the
right-hand side of Fig. 4, three-dimensional profiles of the
respective oscillations are shown. One orbital passes very
near the other orbital and even a very small deviation on
one of the orbitals could cause the transfer to the other.
At the same time, spreading of one orbital by a bifurca-
tion sequence causes an interaction between the respec-
tive trajectories, resulting in the falling into the more
stable state. This would be the reason why only m. ( ~ ) ap-
pears in the region between two complex oscillations.

In Fig. 5 the bifurcation diagrams near the crucial
points, where the simple oscillations n.(6), ~(7), and m.(8)
become unstable, are shown. In case (b) with an increas-
ing P value, ~( ~ ) begins to bifurcate to vr( ~ ) at Po and
develops to higher-order cyclic states with a further in-
crease in P. The region where the trajectory of a higher-
order cyclic state of vr( ~ ) runs spreads wider in the
course of the period-doubling bifurcation and finally be-
gins to overlap with the trajectory of m(7). In this case,
m.(7) is more stable than the high-order cyclic state of
m. ( ~ ) and switching to m(7) takes place.

On the other hand, when P decreases from the region
of stable ~(7), the rr(7) oscillation continues steadily to Po
and finally begins to bifurcate to the high-order cyclic
states to interact with vr(~ ), resulting in the transit to
the simple oscillation. That is, vr( ~ ) is more stable than
m.(7) in this region. This is also true in the cases of other
oscillations vr(n) (n = 8—12). On increasing or decreasing
P beyond over the critical point where m(n) becomes un-
stable, vr(n) begins to bifurcate to the higher-order cyclic
states and transfers to 7r( oo ).

In Figs. 1 and 5, the bifurcation point Po of m(~ )

seems to coincide with the starting point of the vr(7) re-
gion. Detailed calculations support this coincidence
within an error of 0.0001 of P. However, this is not al-
ways true but is an accidental coincidence. Because,
when one of the parameters, for an example A, is
changed, Po does not agree with the starting point of
n(7), as shown in Fig. 6.

As clearly shown in Fig. 5 ( A =1.3), the bifurcation be-
havior between vr( ~ ) and vr(7) is of a hysteresis nature
and depends on the changing direction of P. When the
bifurcation is studied in the case of A =1.275, the hys-
teresis behavior disappears and a continuous transition
between n.(6) and ~( oo ) is observed, as shown in Fig. 6(a)
and 6(b), passing through a very complicated oscillation
region. The main difference from the case of Fig. 5 is
that the two oscillations, n( ~ ) and vr(7) in Fig. 6, collide
after diverging to the pseudoperiodic oscillations and,
therefore, each oscillatory state holds a certain part of
the other trajectory in common, because both the oscilla-
tory states are pseudoperiodic and have various modes of
oscillation in part. Therefore, the continuous change
happens through the common oscillatory parts.

As mentioned already, only n( oo ) is the stable oscilla-
tion between two complex oscillations and any trajec-
tories will relax to rr( ~ ) sooner or later independently of
the initial state. When the relation behavior was studied
in detail, a peculiar result was obtained. Figure 7 shows
some traces of the relaxation. A complex oscillation ap-
pears at an early stage of relaxation and continues for rel-
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FIG. 7. Dependence of duration of complex oscillations be-
fore falling into m.( oo ) P=1.102. Ep and Zp values at the initial
states are the same and only Xp is changed in calculations. The
numbers in the figure is the values of Xp used for calculations.
Ep = 1.0 and Zp = 1.0.

V. CONCLUSION

A transition sequence was found in the model system
of nonlinear chemical reaction and its detailed behavior

atively a long period, and then it suddenly falls into m( oo )

after a few repetitions of irregular oscillations. The
characteristic point of this relaxation is that the relaxa-
tion time to m.( oo ) changes irregularly, contrary to the
usual relaxation processes, by a regular change in the ini-
tial value of Xo. Only a small difference in Xo by 0.0001
induces noteworthy differences in the duration time, and
prediction of the duration time is practically impossible.
This is considered to be owing to the essential nature of
the chaotic oscillatory system in which a very small
difference in the initial state rapidly increases during the
excursion along the chaotic trajectory. The same behav-
ior is observed in the region between m(n +1) an.d vr(n),
where n =7, 8, 9, 10, and 11, respectively.

Although vr( ~ ) is not chaotic, some irregularity is ob-
served in the relaxation process. The final state ~( ao ) is
probably surrounded by a region of pseudoperiodic oscil-
lation and the system has to pass though the region dur-
ing relaxation before falling into the final state. This
seems to be feasible because a long relaxation time and an
irregular oscillation were often observed in our investiga-
tion when other oscillatory states were studied. These
facts suggest the difficulty of the experiment on chaotic
oscillations, because a long-period experiment is neces-
sary to determine whether the concerned oscillation is in
the final state or on the relaxation process.
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was described. Although the present chemical system is
a special one and does not have a definite correlation with
any real systems, its fundamental structure is closely re-
lated to the BZ reaction in a mathematical meaning.

Therefore, it is expected that the similar transition se-
quence will be found by a careful experiment on the BZ
reaction.
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The ratio F of each periodic state is defined as F =L /(L +S),
where L is the number of large-amplitude oscillations and S is
the number of small-amplitude oscillations per period. The
ratio W defined by Swinney et aI. (Ref. 14} is given by
W =S/(L +S) in our notation.


