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Absence of exponential clustering in quantum Coulomb fluids
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We show that the quantum corrections to the classical correlations of a Coulomb fluid do not de-
cay exponentially fast for all values of the thermodynamical parameters. Specifically, the fi term in
the Wigner-Kirkwood expansion of the equilibrium charge-charge correlations of the quantum
one-component plasma is found to decay like ~r~

' . More generally, using functional integration,
we present a diagrammatic representation of the A expansion of the correlations in a multicom-
ponent ffuid with a locally regularized Coulomb potential and Maxwell-Boltzmann statistics. The
A' " terms are found to decay algebraically for all n 2. Furthermore, an analysis of the hierarchy
equations for the correlations provides upper bounds that are compatible with the findings of the
perturbative expansion. Except for the monopole, all higher-order multipole sum rules do not hold,
in general, in the quantum system. This violation of the multipole sum rules as well as the related
algebraic tails are due to the intrinsic quantum fluctuations that prevent a perfect organization of
the screening clouds. This phenomenon is illustrated in a simpler model where the large-distance
correlations between two quantum particles embedded in a classical plasma can be exactly comput-
ed.

I. INTRODUCTION

One of the most fundamental properties of a system of
charged particles in thermal equilibrium is the screening
of the Coulomb potential P(r) =

~r~ '. The following fa-
miliar and widely accepted picture is part of the standard
background knowledge. A particle is surrounded by a
screening cloud of opposite charge having an extension A, ,
the screening length. The charge distribution of the par-
ticle together with its cloud produces, in the medium, an
effective potential

P,s(r) — exp( —
~r~ /A. ),1

which becomes negligible at distances ~r~ ) A, . Then, for
practical purposes, one may take the screening effects
into account by replacing the Coulomb potential P(r) by
the exponential potential P,gr). This picture is support-
ed by all the mean-field treatments of the collective be-
havior of charges, starting with the Debye-Hiickel theory
of classical electrolytes. ' Soon after the emergence of
quantum mechanics, the Thomas-Fermi theory of the
electron fluid has led to the same form of the effective po-
tential ~ An exponential effective potential is also ob-
tained in the random-phase approximation (RPA) exten-
sively developed in the years 1950—1960. ' These asser-
tions are strictly valid at nonzero temperatures. In the
ground state, one finds an additional oscillatory algebraic
term, the Friedel oscillations, due to the sharpness of the
Fermi distribution. The application of mean-field
theories to the calculation of the correlations of the fluid
itself (see, for instance, Appendix H) also predicts an ex-
ponential clustering.

But what is rigorously known on this question? It has
been firmly established in recent years that the Debye-
Huckel picture is indeed correct in a plasma phase of
classical charges. At suSciently high temperature and
low densities, Brydges and Federbush, Imbrie, and
Yang rigorously show that the particle correlations have
a decay which is bounded by an exponential. Also all the
studies of the solvable two-dimensional classical Coulomb
models at a special value of the temperature exhibit a fast
decay of the correlations. ' However, when quantum
mechanics is taken into account, the results are still
scarce. The existence of the thermodynamic limit for the
pressure' and the correlations" has been proven in a
number of cases, but essentially nothing is known exactly
on the asymptotic behavior of the particle distributions.
Even doubt has been raised on the possible exponential
falloff of the quantum-mechanical charge-charge correla-
tions. ' ' In Ref. 13 the authors rigorously show that
certain imaginary-time Green's functions have an alge-
braic decay and they conjecture that the same should be
true for the charge-charge correlation function. The
point of this paper is to present strong evidences that the
equilibrium correlations of quantum-mechanical charges
do not cluster exponentially fast, irrespective of the value
of the density and of the temperature T.

Let us give a first qualitative understanding for this
lack of exponential clustering. It is known both classical-
ly' and quantum mechanically' that a falloff of the
correlations faster than any inverse power is equivalent to
strong screening properties: the screening clouds are so
perfectly organized at equilibrium as to shield not only
the total charge but all multipoles of any given particle
configuration. The central observation is that this perfect
organization does occur in a classical plasma phase, but is
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always destroyed by the quantum fluctuations. In the
quantum system the monopole still vanishes (there is no
bare Coulomb potential seen in equilibrium matter); how-
ever, the higher-order multipoles do not, in general, van-
ish. The latter generate then multipole forces which in
turn induce algebraic tails in the correlations. We im-
rnediately emphasize that these multipole forces are
different from the van der Waals forces due to the oc-
currence of complex polarizable entities, atoms or mole-
cules, that can now be formed by the quantum binding
process. The phenomenon is really due to the intrinsic
quantum nature of the particles, as it is exemplified in the
one-component plasma (OCP) where only one species of
structureless charges with the same sign is present and no
binding occurs (Sec. IV). It is clear that the mean-field
theories (Thomas-Fermi, RPA) do not account for these
fine quantum effects, and in this respect, do not repro-
duce even qualitatively the true behavior of the system.

We develop our arguments along three lines. First, in
Secs. II and III, we examine the general constraints that
are imposed on the correlations by the structure of the
equilibrium equations. More precisely, in Sec. II, we per-
form an asymptotic analysis of the "evolution equations"
for the imaginary-time Green functions of the OCP as a
charge is sent to infinity. Under reasonable assumptions
coexistence of integer inverse power-law expansions start-
ing with a !r! term), we show that the Kubo-Martin-
Schwinger (KMS) equilibrium condition and the locality
imply upper bounds on the decay of the correlations. For
instance, the charge-charge correlations decay faster than
!r! . These considerations are nonperturbative and val-
id for Fermi statistics, but rely on a number of a priori
assumptions (existence of the thermodynamic limit,
monotonous decay). In Sec. III we derive various sum
rules for the quantum OCP. Most of them have been ob-
tained earlier by the linear-response theory. Here they
appear as consistency relations imposed by the long range
of the Coulomb force in the equilibrium equations. It is,
however, not possible to pursue the analysis as in the
high-temperature classical phase' to exclude any mono-
tonous inverse power-law decay and establish the validity
of all multipole sum rules.

This leads us to the second aspect of our work, an in-
vestigation of the quantum corrections to the classical
correlation functions using the Wigner-Kirkwood expan-
sion formalism in powers of the Planck constant A. From
the fourth order on, we find that these corrections have
algebraic tails which can reasonably be considered as
lower bounds to the decay in a semiclassical regime (but
we do not control the possible convergence of the series).
In Sec. IV we present a detailed calculation of the A term
of the charge-charge correlation function of the OCP
with Maxwell-Boltzmann statistics and obtain that this
term behaves as !r! ' as !r!~ ~. In Sec. V we briefly
indicate how the results of the preceding sections for the
OCP generalize to multicomponent systems (with a
Coulomb potential regularized at short distances). Sec-
tion VI is devoted to a more thorough study of the A ex-
pansion for multicomponent systems from the viewpoint
of functional integration. Here we generate the terms
more systematically by diagrammatic rules and give

II. EQUILIBRIUM EQUATIONS
AND CLUSTER PROPERTIES

A. General setting

In this section we investigate what kind of cluster
properties are compatible with the equilibrium equations.
For simplicity we consider the quantum-mechanical OCP
and give the modifications for the multicomponent sys-
tems in Sec. V. The OCP consists of quantum particles of
charge e and mass m in a classical background with
charge density —ep. Since the spin plays no role in the
sequel, it will not be taken into account.

Relevant quantities belonging to a single particle are
the number density

N(r) =5(r —q)

and the current-density

(2. 1)

J(r) = [p5(r —q)+5(r —q)p],
2P7l

(2.2)

where p and q are the momentum and position operators
of the particle. We keep the same notation N(r) and J(r)
for the second quantized densities in the many-particle
system. In particular, the particle and charge density are

N(r) =a *(r)a(r),

Q(r) =e [N(r) —p],
(2.3)

(2.4)

where a*(r) and a (r) are the creation and annihilation of
a particle with Fermi statistics, a*(r)a(r')+a (r')a*(r)
=5(r —r').

The total energy is 0 =K + U with K and U the kinet-
ic and potential energy formally given by

!K =Idp a *(p)a(p),
2m

U= ,' f dr jd—r'P(r—r') g(r)Q(r'):,

(2.5)

(2.6)

where P(r)=1/!r! is the Coulomb potential, a(p) the
Fourier transform of a (r), and:: means Wick ordering.

The imaginary-time correlation ( A,B ) of two local

prescriptions to single out algebraically decaying dia-
grams. A qualitative analysis of these diagrams reveals
that there is a slow decay at all order A ", n ~2. In par-
ticular, this analysis indicates that the particle-particle
correlations should have a large-distance behavior as
!r while the several point correlations should have
even the slower decay !r! as groups of particles are
separated.

Finally, in Sec. VII, we study a simplified model where
only two quantum charges are immersed in a classical
plasma. It is then possible to determine the exact asymp-
totic behavior of the correlations of the two charges,
which is found as !r!, ! r!~ ~. The model also enables
us to illustrate explicitly the role played by the quantum
fluctuations in the occurrence of the algebraic tails. Dis-
cussions and conclusions are presented in Sec. VIII. A
preliminary account of this work is published in Ref. 17,
and part of it is also reviewed in Ref. 18.



ABSENCE OF EXPONENTIAL CLUSTERING IN QUANTUM. . .

observables A and 8 is defined in the thermodynamic
limit by (B,A ) = ([H,B],A ) = ( Ai3, [H,B]) . (2.9)

(B,A ) = lim TrA(e~" e '~ ' Be ' A),1

A~IR 3 w
(2 7) In particular, one has

(B,)=(B), 0 r P. (2.10)

Specifying B =Q(r) in (2.9) and working out the com-
mutator [H, Q(r)]=[K,Q(r)] gives the "continuity equa-
tion"

( Q, ( r ) A ) T i fi—V ( J,( r ) A ) z.
——0,d

d7. (2.1 1)

where the truncated expectation is defined by

(BA),=(BA &
—&B)(A) . (2.12)

Notice that by neutrality and translation invariance

(Q,(r)) =(Q(r)) =e((N(r)) —p)=0,
(J",(*))=(J"(*))=0, p=l, 2, 3 .

(2.13)

(B,A ) =( Ap, B), 0(r(P
and the imaginary-time equations of motion

(2.8)

Choosing now B =J(r) in (2.9) gives the "law of force"

where =~=Trze ~' " ' is the grand partition function,
p is the chemical potential, and X the total number of
particles. In the right-hand side (rhs) of (2.7), the finite
volume Hamiltonian has to be defined with appropriate
conditions at the boundaries of A. The existence of the
thermodynamic for a system of electrons and nuclei is es-
tablished in Ref. 10. The infinite volume limit of the
correlations (2.7) has been shown to exist for a charge
symmetric Coulomb gas without statistics and for Bose
statistics at sufficiently low activity. " We assume here
that the limit (2.7) exists for the OCP with Fermi statis-
tics and still obeys the same relations that hold at finite
volume. One has, in particular, the Kubo-Martin-
Schwinger condition

3 2

(J"(r)A ) =iiri g V'(K", (r}A ) i' —fdr'F"(r r')(:N—,(r)Q, (r'):A ) .
m

(2.14)

In Eq. (2.14) F(r) = —VP(r) is the Coulomb force and K"'(r) is a "kinetic energy density tensor"

K"'(r)= [p"J (r)+J (r)p"] .
2m

Introducing the fully truncated expectation

(CBA ) =((C —(C&)(B—&B &)(A —
& A &)&

and using the neutrality (2.13) again, one finds

(:N,(r)Q, (r'):A ) =(:N,(r)Q, (r'):A )T+p(Q, (r')A )T+( A )(:N(r)Q(r'):) z. .

~ith the help of (2.13) and (2.17), Eq. (2.14) can be written in terms of truncated expectations only,

d
& J",(r) A &,= f y V"&K;"(r)A &,d'T V= 1

2i' f dr'F—"(r r')( Q, (r') A—) T
f71

2

if& f dr'F"(r —r'—)(:N,(r)Q, (r'):A ) T, p=1,2, 3 .
APE

(2.15)

(2.16)

(2.17)

(2.18a)

(2.18b)

(2.18c)

E(r~ A) = f dr'F(r —r')(Q, (r') A ) z (2.19)

Because of translation and rotation invariance, the corre-
lation (:N(r)Q(r'):) depends only on ~r —r'~ and it does
not contribute to the integral with the force in (2.14).
Moreover, V (K" (r) ) =0 since (K" (r}) is constant
with respect to r.

The correlation of the charge
(Q,(r)A )T=(A&,Q(r))T with an observable A can
be interpreted as an excess charge density when the ob-
servable 2 has been specified. It will also be called the
charge cloud attached to A. The term (2.18b) is propor-
tional to the electric field

(2.21a)

3= —fi g V"V"(K","(r)A ) T (2.21b)
p, v

Ae+ V f dr'F(r —r')(:N, (r)Q, (r'):A )T,
m (2.21c)

at the point r due to this charge cloud and it satisfies the
Poisson equation

V.E(r~ A ) =4m. ( Q, (r) A ) (2.20}

Finally, the combination of (2.11), (2.18), and (2.20} leads
to the second-order differential equation

d2

dr (Q, ( )A ) —A (Q,(*)A )



6488 A. ALASTUEY AND PH. A. MARTIN

where co =(4ne plm)' is the plasma frequency.
The integrals in (2.18), (2.19), and (2.21) are absolutely

convergent if the correlations decay at least as

(i) Let

A=A,'A, . A", , 0«r«f3, j=i, . . . , k (2.25)

M~
I&:&,(r)g, (r'):A &, I

« r'' '

(2.22)

be a product of imaginary time evolved local observables
A ' (like particle and current densities). Then for any
fixed such A, ( Q,(r) A & T has an asymptotic expansion

w3(~, A) w4(r, A) w&(~, A)

with 5&1 and fixed ~, A, and r. We shall assume this
minimal cluster property holds throughout this section
and derive some exact consequences of the equilibrium
equations.

B. Cluster properties

We investigate the constraints which are imposed by
Eqs. (2.11), (2.18), and (2.21) on the decay of the correla-
tions. These equations can obviously not be solved ex-
plicitly and our analysis relies on the a priori assumption
that this decay is like an integer inverse power law
without oscillations at infinity. We remark that this as-
sumption is plausible physically in so far as nonzero mul-
tipole moments of the charge clouds will induce long-
range multipole forces with algebraic tails.

The monopole of the charge cloud (the total charge) is
expected to vanish,

(2.26)

f„M(lrl) (2.28)

We assume similarly that aH the truncated correlations
functions involved in Eqs. (2.11), (2.18), and (2.21) have
inverse power-law asymptotic expansions as a point r is
sent to infinity.

(ii) For fixed r and A, we can find n, ~ 3, nz ~ 3 and e,
0 ~ e & 2, such that the fully truncated function
g (r, r') = (:X,(r)Q, (r'): A & r satisfies bounds of the form

Ilrl 'g(r, r')I M(t), lr —r'I «n. . . Irl

2
(2.27)

llrl 'g(r, r')I «M(t}, lr —r'I ~
2

with t =min(lr'I, Ir —r'I) and

dr, r A T= dr A&, r T=O, (2.23)

otherwise localized charges in matter would produce a
bare Coulomb potential at large distances. But the dipole

I dr r( Q, (r) A & T has no fundamental reasons to vanish

for a general A and in fact it does not [see Eqs. (3.12) and
(3.15) of Sec. III]. As a consequence, the electric field
(2.19) will not decay faster than Irl

E(rl A) — f dr'[3r(r. r') —r'](Q, (r')A &T,
r

lrl~~, r= (2.24)

For the consistency of Eq. (2.18), it is necessary that some
other terms of this equation behave also as Irl for large
Irl. It is therefore natural to assume that all terms and
all correlations occurring in Eq. (2.18) have an asymptot-
ic development starting with a Ir I

contribution. Then
the structure of Eqs. (2.18) and (2.21) imposes several
constraints by equating the coefficients of these develop-
ments at a given order. We do not claim that other possi-
ble behaviors excluded by this scheme cannot occur (e.g. ,

oscillations, fractional inverse power law, decay even
slower than Irl ). We expect, however, that at
sufficiently high temperature and low density at least, the
decay will be monotonous and the description given
below is meaningful.

We now formalize our assumption in more precise
terms.

C, (r, A)
I&g,(r)A & I— r'

Moreover, if A is strictly local one has

Cq(~, A)
l&g, (r)A &, I r'

(2.29)

(2.30)

We first state the following lemma which is used to
control the behavior for large r of the integral occurring
in the term (2.21c) (proof in Appendix A).

Lemma 1. Set h(r')=lim~,
~

Irl 'g(r, r+r') for fixed
r' and suppose that (2.27) and (2.28) hold; then

fdr'F(r —r')g(r, r')

f dr'F(r')h(r')+R &(r}+R (r)2, (2.31}

The distinction between the two cases (2.27} allows for
the possibility of different cluster properties depending on
whether the distance Ir —r'I remains finite or not. The
condition (2.28) on M(t) expresses the usual property of
the fully truncated function, that is, has some joint decay
as two of the distances Irl, Ir'I, and Ir —r'I grow to
infinity. According to the general scheme, M ( Ix ) decays
not slower than I/Ixl and (2.28) is fulfilled for any e
strictly positive.

The next proposition shows that the correlation of the
charge always has a faster decay than the threshold be-
havior Irl

Proposition I Assume th.at properties (i) and (ii) hold
with n, = n 2

= 3; then the correlation of the charge with a
general observable A of the form (2.25) satisfies
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with Ri(r)=o(l/~r~ ') and R2(r)=O(l/~r~ ' ).
Proof of the proposition .According to the inverse

power-law expansion starting with
~
r ~, the term

(2.21b), a second derivative, is O(~r~ ). For the term
(2.21c), one notes from the definition (2.16) and because
of the neutrality and of the commutation
[Q (r), g(r')]=0, that one has the symmetry relation

translation invariance, one can write

&E","( )g(0)&,=(g, ( —)&" (0)&, ,

e (:N,(r)g, (r'):Q(0) ) r
= (:Q,(r)Q, (r'):Q(0) )

=(Qp, (
—r):Q(0)g(r' —r}:)r .

(2.38)

(2.39)

eg(r, r')=e(:N, (r)g, (r'):A )r
= (:Q,(r)g, (r'): A ) r =eg(r', r) . (2.32)

This implies in turn h (r )=h ( —r') since one can write
for fixed r'

h(r')= lim ~r~ 'g(r, r+r')

lim ~r —r' 'g(r —r', r)

/r —r'/
lim /r/ 'g(r —r', r)

(2.33)

&g ( )A &,—(g( )A &,=&[A,g( )]&

and from (2.11)

(2.35)

d (g, ( )A), — &g, ( )A),d

7=0

=iA'V. ([A,J(r)]) . (2.36)

If A is local, the commutators [A, g(r)] and [A, J(r)]
vanish when ~r~ is large enough. This implies that the
coefficient w4(r, A ) satisfies the boundary conditions

w4(P, A)=w4(0, A),
(2.37}

d
w4(r, A) = w4(r, A)= d

7=0

The solution of Eq. (2.34) with the conditions (2.37) is
w4(r, A }=0, thus showing (2.30).

A stronger result can be obtained for the charge-charge
correlation (Q, (r)Q(0)). If we specify A =Q(0) in Eq.
(2.21}, we observe that using the KMS relation and

Thus f dr'F(r')h (r') =0 because of the antisymmetry of
the force. Then the application of Lemma 1 with
n, =n2 =3 and e (2 to the integral in (2.21c) implies that
this integral decays faster than I/~r~ and hence its gra-
dient faster than I /~r~ (assuming monotonous decay).

Inserting the expansion (2.26) in Eq. (2.21), we con-
clude that the coefficients w„(r, A), n =3,4, obey the
differential equation

d2
w„(r, A) —A' co w„(r, A)=0, O~r 13 . (2.34)

d

Moreover, the continuity equation (2.11) implies with the
assumption (i) that (d/dr)w3(r, A)=0, and hence from
(2.34) w3(r, A ) =0. This shows (2.29).

To obtain (2.30), we apply the KMS condition (2.8)

The result (2.30) shows that the correlation (2.38) decays
at least as ~r~, and its second derivative [term (2.21b)]
as r~ . By the same result (2.30), the correlation (2.39)
does not decay slower than ~r~ as ~r~~~ with ~r' —r~

fixed. Moreover, by (2.29) it decays not slower than t
as the distances t = ~r'~ or t =~r —r'~ tend to infinity.
This allows us to apply the lemma with n, =5, n2=4,
and @=0 to the integral occurring in (2.21c). Taking into
account the symmetry (2.33), this integral decays faster
than

~
r ( and its gradient faster than

~
r

~
. Thus the

coefficients w„(r, g (0)), n =5,6, in the asymptotic devel-
opment (2.26) of ( Q, (r)g (0) ) obey also the second-
order differential equation (2.34), as well as the boundary
conditions (2.37) for the same locality reason as found
from (2.35) and (2.36). Hence w„(r, g(0))=0, n =5,6,
implying

I ( g, (r)g(0) ) I

=o 1
(2.40)

III. SUM RULES

A. Charge and dipole sum rules in the OCP

The existence of algebraic decay is intimately connect-
ed to the multipolar structure of the charge screening
clouds. It is convenient to discuss the screening proper-

In particular, the charge-charge correlation S (r)
=(Q(r)Q(0)) decays faster than ~r~ . We emphasize
again that the upperbounds (2.29), (2.30), and (2.40)
should not be considered as rigorous results on the corre-
lations of the quantum OCP. As already said in the be-
ginning of Sec. II, they follow if we admit the validity of
the hierarchy equations for the Green functions in the
thermodynamic limit, integer inverse power-law decay
and bounds having the structure (2.27), (2.28). But for
the lack of any mathematically rigorous information on
the decay of the correlations in quantum-mechanical
Coulombic matter, we feel that it would be interesting to
investigate what are the simplest conceivable compatible
scenarios. In fact, one sees that the KMS equilibrium
condition together with the locality play a nontrivial
compelling role in reducing the bare Coulombic decay (as
~r~ ') to the faster ones (2.29), (2.30), or (2.40), a manifes-
tation of screening. In the classical case, the correspond-
ing investigation of the equilibrium equations enables ex-
clusion of any monotonous inverse power-law decay, al-
lowing thus for exponential clustering. ' In the quantum
case, it does not appear possible to pursue the analysis
beyond the present point. The calculation of the quan-
tum corrections presented in the rest of the paper reveals
indeed that all quantum-mechanical correlations have
algebraic tails.
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ties of these clouds in terms of the excess charge density
at r when a configuration of charges is fixed at
r„r2, . . . r„, r, &r2, % . . Ark, defined by

C(r~r, , . . . , rk)=(Q(r)N(r, ). . . N(rk)& . (3.1)

The properly normalized excess charge density would be
the quantity (3.1) divided by (N(ri) N(rk) &. We re-
call the general theorem that exponential clustering im-
plies the vanishing of all multipoles of the excess charge
density (3.1), i.e.,

dr I rCrr„. . . , rk =0 (3.2)

f dr C(r~r„. . . , r& ) =0,

f drrC(r~r, , . . . , r„)=0,
(3.3)

(3.4)

hold in the OCP and can easily be derived from the equi-
librium equations (2.11) and (2.21), assuming the validity
of the analysis of Sec. IIB. In particular, the decays
found in Sec. IIB ensure the convergence of spatial in-
tegrals and that integrals of gradient terms give no sur-
face contributions.

for all harmonic polynomials Pi(r) of degree
1=0,1,2, . . . and all particle configurations r„.. . , rk
(see Refs. 14 and 18 in the classical case and Ref. 15 in
the quantum case). The sum rules (3.2) are indeed true in
the Debye screening phase of a classical plasma where ex-
ponential clustering is known to take place. ' '

It turns out that the rules (3.2) are violated in the quan-
tum OCP for l ~ 2 [the first quantum correction to (3.2)
does not vanish, see Sec. IV C]. We must therefore con-
clude from the above-mentioned general theorem that the
clustering of the quantum OCP cannot be exponentially
fast. However, the charge (I =0) and the dipole (1=1)
sum rule

To establish (3.3), we consider the more general corre-
lations (Q,(r) A &T where A is any local observable [(3.1)
corresponds to &=0 and A =N(r, ) N(r&)] and note
that the "continuity equation" (2.11) implies

fdr(Q, (r)A &T=o .
d

(3.5)

Moreover, Eq. (2.21) gives simply after integration on r

fdr(Q, (r)A &,=O, (3.7)

giving the charge sum rule (3.3) as a special case.
To establish (3.4), we remark from (2.21) that the di-

pole of (Q,(r) A &T obeys the second-order differential
equation

fdrr(Q, (r)A &T fi co fdrr—(Q,(r)A &T=o .
d

(3.8)

This is because (2.21b) and (2.21c) do not contribute after
integration by parts. (Note that

f dr fdr'F(r —r')g(r, r')=0

since g(r, r') is symmetric [see (2.32)] and F(r —r') is an-
tisymmetric. ) One deduces from the KMS condition that

drr pr A T
— drr r A

= fdrr([A, Q(r)]&r

and from (2.11), using the KMS condition again,

(3.9)

fdr(Q, (r)A &i- —iii co f dr(Q, (r)A &T=o. (3.6)
d7

The combination of (3.5) and (3.6) leads to

d f drr( Q(r) A& T
GT

d drr, r A
p

T 7.=0
=iiii f drrIV ([A,J(r)]&TI

i' f dr([A—, J(r)] & T=o . (3.10)

This last integral vanishes because of the translational invariance of the state. Indeed, from the definition (2.2),

fdr J(r) =(e /m)P is proportional to the formal generator of space translations P. If A (y) is the space translate of A

to the point y, one has

fdr([A, J(r)]&T=—([A,P]&=i V(A(y)&=0
m m

(3.11)

(3.12)

since ( A (y) & is constant in a homogeneous state. For a local A, the commutator [A, P] is still a local observable, and
the average ([A,P] & is well defined. The solution of Eq. (3.8) with the conditions (3.9) and (3.10) is

AQ) 'Rco 7

fdrr(Q, (r)A &,=—' „' — '
„ fdrr([A, Q(r)]&T .

e ~ —1 1 —e

If A is a purely configurational observable, it commutes with Q (r), and one finds

drr r A „=0 when A, r =0 (3.13)

with (3.4) as a special case.
The right-hand side of (3.12) does not vanish in general. For instance, if A =j (0) is the v component of the current

(2.2), one obtains from the canonical commutation relations



ABSENCE OF EXPONENTIAL CLUSTERING IN QUANTUM. . . 6491

2

fdr r"([J'(0),Q(r)] &
= —i' p5pv,

m

leading to the sum rule for the charge-current correlations

(3.14)

Aef dr r"(Q,(r)J"(0)&
= —i5pv p2m

Pic~ 7
e

As P
e

AS 7
e

—fiS P
1 —e

(3.15)

We remark finally from (3.12) that the response function f ~zd~( Q, (r) A & z has no dipole

drr d~, r A T=O
0

for any local A.

(3.16)

B. Second moment

The second moment of the imaginary-time charge-charge correlation obeys again the simple differential equation

d f drlrl (Q (r)Q(0) &T
—R co' f drlrl (Q, (r)Q(0) &T=0 .

d
(3.17)

This follows from Eq. (2.21) [with A =Q(0)] once multiplied by lrl and integrated on r. The terms (2.21b) and (2.21c)
do not contribute. After integration by parts, using translation invariance and the KMS condition, one finds

f dr lrl ~V"V'(K", (r)Q(0) & ~ =26pv f dr( Q&,(r)K""(0)& T,

f drlrl V.f dr'F(r —r')(:N, (r)g, (r'}:Q(0)&T=2f dr'F(r') fdrr(Q&, (r):X(0)Q(r')&T . (3.19)

Both (3.18) and (3.19) vanish because of the sum rules (3.7) and (3.13). Two conditions are needed to determine unique-

ly the solution of the second-order diff'erential equation (3.17). The first one follows from the KMS relation and from
translation and rotation invariance,

f drlr (Q&(r)Q(0)&, = f drlrl (Q(r)Q(0)&r . (3.20)

A second condition is obtained by integrating (3.17) on w(0~ w ~/3) and applying successively the continuity equation
(2.11), the KMS relation, and the identity (3.14),

f«lrl f d~(g, (r)g(0)&T= 'z f drlrl V. (J&(r)g(0) —J(r)g(0)&
0 %COD

2l f«r ([J(r)., g(0)] &
=—3

%co 2~
(3.21)

3
ACOp

AS 7
e

fico P
e

fiS 7
P

1 —e
—fico P

(3.22)

Equation (3.22) is the generalization for arbitrary ~ of a
known sum rule for the static structure function
S(r)=(g(r)Q(0)&r of the OCP, usually derived by
linear-response arguments,

The solution of (3.17) under the conditions (3.20) and
(3.21) is

f drlrl (Q,(r)g(0) &T

OCP. In linear response, Eq. (3.21) expresses the shield-
ing of this external charge and is the quantum analog of
the classical Stillinger-Lovett second moment condition.
In the classical limit, the response function y(r) and the
structure function S(r) are proportional and both (3.21)
and (3.22) reduce to the classical Stillinger-Lovett condi-
tion. [For alternative derivations of (3.23) and (3.21), see
Refs. 20 and 21.]

IV. %'IGNER-KIRK%'DAD EXPANSIVE

A. General formalism

3 A'co Pf drlrl s(r)= — Ace coth
4~ 2

(3.23) In this section we compute the first terms of the A ex-
pansion of the static charge-charge correlation function

We note that Eq. (3.21) is a sum rule for the quantum-
mechanical response function

g(r)= f «(Q, (r)Q(0)&
0

to an infinitesimal static external point charge in the

(r) = ( Q(r)g(0) &" =e (X(r)1V(0)&P,
sq (r) =s~'~(r)+q's~'I(r)+q's~" (r)+

(4.1)

(4.2)

For now on, quantities with the index qm are quantum
mechanical, and quantities without the index qm are clas-
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SI I(r)= V'pT(r, O)
12m

(4.3)

and decays fast when pT(r, O) does so. Our main result is
that even in the regime where all classical truncated (Ur-
sell) correlation functions of the OCP decay exponentially
fast, the fourth-order term is algebraic,

2
1 lrl~~ . (4.4)

sical, e.g. , ( )" and ( ) denote, respectively, the quan-
tum and classical averages. In (4.2), S' '( r )

=S(r)= (Q(r)Q(0) ) is the corresponding classical
charge-charge correlation function of the OCP and
S' '(r), S' '(r), . . . are also expressible in terms of
higher-order distribution functions p(ri, . . . , rl, ),
k =1,2, . . . , of the classical OCP. The second-order
term has been calculated

N N

V(r, , . . . , r~)=e —, g p(r, —ri)+e g pb(r;) . (4.6)

Qb(r) = eplrl'
3

(4.7)

This potential confines the particles in a bounded spatial
region and no finite distance boundary conditions are
needed for the Laplacian. Thus the equilibrium charge-
charge correlations

P(r)=1/lrl is the Coulomb potential and H~ acts on
X (H ). In (4.6), the background potential formally
given by pb(r) = —ep f d r'p(r —r') is defined as the
spherically symmetric solution of the corresponding Pois-
son equation V pb(r) =4irep, i.e. (up to an irrelevant ad-
ditive constant),

To establish (4.4), we proceed as follows. We consider
first a quantum OCP with a finite number N of charges in
IR submitted to the potential of a uniform infinitely ex-
tended background of density —ep. The Hamiltonian of
this system is

Tr[Q (r)Q(r')exp( PH~ )]-
Q(r)Q(r') )'

Tr exp( PH& )—
with

N

Q(r}=e[N(r) —p], N(r)= g 5(r —r, ),

(4.8)

g2 N

H~ = — g V, + V(r„. . . , r~),
2m .

1

(4.5)

are well defined for finite N, as are the higher-order corre-
lation functions. The same remark applies to the corre-
sponding classical correlations, e.g. ,

dr, drN r r' exp — V r, , . . . , rN
(Q(r)Q(r')) =

dr1 drNexp — V r, , . . . , rN
(4.9)

which converge as N~ ~ to those of the classical translationally invariant and locally neutral OCP with density p.
The background potential acts as a soft wall. In the plasma phase, the bulk correlations are independent of the bound-
ary conditions in the thermodynamic limit, as it can be checked in a solvable model. To obtain (4.2) we shall use the
Wigner-Kirkwood (WK) formalism, expanding the quantum-mechanical functions in powers of A' and then letting
N ~ ~ term by term.

For a Hamiltonian of the form (4.5) with a general potential energy V(r, , . . . , r~) the first terms of the Wigner-
Kirkwood expansion are given by the formulas (4.10)—(4.13) below. To abbreviate the notation, one sets

R= [rb', i =1, . . . , Np= 1,2, 3I = [R,p =1, . . . , 3NI

a point in configuration space R where i =1, . . . , N, p=1, 2, 3 are, respectively, the particle and vector indices. The
corresponding gradient on IR is

V =
[ V",. = 8I8 f', i = I, . . . , N, p = I, 2, 3 I

=
[ V =8IBR,p = 1, . . . , 3N I .

Then, the diagonal part of the kernel of e ~ is expanded in powers of fi with the result [formula (2.10) of Refs. 25 and
26]

' 3N

«le IR) = [1+G (R)]e (4.10)

G(R) =iii G' '(R)+iri~G' '(R)+ . (4.1 1)

G = [ ——'PV V+ —'P (VV) ] (4.12)

2

G '=
—,
' I413 (V' V) —413 (V V)(VV) +g'[(VV) ] ——", /3(V ) V+ —5'P VV V(V V)

+—,'13 V (VV) ——", /3'VV. V(VV) I . (4.13)
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In (4.10), A, =(A Plm)' is the thermal de Broglie wave
length. In (4.12) and (4.13), the dot means the scalar
product on 8, (VV) =VV.VV and V =V V is the La-
placian on E

If A = A (R) is a configurational observable [acting as
a multiplication operator on X (IR )], its quantum-
mechanical average ( A ) is first developed around its
classical value in powers of the quantum correction
(4.11). This gives (dropping the index N from now on)

( )q
TrA exp( —PH)
Tr exp( PH)—

J dR A (R)(Rle ~HIR)

dR Re iHR

&A&+&AG&
1+&G&

=(&A &+& AG&)(1 —&G&+&G)'+ . ),
(4.14)

where ( ) denote the corresponding classical averages.
Inserting the expansion (4.11) for G in (4.14) and collect-
ing the powers of A leads to

(Q(r, )g(r2)) '=(Q(r, )Q(r2)G' ')
—(Q(r, )g(r2))(G' ')
—(Q(r, )Q(r, ) &"'& G ") . (4.20)

According to (4.13) and if V(r, , . . . , r~) has the form

(4.6), one notices that G' ' involves the fourth power of
the two-body Coulomb potential, i.e., an eight-body ob-
servable. Therefore the term (4.20) involves, in principle,
classical correlations up to order 10. Fortunately, after
appropriate reduction of the formulas, and using specific
properties of the OCP, this number can be reduced to 5.

B. Reduction of the formulas

In the OCP, the formu1as simplify considerably with

the observation that the Gibbs factor
exp[ —13V(r&, . . . , r&)] vanishes faster than any inverse

power when two arguments coincide as a consequence of
the infinite repulsion between two particles at the same

point. This allows us to apply the following rule: for any

pair of particles i,j
—PV(ri, . . . , r~ )

5(r,. —r )e ' ' =0,

( A )' = ( A )+I'( A )'"+A'( A &'"+

& A &"'=
& AG"') —

& A &&G "),
(4. 15)

(4.16)

(4.17)

i&j, i,j =1, . . . , N (4.21)

and the same rule holds for the product of any derivative
of 5(r, —r ) with the Gibbs factor.

Consider first the second-order term (4.12). The square
of the potential can be eliminated with the help of the
identity

where G' ' and G' ' are defined by (4.12) and (4.13).
Applying the general formalism to the case where

A =Q(r&)Q(r2) is the product of charge densities at r,
and r2, the second- and fourth-order corrections (4.2) are

Ve "=—P(V V)e ~ +P(VV)e

Introducing (4.22) with the Poisson equation

V V= 4rre g 5(r, —r —)+4~e pN
1@j

(4.22)

(4.23)

S'"'(r)= lim (Q(r, )Q(r2))'"',
&~ oo

and applying the rule (4.21), Eq. (4.12) takes the simpler
form

r=r, —r, , k =2, 4 (4.18)
G' ' = ( V —4ne pN/3) .

24m
(4.24)

with

( g(r, )g(r, ) )"'=( g(r, }g(r,)GI")
—( Q(r, )g(r, ) ) (G"'), (4.19)

In (4.24), the Laplacian V is understood as acting on the
Cribbs factor e ~ when calculating a classical average.

We proceed in the same way for the fourth-order term.
We first eliminate in (4.13) the highest power [(VV) ] of
the interaction by means of the identity

(V ) e ~ =
I
—13(V ) V+2P V(V V).V V+/3 (V V) +P V (V V) —2P (V V)(VV)

2f3 V(V V) .V V+—P [(VV) ] I

obtaining in this way
2

G'4'= — ~ [3132(V2 V)' —213'( V' V)( V V)' ——"13(V')'V+ —"P'V V.V( V' V)+ ,'13'V (V V)'—
2 24m

2P3V V V( V V)2+ ( V2)2]

(4.25)

(4.26)

Then the factor (V V) in the second term of the right-hand side of (4.26) is also eliminated with the help of (4.22), lead-

ing to
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G"'=- — [P'(V'V)' ——"P(V')'V+ —'-'P'V V V(V' V)+ —'P'V'(V V)' ——'P'V V.V(V V)' —2P(V'V)V'+(V')']1

2 24m 5 5 5 5

(4.27)

As in (4.24), the differential operators occurring in the last terms of (4.26) and (4.27) act on e ~ when calculating a
classical average.

Let us examine in more detail the terms V (V V) and VV.V(VV) in (4.27). One has

V (VV) = g V (V V) =2+ V„[(V V V)V V]=2V(V V) VV+2+(V V V) (4.28)

where p, q run on all components in R . With the identity

V V e ~ = —P(V' V V)e ~ +P (V V)(V„V)e

the term VV.V(VV) is transformed to

V V.V(V V) = g (V~ V)V~(Vq V) =2 + (V V)(V V)(V V V) = —g (V~V V) + g (V~Vq V)V V=2 2 2

(4.29)

(4.30)

Gi4'=—,y(V, V, V)'1

5 (24m) ~ q

(4.31a)

All the other terms in (4.27) (except the last one) involve
the Laplacian of the potential V V. By (4.23) and the rule
(4.21), we can replace everywhere V V by 4rre pN (and
hence [(V )] V and V(V V) by zero). With this, and to-
gether with (4.28) and (4.30), the expression (4.27) takes
the final form

The notation [N(ri) . N(r&)]„, means that the contri-
bution of coincident points r, =r-, i,j=l, . . . , k, is not
included, and p(ri, . . . , r&) are the corresponding classi-
cal functions. The correction p' '(r, , . . . , r&) is obtained
from (4.16) and (4.24) with the choice
A =[N(r, )

. N(ri, )]„,
We first note that the integral of any derivative or

product of derivatives of the Gibbs factor vanishes,

+ — (4qre pN)
1 2 2

2 (24m)
3

—4~e pNV
(24m )

(4.3 lb)

(4.31c)

dr, VV," . e ' '" * ''=0, (4.34)

since e ~ decreases as a Gaussian in every direction in
R [see (4.7)]. So we find from (4.16) and (4.24)

1+—
2 24m

12

(V )
——', P g ( Vp Vq V)Vp Vq

(4.31d)

(Gi2)) p2 2 y
6m

k

p'(ri . ri;)= X Vj'p(ri
24m

(4.35)

(4.36)

C. The second order

pq (ri, . . . , r& ) = ( [N(r, ) N(ri, . )]„,)q (4.32)

=p(r, , . . . , r~)+!ri p '(r, , . . . , ri,. )+ (4.33)

We consider the second-order term in the usual quan-
tum configurational k point distribution functions
p" (r, , . . . , ri, ) defined by

There are no quantum corrections to the one-point func-
tion to any order since its value is fixed to p by the local
neutrality. For the two-point function, one recovers im-
mediately the result (4.3) if one uses translation invari-
ance.

Let us calculate from (4.36) the second-order quantum
correction c' '(r~r, , . . . , rk) to the classical excess charge
density (3.1) for an arbitrary particle configurat!o. ",

~ ~

k

r~)+e X@r—r, )p" (ri . .
j=1

(4.37)

Using (4.36), V' P&(r ) =0, and the fact that the classical excess charge density verifies the multipole sum rules (3.2), one
finds

f
k

dr 5', (r)c' '(r~r„. . . , r&)= — g V P, (r ) V p(r, , . . . , r&) .
12m .

g =-1
(4.38)

The right-hand side of (4.38) is different from zero only if /&0, 1 [g"=,V p(r, , . . . , ri, ) =0 because of translation invari-
ance]. Thus, only the charge and dipole sum rules are verified at the order fi, a result compatible with Eqs. (3.3) and
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(3.4) of Sec. III A. No higher-order sum rules hold in the quantum OCP for the excess charge density (3.1).
Finally, it is also possible to find the second-order term of the excess charge density

c,(r~r, , . . . , rk)=(Q, (r)N(r, ) N(r„)) at a nonzero imaginary time r. A calculation left to the reader shows that
(4.38) must be modified to

dr I r c', ' rr1, . . . , rk
r(p —~) e

2 12m,
—P g V, PI(r, ) V,p(r„. . . , r„) . (4.39)

The rhs of (4.39) does not vanish for 1 ~ 2 and 0 ~ ~ ~ p. But it is interesting to observe that

f od r(p —r)
0 2

and therefore the response function Jo~dr(g, (r)N(r, ) . N(ri, )) obeys all the multipole sum rules to order fi . This
is an indication that the response function of the quantum system to classical external charges might have better screen-
ing and cluster properties than the Green's functions themselves.

D. The fourth order

We now insert (4.24), (4.31), and (4.35) in (4.20). The term (4.31b) drops because of the truncation and the term
(4.31c) is canceled by the last term in the right-hand side of (4.20):

(Q(r, )g(r2))' '=(Q(r, )Q(r2)), +(Q(r, )g(r2))I, ',

(g(r, )g(r, ))'. '=—,Q(r, )g(r, )X(V V V)') —(g(r, )g(rr))(X (VrV, V)')[4] 1

5 (24m)
2

(4.40a)

(Q(r, )g(r, ) )(„"'=—[4] (g(r, )g(rr)(V')') — Pg(r, ) Q(r
—)rX( VVrVr)VrVr)

p q

—&g(r, )g(r )&(X(V V, V)V V, )
(4.40b)

The expression (4.40b), involving derivatives of the Gibbs factor, is shown to have a fast decay (Appendix B). The alge-
braic tail comes from the term (4.40a), which we now investigate more closely.

The first step is to single out the contribution of coincident particles in the second derivatives of the total potential
(4.6)

V"V V=
J

—e p" (r, —r, ), iWj
N

'e2 g p" (r; —r„)—e p f dr&""(r r;), i =j-
k =1
kXi

(4.41)

where ()I)" (r)=(V"V"P)(r) is the dipole-dipole potential. This allows us to express g (V~VQ V) in terms of the charge

density Q (r) and particle densities N(r) as a sum of a two- and a three-point contribution,

3 N N

g„(V,Vq V)'= g g (V";V;V)'+ g (V~V,"V)'
P, v —1 I,J —1 i =1

IWJ

=e f dr3 f dr4f (r3 r4)[N(r3)N(—r4)]„,
3

+e2 g fdr3f dr4f dr5&""(r3—r4)P" (r3 —r5)[N(r, )~Q(r4)Q(r, )]„, .

(4.42a)

(4.42b)

The notation [N(r, )~Q(r2)Q(r3)]„, means that the contributions of coincident particles at r, =rz and r, =r3 are

suppressed, and f (r) is defined by

3f (r) = y [4»"(r)]' . (4.43)

Inserting (4.42) into (4.40a) gives
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1 e
(Q (ri )Q (r2) )', '= — dr3dr4f (r3 —r~)K, (r, , rz, r3, r4)

(24m )

+ —
~ g dr3 dr4 dr~/ (r3 —r~)P (r3 —r~)K2(ri, r2, r3, r~ r~),1 P'e PV PV

5 (24m)

(4.44a)

(4.44b)

with the four- and five-point correlation functions

K, (r, , rz, r3, r4)= (Q(r, )Q(rz)[N(r, )N(r~)]„, ) —(Q(r, )Q(rz))([N(r3)N(r4)]„, ),
Kz(r, , rz, r3, r4, r, ) = ( Q (r, )Q (rz)[N(r3) ~ Q (r4)Q (r, )]„,) —( Q (r, )Q (rz) ) ( [N(r3)iQ (r4)Q (r~)]„,) .

(4.45)

(4.46)

Notice in (4.44a) that f (r) behaves as the square of the dipole potential, i.e., f (r) —I/~r~ is integrable at infinity but
not at the origin. This will cause no problem since the distribution functions vanish sufficiently fast whenever two argu-
ments coincide. In (4.44b), P"'(r) behaves as ~ri as r~ ~0 and the same remark applies (see Appendix D).

To determine the asymptotic behavior of (4.44a) as r, —rz ~

~ ~, it will be convenient to decompose

f (r)=f, (r)+ f, (r) (4.47)

into a short-range part f, (r) and long-range part fi(r) with f, (r) of compact support and fi(r) regular at the origin.
We shall discuss below the long-range part only (the short-range part, which does not contribute to the algebraic decay,
is discussed in Appendix C). One needs, moreover, to decompose the expressions (4.45) and (4.46) into fully truncated
correlations by means of the formula

(4.48)~„&=y(~, ~, &, ( a, ), .

The sum runs over all partitions P= [m, , . . . , mk ] of 1,2, . . . , n into k subsets of m, , . . . , mk elements,
k =1, . . . , n, m, + . +mk =n When (4..48) is applied to (4.45), and taking into account the neutrality (Q(r)) =0
and ( N (r) ) =p, one obtains the decomposition

K, (ri, r~, r, , r4) = (Q(r, )Q(r2)[N(r, )N(r4)]„, & T

+,(Q(., )Q(., )N(., ) &,+«Q(., )Q(.,)N(., ) ),
+(Q(, )N(, ) &,(Q(, )N(, )),+(Q(r, )N(, ) &,(Q(r, )N(r, ) &

(4.48a)

(4.48b)

(4.48c)

where only the partitions [4], [1,3], and [2,2] occur.
Under the assumption that the fully truncated correlations decay exponentially fast when any group of particles is

separated, it is clear that (4.48a) gives a short-range contribution to (4.44a). Using translation invariance, the contribu-
tion (4.48b) can be written as

fdr fi(r) f dr3(Q(r, )Q(r2)Q(r3)) T=0 .
5 (24m)

(4.49)

Note that because of neutrality, one has e(Q(r, )Q(rz)N(r3))T=(Q(ri)Q(r2)Q(r3))T and e(Q(ri)N(r2))T
= (Q(r, )Q(r2)), =S(r, —rz). The contribution of (4.48b) vanishes as a consequence of the charge sum rule (3.3). The
contribution of (4.48c) to (4.44a) is

2 e
dr3 J dr~S(r, —r3)fi(13 r4)S(r4 —rz)

5 (24m)'
(4.50)

gild will be responsible for the algebraic tail. It is shown in Appendix D that (4 44b) is ra. pidly decaying as lri —r2l

[as is the term (4.40b)], hence (4.50) is the leading asymptotic term at the order A:

S'4'(r)= — fdr, jdrzS(r, )fi(r —r, +r2)S(rz)+
5 (24m)

(4.51)

where the ellipses represents exponential terms as
~
r

~

~ ~.
It remains to find the exact power law as ~ri~ ~ in (4.51). For r, —rz=a fixed, fi(r a) has an asympto—tic expan-

sion of the form

(4.52)
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(with summation on repeated indices) where the tensors
I"„.. .„(a) depend on the unit vector a=a/~a~ and canI' n

be obtained by squaring the multipole expansion of the
dipole potential. Inserting (4.52) in (4.51), one has to cal-
culate the moments

(4.53)

The spherical symmetry of S(r) together with the elec-
troneutrality JdrS(r)=0 implies that the moments
(4.53) vanish for n=1,2,3. The fourth moment (4.53) is
equal to

(4.54)

One finds therefore with (4.54) and (4.52) that the slowest
term in (4.51) is

4 e
' '2

1S' '(r)- — A —,
' Jdr'~r'~ S(r')

5 (24m) .
' . ~r~'

(4.55)

with

3

vvvv vvvv vvvv)'
Pl P2

(4.56)

One knows from the Stillinger-Lovett second moment
condition for a classical OCP that

1
3

d r r S r (4.57)

and a calculation found in Appendix E gives the value
A = 1260, hence the final result (4.4) follows.

We add that we have checked that the second-order
term S' '(r) (4.3) and the fourth-order term S' '(r) [found
by collecting all the contributions (4.40a) and (4.40b)] ver-
ify the charge sum rule and the second moment condi-
tions

2

dr~r~ S' '(r)=-
2m
~3 2 4

dr~r~ S' '(r)=
m

(4.58)

(4.59)

inferred by expanding the right-hand side of (3.23) in
powers of fi. In particular, the value (4.59) of the second
moment comes from the term (B5) of Appendix B, and it
can be verified that all the other parts of S' '(r) do not
contribute to it. This last verification involves the use of
generalized classical Stillinger-Lovett conditions given in
Ref. 28.

V. MULTICOMPONENT SYSTEMS

We consider a multicomponent system made of M
species of particles with charges e and masses m
a=1, . . . , M. The finite system, contained in a box of
volume A, has total number of particles N = g N with

N the number of particles of species a, and it is overall
neutral, g e N =0.

The total Hamiltonian of the system is

g2H= —Q V;+ —,'gee/(r, —r ),
j I I,J

IWJ

(5.1)

where r;, e;, and m; are, respectively, the position, the
charge, and the mass of the particle labeled by i =(a, k),
and the sums run on all species a=1, . . . , M and on
k =1, . . . , N for each species. P(r) is the Coulomb po-
tential, or a regularized Coulomb potential if Fermi
statistics is not taken into account. The regularized po-
tential reduces to I/~r~ for ~r~ & o. , and to some short-
range potential regular at the origin for ~r~ (a (the pre-
cise form of the latter does not need to be specified). In
this section we indicate brieAy how the analysis of the
preceding sections extends to the system (5.1). A more
thorough study will be presented in the next section by
means of functional integration. In general, multicom-
ponent systems with different charges and masses have
less symmetries than the OCP. In particular, the mass
and electric currents are no longer proportional [for in-
stance, the argument (3.11) used to establish the dipole
sum rule (3.4) does not apply any more]. Therefore we
expect weaker bounds for the correlations than in the
OCP.

We first give the generalization of the equilibrium
equations (2.11) and (2.21) for charged fermions, assum-
ing the existence of the thermodynamic limit of Green's
functions

e (N, (ar) A ) T i AV (—J(ar) A ) T=0,d
d'T

d
e (N(ar) A ) T

—A' co ( Q,(r) A ) z.
d

(5.2)

(5.3a)

3= —R g VvV'(Kv, '(ar) A ) T

2

+fi2 V Idr'F(r —r')(:N, (ar)Q, (r'): A ) r
m~

(5.3b)

(5.3c)

In the "continuity equation" (5.2), N(ar)=a*(ar)a(ar)
is the microscopic density of particles of type a and J(ar)
is the corresponding electric current density. In Eq. (5.3),
co~ is the plasmon frequency of the a particle. The par-
tial "kinetic energy tensor" Ev'(ar ) is formed as in (2.15)
and Q (r) = g e N (ar) is the total charge density.

Under the same assumptions (i) and (ii) of Sec. II B we
can proceed as in Proposition 1. The main difference is
that the function

g (r, r')=(:N, (ar)Q, (r'):A )T

is no more symmetric under the exchange of r and r', and
(2.33) does not apply. Lemma 1 with n, =n2=3 and
e (2 gives that the integral in (5.3c) is 0 ( ~r~ ), hence its
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d2
w3(r, A ) fl g cop~ w3(7, A ) =0

d~'
(5.4)

The continuity equation (5.2) gives
(d !dr)w3(~, A)=0, hence w3(~, A) =0 and

again

gradient is O(~r~ }. Then Eq. (5.3) summed on a im-
plies the differential equation

the charge-charge correlation holds only in the OCP.
However, as in the OCP, one can conjecture that the
response functions have better screening and cluster
properties, in particular that the dipole sum rule (3.16)
remains true for multicomponent systems [see comment
after Eq. (5.9)]. One expects on the physical grounds that
the relation (3.21)

(5.5) f dr~r~ f d~&g, (r)g( 0)) =— (5.8)

Setting A =Q(0) in (5.3), one argues again from the
KMS condition, translation invariance, and (5.5) that the
term (5.3b) is O(lr~ ). One can apply Lemma 1 with
n, =4, ni =3, and e ( 1 to the term (5.3c), which is
0 ( ~r~ ). Thus w~(i, g (0) ) obeys (5.4), and by the KMS
boundary conditions, w~(w, Q (0) ) =0, leading thus to

C2(i, A)
I&g,(r)g(O)),

~

( r' (5.6)

If we consider now the particle-particle correlations
&N, (a, rz)N(a2r, ))r we can obtain the same result as
(5.6) under the additional assumption that

e e & N, (a, ri)N (azr, ) ) r (0

expressing the shielding of an infinitesimal external classi-
cal charge, is true in general. In fact, the sum rule (5.8) is
also an exact consequence of the equilibrium equations of
the multicomponent system when (3.16) holds. '

We now indicate the modifications of the Wigner-
Kirkwood formalism given in Sec. IV that are needed to
treat the multicomponent system. Since Maxwell-
Boltzmann statistics is used here, a regularized Coulomb
potential is needed to provide stability. In the
configuration space of coordinates of all particles, the
gradient

—V= —V;, i=1,2, . . . , N.1 1

Vm Vm

must be replaced by the differential operator
for Ir, —r2I large enough

and similar inequalities for higher-order particle correla-
tions. The inequality (5.7) expresses the electrostatic at-
traction or repulsion of charges at large distances, and
should be satisfied in a monotonous regime (high temper-
ature and low density).

By the same arguments which lead to (3.7), one finds
immediately that the charge sum rule holds in the mul-
ticomponent system. This is no more the case for the di-
pole sum rule (3.13) as can be seen from the iii3-quantum
correction (5.9). The second moment relation (3.23) for

V k, o.'=1, . . . , M;k =1, . . . , N1

Qm

where V k is the three-dimensional gradient associated
with the kth particle of species a. With this modification
one can go through the algebra of Secs. IIIA and IIIB,
which has a similar structure. The main result at the or-
der A is that the multipole of the excess charge density
(4.39) is replaced by

fdr Pi(r)c', '(r~a, r„.. . , a„rk)= ~(P—r) 1
f3 g '

V~ Pi(r~ ) Vjp(a, r„.. . , akri, ), (5.9)

where p(a, r, , . . . , a„ri, ) is the classical distribution function of particles of species a, , . . . , ak at r„.. . , r&. The rhs of
(5.9) is, in general, different from zero if I 1, thus all the multipole sum rules, including the dipole, are violated at the
order fi in a multicomponent quantum system. However, one sees on (5.9) that the multipoles of the response function
Ja~d~& Q, (r)N(a, r, ) N(akrk ) ) vanish at the order fi, and the same remarks made after Eq. (4.39) apply here also.

One can again calculate the quantum corrections to the classical truncated particle-particle correlations
pr(a, r, , azr2) at order fi, i.e.,

pP(a, ri, a2rz) = &N(a, ri)N(airi})'P

=pz(a, r, , a2rz)+Pi pz (a, r, ,air&)+Pi pr (a,r, , a2r~)+ .(2) 4 (4) (5.10)

There are now contributions involving V P(r) [which were vanishing in the OCP with the strict Coulomb potential by
the rule (4.21)], but it is easily checked that all these contributions are short range. As in the OCP, only the analog of
the term (4.50),

2
2 ea

& N (a4r~)N(air2) ) z. ,
2
5 24 y fdr, fdr,

a3a4 3

has an algebraic decay, i.e.,

2

&N(air»N(a3r3) ) TA(r3 r4}
ma,

(5.11)
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2

pT (a,r„a20)—
6 g dr(N(ar)N(a, O) ) T240 7'

$

2

f dr(N(ar)N(azO))T
ma

L

(5.12)

The quantities in large parentheses, which vanish in a one-component system because of the charge sum rule, are now
different from zero. Thus the behavior of the particle-particle correlations at the order A' is ~r~, i.e., as the square of
the dipole potential itself. However, forming the charge-charge correlations Sq =(Q(r)Q(0))P one notes in (5.12)
that the coefficient of the leading term ~r~ vanishes because of the charge sum rule fdr(N(aO)Q(r) ) T=O. Then by
a calculation similar to that leading to (4.55) one recovers the same ~r~

' behavior as in the OCP,
'2

2 '2
e

SI ~(r) A —,
' g fdr ~r

~
(N(aO)Q(r ))T, ~r~ —+ ~

5 24 ' m [10 ' (5.13)

with 3=1260.

VI. FUNCTIONAL INTEGRATION FORMALISM

I

main arguments. Explicit calculations of the numerical
coefficients involved in the asymptotic behaviors are re-
stricted to the A terms.

In this section we extend the analysis of Sec. V to all
the terms of the Wigner-Kirkwood expansion of the equi-
librium correlations of a multicomponent quantum sys-
tem. We start from a finite system described by the
canonical ensemble. Using the functional integration for-
malism, we introduce a diagrammatic-expansion scheme
which generates the Wigner-Kirkwood expansion in a
systematic way. This scheme allows a qualitative analysis
of the large-distance behaviors of the correlations of the
infinite system, up to any order in A. All the A

" terms
(n & 2) are found to decay algebraically with powers de-
pending on the nature of the considered correlations
(particle-particle, charge-charge, etc.). In this part of the
section, for the sake of simplicity, we only sketch the

A. Formal representation
of the signer-Kirkwood expansion

ZA = Tr[exp( PH)]—1

a
(6.1)

can be rewritten as

We consider the multicomponent system 4 made of M
species defined in the preceding section. We assume that
the particles obey Maxwell-Boltzmann statistics. The
Hamiltonian is given by Eq. (5.1) with a regularized
Coulomb potential. It is well known ' that the canoni-
cal partition function

ZA= 3& 2 f,& dq; f g N(g';)exp ——g e ez f ds P(~q, —qj+A, , g(s) —At('~(s)~) . (6 2)
+(2m'' /m ) (N )!

In (6.2), the sums and products over the index i =(a, k) run on a= 1, . . . , M, k =1, . . . , N, and 1,, =(Ph' Im, )' is
the thermal de Broglie wavelength of the ith particle. 2)(g, ) is the Gaussian measure of the Brownian bridge process
which defines the functional integration over all the dimensionless paths g, (s) subjected to the constraint
g;(0) =g;( I ) =0. It is normalized to 1 and its covariance is given by

s(1 —t), s ~t
g"(s)g (t)= f2)(g)g~(s)p(t)=5„X '

1 ( (6.3)

N (ar)= g 5~ 5(qt —r), j =(y, k)
nc J

reads

pV(airi, . . . , a„r„)
n

The canonical distribution functions of the system have functional integration representations similar to (6.2). In par-
ticular, the n-body distribution function

n

pg (a,r„.. . , a„r„)= g N(atr&) (6.4)
I=]

nc

X f ~n(g, )exp ——g e;ej f ds p(~q; —q~+A, ;g';(s) —Ajg'J(s)~)
lWJ

f Qdq; f +&(g;)exp ——ge;e, f dsP(lq; —
q, +~;g;(s)—~ g (s)l)

l l lWJ
(6.5)
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In the present description of the finite system, one
should, in principle, take into account the boundary
terms arising from the interactions of the particles with
the walls of the box. We have omitted such terms in the
expressions (6.2) and (6.5) because we are ultimately in-
terested in the correlations of the infinite system obtained
by taking the thermodynamic limit (rV, V~ oo, N /V
fixed) which is assumed to be well defined, i.e., indepen-
dent of boundary effects (for a charged symmetric
Coulomb gas without statistics, the existence of the
infinite volume limit is established in Frohlich and
Park" ).

The representations (6.2) and (6.5) lead us to introduce,
in a very natural way, an auxiliary classical system ~V*

made of the following M species of filaments. Each
species is characterized by the parameters (e, A, ). The
state of the filament i is characterized by its spatial posi-
tion q, , and by an internal degree of freedom g, (s) associ-

ated with its shape. The measure drXl(g) defines the
summation over all the possible states of a filament. Two
filaments i and j of 4' interact via the two-body potential

u;*. =e,.e, f ds P(~q, —q, +A, , g, (s)—k, g', (s)~), (6.6)
0

which depends on their positions, their shapes, and the
species to which they belong. Note that U,

* is different
from the electrostatic interaction energy between two
uniformly charged filaments (for additional comments
about this point see Sec. VII). The total interaction po-
tential of 4' is

(6.7)

At equilibrium, the n-body classical distribution func-
tions of 4*, which depend on both the position r& and the
shape rll (s) of the filaments, are given by

n

p „)a,r, r)", . . . , a , r r) )=( „r„t„N "\a, r, rh)
1=1 nc ~

n

f f$ dq, f +23(g,-) g X*(a,r, rl, ) exp( —pV*)
pN 1=1 nc

f „Qdq; f g&(g, )exp( —PV*)
t j

(6.8)

where X*(arq ) is the microscopic phase-space filament
density of species e,

ing the latter as

u,
*= e; e P (

~ q;
—

q ~ ) + e, e tu,*, (6.13)
X'(arg)= +5~ 5(q —r)5(g —q) .

J

(6.9)
with

In (6.9) 5(g' —g) is a formal delta functional such that

f~(k)5(k n)~I CI-=~I nI (6.10)

for any functional 7 of g'(s). If one integrates
p~(a, rig, , . . . , a„r„g„)over all the shapes qI(s) of the
filaments, one finds

f2)(7l, ) 2)(g„)p~(a,r, g, , . . . , a„r„g„)
=p'P(a, r, , . . . , a„r„), (6.11)

which is an obvious consequence of the definitions
(6.6) —(6.10). Since the n-body correlations pA T and pg T
of S'* and 4 are defined through the full truncation of the
corresponding n-body distribution functions, one im-
mediately obtains from (6.11)

f&(g, ) &(g„)p~ T(~ir&g, , . . . , a„r„g„)

f ds[A. , g;(s) V, +k, g, (s) V, ]"Q(q; —q, )

, n! 0

(6.14)

Q*(A') = g e;5 ~5(q, —X)5(g, —co) . (6.15)

we see that the A' expansion of pg T can be inferred from
the perturbative expansion of p~ & with respect to m;~.
Thus we are left with the standard problem of perturba-
tion of the classical equilibrium state with respect to the
two-body potential. This can be treated as follows. Let
8 be the ensemble of parameters (Xcoy) with X a posi-
tion, co(s) a Brownian bridge, and y a species index, and
let Q*(6 ) be the X-body operator

pk, T(~&r& (6.12) Replacing u,
* by (6.13) in (6.7), we rewrite V* as

The identity (6.12) shows that the quantum equilibrium
correlations of 4 can be obtained from the classical posi-
tions correlations of 4*. This is particularly useful for
our purpose, because the A' dependence of the correla-
tions of S* only occurs through the de Broglie length A, ,

in the arguments of the two-body potential U,-*. Rewrit-

+ pf )jc

0

with

Vo =
—,
' g e, e, P(~q; —

q, ~) (6.17)
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and

W*=,' f d 6'd6'[Q*(@)Q*(@')]„,w*(@,@') . (6.18)

In (6.18), J d6 means g f dX2)(co) while w*(6', 6') is
given by (6.14) with (AzcoX, A& co'X') in place of

(k;g';q;, AJ g, q~ ). Calling So the unperturbed system with
total interaction potential Vo, we see that the position
correlations of So obviously coincide with the classical
correlations of S. Furthermore, the perturbative repre-
sentation of the n-body correlations of 4 in terms of the
correlations of 4'0 formally reads

pp T(a)ri'g(, . . . , a„r„'g„)

( —1)i'P' n

+ r, , f rI««' *(«') rl&*( ~ ) n [Q*(& )Q*(&')]..
p=l 2 P l=] l=1 l=1 A, PT

(6.19)

In (6.19), ( ) A PT means a thermal average with the unperturbed Boltzmann factor exp( —Pvo ); furthermore, this aver-

age is partially truncated with respect to all the partitions of the ensemble I r„.. . , r„,X,, X', , . . . , X~,X'
I which do

not split an interacting pair (X&,X& ). The required representation of the quantum correlations p'P of the infinite system

4, directly follows from (6.19), by integrating with respect to all the shapes g&(s) (I = 1, . . . , n) and by taking the ther-

modynamic limit of the truncated averages ( ) ~'PT for fixed configurations (both operations are applied term to term).

This gives

pP(a, r, , . . . , a„r„)
(
—1) P' n

=pT(airi, . . . , a„r„)+ g f g d@ld@&w*(A'&, 6&) g X(a&r&) Q [Q*(gl)Q*(A'&)]„,
p=1 2 I l=1 1=1 l=1 PT

(6.20)

B. The diagrammatic-expansion scheme

In order to study the large-distance behaviors, it is con-
venient to reformulate the WK expansion generated by
the formal representation (6.20), in a diagrammatic
language. For this purpose, we first replace m* by its
Taylor's series (6.14) and the partially truncated averages

n

g N(air, )
1=1

Q [Q*(@,)Q "(&')]„,
nc 1=1

g, O

PT
(6.21)

by their expression in terms of the fully truncated aver-
ages

which constitutes a formal representation of the Wigner-
Kirkwood (WK) expansion of pP(a, r„.. . , a„r„)
around its classical value pT(a, r, , . . . , a„r„). This pro-
cedure also provides an expansion, similar to (6.20), of
the one-body species densities of the quantum system
around their classical counterparts. Consequently, the
classical reference quantities appearing in (6.20) must be
calculated at densities which are different from those of
the quantum system. This peculiarity is a well-known
feature of the perturbation theory in the canonical en-
semble and is linked to the 1/N tails in the canonical dis-
tribution functions of the finite system. Such tails disap-
pear in a grand-canonical formulation, and it can be easi-
ly seen that the representation (6.20) corresponds, in fact,
to a perturbative expansion at fixed fugacities (and fixed
temperature of course). This point is not relevant for our
purpose.

e, 0

H&( ') rIQ*(& ) rIQ*(&l)
nc 0, ' T

(6.22)

In (6.22), 0 is a subset of [1, . . . , n], Q' and II" are sub-

sets of [1, . . . ,p), and the truncation is taken with
respect to all the partitions of the arguments [in (6.22),
the contribution of coincident interacting points @& and
6'& must be excluded]. Each contribution to the WK ex-
pansion obtained by the above operations can be associat-
ed with a diagram with n root points [r&, . . . , r„ I and 2p
field points [ 8 i, 8'i, . . . , 8,6"

I . In such a diagram, two
field points 6 and 6" are connected by an interaction
bond [(n, n')W(0, 0)]

f ds[co', (s) V]"[co'(.s) V']" P(X—X') .
n!n'1 r r'

0

We call correlated group the set of arguments occurring
in a given fully truncated average (6.22). Each root or
field point belongs to one and only one correlated group
whose statistical weight has the general form (6.22).
Furthermore, when the diagram contains more than one
correlated group, its topological structure has the follow-

ing two properties.
(1) There exists at least one pair of interacting field

points which belong to different correlated groups.
(2) For any pair of points, there exists at least one con-

necting chain made of interaction bonds and of correlat-
ed groups (the diagram cannot be separated into two or
more disconnected parts).
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In Fig. 1 we have drawn a typical diagram which contrib-
utes to pg(a, r„a2r2).

At this level, we have obtained a representation of the
WK expansion in terms of diagrams. In these diagrams,
the field points have a complex structure, because they
are characterized as usual by their spatial positions, but
also by their Brownian bridges (and their species labels).
In order to simplify the present diagrammatic representa-
tion, in particular to perform the functional integrations
upon the Brownian bridges, we introduce the notions of
nude and dressed field points. A field point 6 (or 8') is
nude if the interaction bond (6.23) does not depend on
(coA~) [or (ai'Ar. )], i.e., if n (or n') is zero; it is dressed
otherwise. Using

g f2)(ro)Q'(6") =Q(X), (6.24)

we see that the operation g fl)(ro) applied to a nude
field point 8, transforms the operator Q*(6) into the
charge-density operator Q(X), while the other elements
and the structure of the considered diagram remain un-
changed. The case of the dressed field points can be
treated as follows. Since the Boltzmann factor of $0 only
depends upon the spatial positions, the truncated aver-
ages (6.22) depend upon the Brownian bridges through
products of 6 functionals arising from the contributions
of coincident points in

g Q*(e, ) g Q*(@',) .

FIG. 1. A typical diagram which contributes to the first per-
turbative representation of pP(a, r„a2r, ). The white circles are
root points. The black circles with the random lines are
filamentous field points 4 and 6'. The wavy lines connecting
two black circles are interactions bonds (6.23j. The bubbles are
correlated groups whose statistical weights have the general
form (6.22).

Consequently, the operation fX)(ro)fd 8i . p applied
«any set of (q+ 1) coincident dressed field points, trans-
forms Q*(&)Q*(&i) ' ' Q*(6' ) into e~+'N(yX) while
the corresponding product of the (q+ 1) interaction
bonds becomes

I 1

fQ(r0), A"A"f . ds, [ro(s) V]"[ro'(s) V ]"'y(X—X'), &,
"'&"'f dsi[ro(s» ~] '[a'i(si) ~'i] '«Xn!n'! x r n, !n ', !

X 0 ~ ~

I r

~", ~"; f'd. , [ (s, ).V]"'[ ', (., ) V']"'y(X —X,') . (625)
n ~n!

Furthermore, since the Boltzmann factor of So is identi-
cal to the classical Boltzmann factor of 4, the truncated
averages (6.22) are replaced by the usual classical position
correlations of S.

Once the above operations have been applied to all the
nude field points and to all the sets of coincident dressed
field points, the diagrammatic expansion of
pP(a, r, , . . . , a„r„) has the following structure. Each
diagram is made of n root points (ri, . . . , r„),p nude field

points (Xi, . . . , X ), and q dressed field-points

(yiY„. . . , y~Yq). A nude field point is connected to
one and only one dressed field point through one interac-
tion bond, while a dressed field point interacts with an ar-
bitrary number of field points (nude or dressed). Two in-

teracting dressed field points are connected by one or
more interaction bonds. An interaction bond reduces
symbolically to X~.Dvg(X —Y) (n WO), or to
A, "A," DvDv. g(Y —Y') (n, n'%0) where DY is an nth-
order differential operator with respect to Y. In fact, the

g N(a, r, ) HN(~iYi) H Q(X )

nc nc 0" T

(6.26)

[in (6.26), the contributions of coincident interacting field
points are excluded as in (6.22)]. If a correlated group
contains only one dressed field point, its statistical weight

interaction bonds attached to Y are sums of products of
derivatives of the Coulomb potential, whose precise form
is determined from (6.25) by applying the standard rules
of calculation of the moments of a Gaussian measure
[see, for instance, (6.36) and (6.37)]; the sum of the
powers n, n, , . . . in (6.25) is an even nonzero integer be-
cause the odd moments vanish (consequently the WK ex-
pansion only contains even powers of iii). Each root or
field point belongs to one and only one correlated group
with a statistical weight proportional to the classical
correlation
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restrict ourselves to a qualitative study of the large-
distance behavior of the term of order fi ~ in the WK ex-
pansion of pP(a&r&, . . . , a„r„). More precisely, we for-
mulate an ensemble of necessary conditions which must
be fulfilled by the slow-decaying diagrams defined as
those giving algebraic contributions to this asymptotic
behavior. This allows us to estimate the minimal powers
involved in these contributions. In the analysis, we as-
sume that all the classical correlations of 4 decay fast,
i.e., faster than any inverse power. For the sake of sim-
plicity, we first consider the case of the two-point correla-
tions pP(a, r„a2r2). The three-point and higher-order
correlations will be briefly examined at the end of this
subsection.

If in a given diagram, the two root points r, and r2 be-
long to the same correlated group, this diagram obviously
decays fast when r, z

= ~r, —rz~ goes to infinity. Thus, the
slow-decaying diagrams necessarily belong to the class
I &2 defined as follows. In a I,2 diagram, r, and r2 belong
to two difFerent correlated groups C, and C(, connected
by one or more chains made with interaction bonds and
correlated groups. In these chains, a connecting path I,
is an ensemble of field points

IZ„Z„Z'„.. . , Z(, Z(, . . . , Z(, I (Z=X or Y)

such that

FIG. 2. Two diagrams which arise from the diagram sho~n
in Fig. 1 after integration over the Brownian variables. The
small black circles are nude field points X. The black circles
with white rings are dressed field points (yY). Each straight
line connecting two black circles with white rings is an interac-
tion bond A, ~X~ D&Dv P(Y —Y'). The straight line connecting a
black circle with a white ring to a small black circle is an in-

teraction bond VDv(f((Y X). The bu—bbles are correlated

groups whose statistical weight have the general form (6.26).

Z~ E Cg, Z(, E C(„Z(EC( Z(EC(

and C( are intermediary correlated groups which are all
di6'erent, and

(Z„Z, ), (Z', , Z~), . . . , (Z(, ,Z(), (Z(, Z(+, )

and so on, are pairs of interacting field-points. A field
point belonging to a connecting path is called a connect-
ing field point. A connecting field point may belong to
various connecting paths. In Fig. 3, we have drawn a
typical I &2 diagram with several connecting paths.

reduces to a mean particle density; if it contains one and
only one nude field point, the corresponding diagram
does not contribute because the mean charge density
( Q(X) ) vanishes by virtue of overall neutrality. Finally,
if a diagram contains more than one correlated group, its
topological structure satisfies the two properties (I) and
(2) (in other words, the topological structure of the
genuine diagrammatic representation is conserved
through the reduction operations). In Figs. 2(a) and 2(b),
we have drawn two diagrams which arise from the dia-
gram of Fig. 1 by the reduction process.

C. General qualitative analysis of the large-distance
behaviors of the correlations

In the above diagrammatic expansion, the contribution
of a given diagram of order A' ~ to p$. (a,r, , . . . , a„r„),is
determined up to a numerical multiplicative factor,
whose evaluation becomes rapidly inextricable as p in-
creases because of combinatory problems (see Sec. VID
for explicit calculations at the order fi ). Therefore we

FICx. 3. A typical I ~2 diagram with three eonneeting paths L,
M, and N. The strips delimited by the dashed lines are connect-
ing paths. The small black circles and the black circles with
white rings inside the strips are connecting field points.
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=D~ dX X—Y XX e, r, (6.27)

Since (Q(X)N(a, r, ) . )r decays fast when lXl~~,
all the multipoles with respect to X of this truncated
charge density vanish. ' Thus the Coulomb potential

fdX(t(X —Y)(Q(X)N(a, r, )
. ) r (6.28)

created at Y by the truncated charge density
(Q(X)N(a, r, )

. . ) r, decays fast when ~Y —r, ~~~.
So does the integral (6.27). Then, the considered diagram
decays fast when r,2~ ~, since one has the convolution
of (6.27) with the rapidly decreasing function
(N(yY)N(azrz) ) z-.

(ii) If an interaction bond connects two dressed field
points (y,Y, ) and (yz Yz) belonging to C, and C&, re-
spectively, and if (y&Y&) is singly connected (i.e. , in-
teracts with one and only one field point), the former
bond reads

(6.29)

With

Dv' =, f ds f2)(ro, )[r0,(s) VY ]
'. .

r

(6.30)

Since the Gaussian measure 2)(co) is invariant under rota-
nl nl/2tions, Dv is proportional to (Vv ) (n, is even). Us-

1 1

ing a1so

V P(r)=0, r ) cr (6.31)

It is important to stress that the slow-decaying dia-
grams constitute a subclass of I,2, i.e., some I,2 dia-
grams still have a fast decay. A number of such cases are
given below in the simple situation where there exists a
single interaction bond which connects two field points
belonging to C, and Cb, respectively.

(i) If an interaction bond connects a nude field point X
belonging to C, (or C b ) to a dressed field point (y Y) be-
longing to C& (or C, ), the contribution of the considered
diagram involves the integral

f dXD "v(t(X —Y)(Q(X)N(a, r, ) )r

XDy. , P(Y"—X"), (6.32)

which is shown (see Appendix F) to behave, when
~

Y' —Y"
~

~ ~, as

P 'Dv Dv-P(Y' —Y") (6.33)

apart from exponentially decaying terms. Such connect-
ing field points Y' and Y" are called algebraic field
points, while the pair ( Y', Y") is called an algebraic pair.
Let us emphasize that the previous conditions are neces-
sary, but not sufficient, for a slow decay of the considered
diagram. In other words, a diagram which fulfills these
conditions may still have a fast decay as illustrated below.

Now, we want to determine the minimal powers which
appear in the algebraic contributions of the slow-
decaying diagrams. We first consider the simplest dia-
gram which, a priori, gives an algebraic contribution. In
this diagram, C, and C& are connected by one and only
one interaction bond. The contribution of the former is
proportiona1 to

we find that the interaction bond (6.29) is short-ranged.
Therefore the corresponding diagram decays fast when
r,z~ ~ because (Y„r,) as well as (Yz, rz) belong to the
same correlated groups.

From the above examples, we infer that, in a slow-
decaying diagram, each of two-interacting field points
which belong to C, and C& are necessarily doubly con-
nected (a field point Y is doubly connected if there exist
at least two interaction bonds which connect Y to one or
more field points). When C, and C& are connected by
chains involving intermediary correlated groups, we find
by a straightforward inspection that a slow decay of the
considered diagram implies that, in each connecting path,
there exist at least two connecting field points Y' and Y"
which fulfill the following conditions. First they belong
to different correlated groups and both are doubly con-
nected. Furthermore, they are connected either directly
through one or more interaction bonds or indirectly
through the convolution

f dX'dX"Dv. g(Y' —X')(Q(X')Q(X")) r

fdY, dYzDv'Dv'P(Y, —Yz) f d [P, [d [Pz) g (%) Q (X)(N(y, Y, )N(a, r, ) . ) z. (N(yzYz)N(azrz) )z.g( ) z .
1 2

(6.34)

In (6.34), Y& and Yz are doubly connected, [P|) and [Pz) are two disconnected ensembles of field points, ii, (X) and
Qz(X) are the products of the interaction bonds connecting the field points of [Y,, P, ] and [ Yz, Pz), respectively, and
ii( ) z. is the product of statistical weights associated with correlated groups made with parts of [P, ) or parts of [Pz).
The precise forms of the interaction bonds which appear in (6.34) are determined according to the general rules de-
scribed in Sec. VI B. Taking into account the rotation invariance of the Gaussian measure 2)(c0) and of the reference
classical system, we find that the contribution (6.34) can be rewritten as a sum of terms of the form

f d Y,d YzG, ( ~Y, —r, ~
)Gz( ~Yz —

rz~ )P„((Y,—r, ) Vv, VY )P„((Yz—rz) VY, VY )P(Y, —Yz), (6.35)
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where G, (r) and Gz(r) are fast-decaying functions of r,
while P„( a, b) and P„(a,b) are polynomials in the two

I "2
variables a and b. The asymptotic behavior of (6.35)
when r,2~ ~, is given, apart from exponentially decay-
ing terms, by the expansion of

P„((Y,—r, ) Vv, Vv )P„((Y2—r2).Vv Vv )P(Y, —Y2)

around

P„((Y,—r, ).V, , V,' )P„((Y,—r, ) V, , V,' )P(r, —r, )

with respect to (Y,—r, ) and (Y2 —r2). Since G, and Gz
are spherically symmetric functions, the resulting mul-
tipolar expansion of (6.35) only involves terms propor-
tional to

(V,' ) '(V,' ) 'P(r, —r, )

with I, and 1z strictly positive integers (the differential
operators appearing in P„and P„are of order n

&
)0

1 "2
and n2)0, respectively). Because of (6.31), all these
terms vanish, and we finally conclude that the considered
diagram decays fast when r]2 ~ ~.

We turn now to the general case of a diagram which
fulfills the set of necessary algebraic conditions described
above. In such a diagram, C, and C& are connected by
one or more chains (a chain may reduce to one or more
interaction bonds without any intermediary correlated
groups). In each connecting path L, there exist p(L)
algebraic pairs

{(YL,, Yi', ), . . . ) (YI,J, (I),YI' p(L))I
with p(L) 1. Note that two successive pairs in a given
connecting path may have one common field point (i.e.,
one may have Yl, =YL, +, ), while an algebraic point
may belong to various connecting paths [for fixing ideas,
see the diagram shown in Fig. 4(a), which is of the gen-
eral type considered here]. In order to estimate the
large-r, z behavior of the present diagram, we first per-
form the integrations over the nonalgebraic field points.
The eventual algebraic terms in this behavior then arise
from a convolution of fast-decaying functions P&„, whose
argumen s are subse s o I ri r2 Yc i, YI', ; L =connecting
paths}, and of two-point slow-decaying functions g„„
whose arguments are algebraic pairs. The fast decay of
gf f is a consequence of (6.33), of the fast decay of the
classical correlations, and of the harmonicity of the
Coulomb potential [for similar reasons as those explained
above in the detailed study of the particular diagrams dis-
cussed in (i) and (ii)]. y„, (YL I, YL &

) is nothing but the
product of one or more interaction bonds connecting
Y'L

&
and YL'& [as a consequence of (6.33)]. The actual

convolution can be represented by a diagram, where all
the field points are algebraic field points while the weights
associated with the correlation clouds are functions Pi„,
[which may reduce to classical correlations (6.26)]. In
Fig. 4(b), we have drawn the corresponding diagram
which arises from the diagram shown in Fig. 4(a) after in-
tegration over the nonalgebraic field points. The

(b)

FIG. 4. (a) A typical diagram with four connecting paths L,
M, X, and P, which fulfills the set of necessary algebraic condi-
tions. The algebraic field points Y' and Y" are explicitly indi-

cated on the figure. (b) The diagram which arises from the dia-

gram shown in (a) after integration over the nonalgebraic field

points. The hatched bubbles represent functions g&„,.

configurations of the algebraic field points which may
give algebraic contributions to the large-r]2 behavior of
the previous convolution, are such that there exist q;
pairs (Y&;,Y&', ) (i =1,2;1=1, . . . , q;) with Y&; —r, ~

finite (of the order of the mean-interparticle distance) and
~ Y&; —Y'&";

~
large (of the order of r, 2). If for i = 1 or i =2,

one has q, = 1 and y„,„(Y', ;,Y", ; ) reduces to a single in-
teraction bond, the considered configuration does not
give, in fact, any algebraic contribution, for similar
reasons as those exposed in detail for the simplest a priori
slow-decaying diagram. Thus the algebraic contributions
are given by configurations where, for i = 1 and 2, one has

q; =2, or q; = 1 and y„,„(Y', ;,Y", , ) is the product of at
least two-interaction bonds. Since all the interaction
bonds involved in the functions y, ] decay at least like
1/r at large distances r, we finally conclude that the
leading term of the large-r]2 expansion of the slow-
decaying diagrams, is at least of order 1/r, 2. Some of
these diagrams decay exactly as I/r, 2 when r,z~ ac (see
below and Sec. VI D), while others decay faster. For in-
stance, the diagram shown in Fig. 4(a) decays at least as
(r,2) ', as can be easily seen from Fig. 4(b). Because of
rotation invariance, the pure 1/r e 1/r convolutions
take the form
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f dY3~~Y3DY, P'(Yi —Y3)] [~Y Dv p(Y, —Y,)].
These convolutions do behave as I/~ Y, —Yz ~

for
~ Y&

—Yz~ large, and do not involve

terms as can be checked through integrations by parts
and by using (6.31).

The above analysis shows that all the terms of the WK
expansion of pP(a&r&, azrz) decay at least like 1/r &z when
r,z~ oo. The A term decays faster and the A term
behaves exactly as 1/r, 2, as can be checked through ex-
plicit calculations (see Sec. VI D). At any order A' ",
n ~ 3, one has the slow-decaying diagram shown in Fig.
5, which does behave as 1/r, 2 when r,2~ ~, as can be
checked through a multipolar expansion of the two in-
teraction bonds which connect C, and C &. At this order,
there are other slow-decaying diagrams which have a
similar large-r&z behavior. As illustrated bv the exolicit
calculations at the order fi, the 1/r, 2 contributions of all
these diagrams should not cancel out in general, and con-
sequently should be the leading terms at the order A ",
n ~2. This suggests that pP(a, r, , azrz) should decay
like 1/r, 2 for sufficiently high temperatures and low den-
sities (under these conditions, the quantum effects are
small and it is reasonable to treat them perturbatively).
Of course, a rigorous proof of the latter statement would
require a detailed control of all the terms of the WK ex-
pansion (see Sec. VII for an exact resummation of this ex-
pansion in a particular limit).

The above analysis can be also applied to the particle-

FIG. 5. A diagram of order A ", n 3, which gives 1/r tails
to the large-distance behavior of pP(a, r, ,azrz). The notation
p~q (p and q integers) over (or below) a straight line connecting
two black circles means that the corresponding interaction bond
involves products of differential operators of orders p and q ap-
plied to the Coulomb potential. Here, one has n'= n —2.

charge correlations (N(a, r, )Q(rz)) and to the
charge-charge correlation Sq (r, z ) = ( Q (r, )Q (rz) )™.
The large-distance behavior of the corresponding slow-
decaying diagrams is determined through multipolar ex-
pansions of the interaction bonds connecting the algebra-
ic field points. Using the translation invariance of the
reference classical system, as well as the classical charge
and dipole sum rules, we find that (N(a, r, )Q(rz) )~
should decay like 1/r, z when r,z~ ~, while Sq (r, z)
should decay like 1/r', z (under the same assumptions as

TABLE I. Large-distance behaviors of the quantum correlations predicted by the signer-Kirkwood
expansion.

Correlations

(N(a, r, )N(azrz) )'P

(N(a~r, )Q(rz) )'P

( Q ( r, )Q ( rz ) ) 'I

(N(a, r, )N(azrz)N(a3I3) )P

( ( Nra, ) (Nr a)zNz( ra)zNz( 4ra„))P

Asymptotic
configurations

l" 12
—l —+ 00

r12 = l" —+ ao

r12=r~ oo

r» fixed
l'13 = l —+ oO

l'12 —l', l" 13
—ar, r 23 bl"

r~ oo; a and b fixed

r» and r13 fixed
l14=l ~OO

r» and r34 fixed
r13=l ~OO

r», a and b fixed
r»=r, r,4=ar,
r34=br, r~ oo

r, 2=r, r» =ar, r,4=br

r~~; a, b, c, and d fixed

Asymptotic
behaviors

10

1/ 12
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FICx. 6. The diagram 6
&

' of order A which gives an algebra-
ic contribution to the large-distance behavior of pg(a, r„a2rz).

above relative to the convergence of the WK expansion).
A similar analysis shows that the three-point correlations
pp(a, r„azrz, a3r3) should decay at least as I/r for any
large separation of its arguments, while the four-point
correlations pp(a, r&, a2r3, a3r3, a4r4) have a slower decay
for the following asymptotic configurations. When

Ir, —
r2~ and ~r3

—
r4~ being kept fixed,

pP(a, r„a2rz, a3r3, a4r4) indeed decays like I/r». This
1/r, 3 term arises in part from the contributions of the
simplest slow-decaying diagrams, where (r„r2) and

(r3 r4), respectively, belong to correlated groups C, and

Cb which are connected by one and only one interaction
bond of the form DY DY P(Y& —Y2): in the multipolar

1 2

expansion of this bond with respect to (Y& —r&) and

(Yz —rz), the zeroth-order term does not vanish in gen-
eral because the statistical weights associated with C,
and C b are no longer invariant under rotations for
nonzero fixed vectors r, 2 and r34 Physically, the I/r
tails can be related to the dipole-dipole interaction be-
tween polarization clouds surrounding groups of two or
more charges. These 1/r tails appear in any correlations
(particle or charge) between two groups of two or more
points separated by a large distance r. We have summa-
rized the asymptotic behavior of the various correlations,
suggested by the WK expansion, in Table I. Note that
the faster decay of the two-point charge correlations, as
well as the slower decay of the four-point and higher-
order correlations, are compatible with the nonperturba-
tive analysis of the hierarchy equations (see Sec. V).

FIG. 7. Same as Fig. 6 but for b 2
'.

least doubly connected, any such diagram is at least of or-
der A . Therefore there are no slow-decaying diagrams of
order A', and the corresponding quantum corrections to
the classical correlations decay fast, as already noticed in
Sec. V. At the order A, one has three slow-decaying dia-
grams 6', ', 52 ', and 53 ' which are shown in Figs. 6, 7,
and 8, respectively. For calculating the contribution of
each of these diagrams, one has to determine the follow-
ing.

~ The order p of the term in the representation (6.20)
from which the diagram arises.

~ The symmetry factor associated with all the ways of
labeling the field points and of generating the dressed
field points Y through the collapse of one or more field
points 6'.

The precise form of the interaction bonds coming
from Taylor's series (6.14) and the functional integrations
over the Brownian variables.

For 6', ', @=2, the symmetry factor is 4, and the product
of the two-bonds connecting Y, and Y2 is

D. Explicit calculations at the orders fi and 4

According to the general rules derived in Sec. VI C, we
exhibit all the slow-decaying diagrams at the orders A'

and A, and we explicitly compute their algebraic contri-
butions to the large-distance behavior of the correlations.
This allows us to recover the results found in Sec. V by a
different method. We consider only the two-point corre-
lations.

In any slow-decaying diagram, there are at least two
algebraic field points. Since each of these field points is at FICs. 8. Same as Fig. 6 but for 6& '.
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A,
'

A,
' f ds f dt fX)(ro, )2)(roz), , [ro, (s) Vv ][coz(s) Vv ]P(Y,—Y,), , [ro, (t) Vv ][roz(t) V.„]P(Y,—Y, ),

(6.36)

which reduces to

g [V"V"P(Y,—Yz)]
p, v

by use of the covariance formula (6.3). The contribution of 6I then becomes

( 1
2 2

z
4 g f dY, dYzer (N(a, r, )N(y, Y, ))Te~ (N(azrz)N(yzYz))z —,', A~ kr g [V"V P(Y, —Yz)]

2 X2! p, v

2 2

P'fi f 1Yid Yz(N(a)r))N(y) Y)) ) T(N(azrz)N(yzY ) ) Tf ( lYi —
Yzl )

180 m m
VI XP ~1 ~7

(6.37)

(6.38)

where we recall that f (r) = g, [V"V"P(r)] . Similarly, we find that the contributions of b, ~z
I and 6~3 ' are, respective-

ly,

(
—1) P
2'X 3!

48 g dY, dYzdX, dX,e (N(a, r, )N(y, Y, ) ) ze (N(azrz)N(yz Yz) ) T(Q(X, )Q(Xz) ) z.

XA, X f ds f dt f du f2)(ro, )2)(roz), , [ro, (s) Vv ].[roz(s). Vv ]P(Y,—Yz) —,[co,(t) Vv ]

XP(Y, —X, )—,[toz(u). Vv ]P(Yz —Xz)
1

2 2
I35&4 ez ez f d YidYzdXidXz(N(a&r&)N(y& Yi) ) z (N(azrz)N(yzYz) ) T(Q(X&)Q(Xz)) T

X g [V"V'P(Y, —Yz)][V"P(Y,—X, )][V"P(Yz Xz)]— (6.39)

and

(
—1)"
2'X4!

192 g dY, dYzdX, dXzdX3dX4e~ (N(a, r, )N(y, Y, ))ze (N(azrz)N(yzYz))r(Q(X, )Q(Xz))T

X(Q(x3)Q(x~))ri, X f ds f dt f du f dv f2)(ro, )X)(roz) —,[oi,(s).Vv ]P(Y,—X, )—,

X [to&(t) Vv ]P(Y, —X3)—[coz(u). V& ]P(Yz —Xz)—[roz(v). V & ]P(Yz—X4)
1 1

2 2
~6&4 er er f d Y,d YzdX, dXzdX3dX~(N(a, r, )N(y, Y, ) ) T(N(azrz)N(yzYz) ) T(Q(x, )Q (xz) ) T

X (Q(x3)Q(x4) ) T[VP(Y, —X, ).VP(Y, —X3)][V/(Yz —Xz) VP(Yz —X4)] . (6.40)

In (6.39) and (6.40), the convolution integrals of the type (6.32) over the pairs of nude field points (X,, Xz) and (Xi,X4)
can be performed in terms of (6.33) plus exponentially decaying terms when r,z~ oo. Therefore the algebraic contribu-
tions of Az

' and Az
' can be rewritten as

2 2ei, er, f dY&dYz(N(a&r&)N(yi Y, )) r(N(azrz)N(yzYz) ) z f (~Y& —Yz~) (6.41)

and

2 2
p'~4 e e„

f d Y,d Yz(N(airi)N(y, Yi) ) z. (N(azrz)N(yzYz) ) Tf ( ~ Yi —Yz~ ), (6.42)
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respectively. The total algebraic contribution of 6, ', b, z ', and b, ~3 ', given by the sum of (6.38), (6.41), and (6.42), then
does reduce to the expression (5.11), as it should. Consequently, the leading terms in the large-distance behaviors of
p'z-'(a, r, , azrz) and S' (r, z ) are proportional to I/r, z and I/r, 'z, respectively (see Sec. V).

Although the present diagrammatic analysis is more powerful than the method of Sec. V for evaluating the algebraic
contributions at a given order in fi, the explicit calculations at the order fi remain rather tedious, since one has 40
slow-decaying diagrams at this order.

VII. A MODEL: THE HYDROGEN ATOM IN A CLASSICAL PLASMA

It is of pedagogical value to study a simplified model in which all particles but two are classical. In this model, the
effects of the intrinsic quantum fluctuations on screening can be more clearly displayed and discussed in a nonperturba-
tive way. Two quantum-mechanical particles of charges e&, ez and masses m &, mz (e.g. , an electron —e and a proton e)
are imbedded in a classical plasma and in thermal equilibrium with it. It is not important here to specify the detailed
composition of the classical gas (an OCP or a multicomponent system) provided that it possesses all the strong screen-
ing properties of a classical plasma phase. The Hamiltonian of the two quantum particles in the presence of a
configuration C of the classical gas in volume A is

I p~ I'
I pz I'

H(C)= + +e, ezra(r, —rz)+e, f dr/(r, —r)Q(r, C)+ez f dr/(rz —r)Q(r, C),
A

(7.1)

where Q (r, C) is the microscopic charge density of the classical gas corresponding to this configuration.
We consider the equilibrium distribution of the two quantum charges at r, and r2

f dC(r„rz~exp[ /3H(C)]~—r„rz)e px[
—/3UO(C)]

f dC exp[ —/3UO(C)]
(7.2)

where Uo(C) is the Coulomb energy of the classical gas and (r„rz~exp[ /3H (C)]~r—„rz) is the diagonal configurational
kernel of exp[ /3H(C)]. —According to the Feynman-Kac formula and the Brownian-bridge representation, this kernel
is given by the functional integral [see (6.2)]

( r „rz ~
exp [ —PH ( C) ] ~ r, , rz )=,f&(g, )f&(g) zpex[ '/3E ( r „P&,

r—z, P„Pz, C )],
(2vrA, , A.z )

(7.3)

with

E(r&, g&', r zg zC)=e&ez f ds P(r& —rz+A&g&(s) —Azgz(s))+ g f dr f ds P(r, +A, , g, (s) —r)Q(r, C) .
0

1 2 1 1 2 2
(7.4)

As discussed in Sec. VI, one can think of the quantum particles as random charged filaments at r, and rz with charge
densities

1

e, n;(r)=e, f ds 5(r, +X,g, (s) —r!, i = 1, 2 .
0

(7.5)

It is of interest to compare the quantum energy (7.4) for fixed g„gz with the corresponding classical interaction electro-
static energy of the two filamentous charges (7.5) in the configuration C, i.e.,

2

E„(r„g',;rz, gz,'C)=e, ez f dr f dr'n, (r)p(r —r')nz(r')+ g e; f dr f dr'n, (r)p(r —r')Q(r', C)
A A A A

The self energy of the filaments is not included in (7.6). The comparison of (7.4) and (7.6) gives

E(r„g,;rz, gz., C) =E„(r„g',;rz, gz, C)+ W(r, , g„rz, g'z),

with
1 ]

W(r&, g&, rz, gz)=e&ez ds& dsz[6(s& —sz ) —1]p(r& —
rz+ A &g'&(s& )

—Azg, (sz )) .
0 0

(7.6)

(7.7)

(7.8)

For fixed g'&, g'z, we note that UD(C)+E,&(r&, g&, rz, gz, C)=U(C) is precisely the total electrostatic energy of the
configuration C of the classical gas in the presence of the two additional charges (7.5). So inserting the representation
(7.3) with the decomposition (7.7) into (7.2), we can write

1 &~(ri ki rz 4'z)
p~(ri rz)= &(4'2)exp[ /3W(rl kl rz 42)]

(2m', ,Az) A

(7.9)
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where Z~= f&dC exp[ —PUO(C)] is the partition func-
tion of the classical gas and

Z~= f dC exp[ —P[ Uo(C)+E,&(r&, g'&, rz, gz, C)] I

is the partition function of the same gas in the presence of
the two additional external charges (7.5).

In the same way, we define the one-point distribution
f»n t.-.ti one

and the effective classical potential (the energy needed to
separate the charged filaments at r, and r2 to infinity in
the gas)

P,s(r, —rz, g'„g'z) =F(r, —rz, g, , gz) F—(g, )
—F(gz) .

(7.15)

With (7.9), (7.12), and these definitions, the dimensionless
truncated correlation of the quantum charges

dC r, exp —H; C r, exp — U0 C
pA(ri) =

J dC exp[ —PUO(C)]

pw(ri rz)
g (r, —rz) = lim —1

p~(r& )pw(rz)

(7 10) takes the simple form

(7.16)

with

H,.(C)= ' +e, f dr/(r, —r)Q(r, C),Ip, I'

2m; A

i =1,2 (7.11)

g(r)= fX(g ) J Xl(g )(exp[ —p[p, tr(r, g, , g )

+ W(r, g, , g'z)]] —1) .

(7.17)

corresponding to the immersion of a single quantum par-
ticle in the classical gas. They have a representation
analogous to (7.9),

p(r, )= 1

v'Zvr~,
(7.12)

F(rl rz kl kz)

1 ZA(rl fz rz Cz)
lim —ln

p ZA
(7.13)

F(g, ) = — lim —'ln
w-~ P ZA

i =1,2 (7.14)

where Z~(r, , g, ) is the partition function of the classical
gas in the presence of a single external filamentous charge
(7.5).

We introduce finally the excess free energies (con-
sidered from now on in the infinite volume limit)

In (7.17), 2)(g, ) are non-Gaussian measures renormalized
by the one particle excess free energy (7.14),

exp —F(, )
&(g;)= &(g, ) .

, exp —F
(7.18)

The quantities F(g';) and P,tt(r, g&, g'z) pertain to the
purely classical system, which is assumed to be in a per-
fectly screening exponentially clustering plasma phase.
Thus for fixed g& and gz and Ir&

—rzl large, the filamen-
tous charges are localized in the neighborhood of r, and
r2, respectively, and their effective potential
P, t( r, —rz, g, , gz) decays exponentially fast as
lr, —rzl ~ ~. To make the model completely definite let
us write down the expressions of F(g, ) and P,tt(r, g&, gz),
when the classical plasma is treated in the Debye-Huckel
approximation. This approximation is legitimate when
the dimensionless coupling parameter I of the plasma is
small. One finds (see Appendix G)

2

F "(g, )= ' f ds, f ds,

1 1

ff (r, g~, gz)=e~ez f ds, f ds,
0 0

exp[ —x~, lg, (s, )
—

g, (sz )I]—1

&, lg, (., )
—

g, (s, ) I

exp[ —x Ir+ k, g, (s, )
—Azg'z(sz ) I ]

Ir+ ~,g', (s, ) —~zgz(sz )
I

(7.19)

(7.20)

where x is the inverse Debye length of the classical plasma.
The potential W(r, g', , gz) has a purely quantum-mechanical origin and is easily seen from (7.8) to be dipolar [the

terms of order lrl ' and lrl vanish because 1 ods [5(t —s) —1]=0]
eie2 1W(r, g„gz)- f ds& J dsz[5(s& —sz) —1]{[k&g'&(s&)—kzg'z(sz)] V]2 0 0 r

(7.21)

Since P,s(r, g&, gz) is exponential, it is precisely this quantum-mechanical part W(r, g„gz) which governs the asymptotic
behavior of g(r) as lrl~~. We can thus generate the inverse power asymptotic development of g(r) by neglecting
P,s(r, g, , gz) and expanding exp[ —PW(r, g'&, gz)] in (7.17),

2

g(r)= —p J 2)(g, ) J 2)(g'z)W'(r, g', , g'z)+ f2)(g, ) fl)(gz)[~(r, g, , gz)] + (7.22)
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The first term in the rhs of (7.22) has no algebraic term.
Indeed, using the formula

P(r+a)= g P(r)
(a.V)"

n=O n'
(7.23)

(7.24)

It is clear from the definition (6.3) of the Brownian-bridge
process and from (7.14) that the measure Xl(g'; ) is invari-
ant under the spatial inversion and rotations of the path

Hence the integral of any odd product of g;(s;) van-
ishes and the integral of an even product

f2)(g', )[g, (s, ) V]'

the nth-order term of its multipole expansion involves the
quantity

is necessarily proportional to ( V ) . Since the functional
F(g';) (7.14) is bounded and 2)(g;) is Gaussian, all mo-
ments of 2)(g';) exist. Thus the expression (7.24) vanishes
for n ~ 2 and rAO because of the harmonicity of the
Coulomb potential [there is obviously no monopole con-
tribution in (7.8)].

The slowest asymptotic term of g(r) comes from the
second term of the development (7.22), when W(r, g'i, g'z)

is taken at the dipolar order (7.21). Using again the fact
that certain terms vanish for the same symmetry reasons
as (7.24) and fods[5(s —t) —1]=0 one finds after some
algebra that

(7.25)

with

2

(ei~iez4)' f&(ki) f&(k) f dsi f ds2[&(si —s» —1]Mi(s» V]N2(s2) V]
2 0 0

2

(7.26)

The coefficient 8 (the integral of a positive function) is
obviously difFerent from zero, and thus (7.25) represents
the exact asymptotic behavior of the correlation between
the two quantum particles in the classical gas. An ex-
pression of 8 in terms of the physical constants would re-
quire us to perform explicitly the functional integral
(7.26) with the non-Gaussian measures 2)(g';) involving
the one-particle excess free energy (7.14). It can be noted
from (7.14) that B is not a polynomial function of the
Planck constant so there are ~r~ contributions at arbi-
trary high orders in fi. Since the prefactor (A, , A,z) in
(7.26) is already of order A', to obtain B at this order it
suffices to replace F(g; ) by its classical value F,'i which is
independent of g', , and then, according to (7.18), 2)(g;) by
the Brownian-bridge measures 2)(g, ) [in the Debye-
Hiickel approximation (7.19), F,', = —xe /2]. Using the
rules for Gaussian moments and the covariance (6.3) one
finds as in Sec. VI D

[(N(a;r)N(a;0) ) T
—p,.5(r)]

lim =h;, (r),
Pl P2 pi

(N(a, r)N(a20)) T =h„(r),lim (7.28)

lim
P) P2

p&p2

(N(a;0)N(ar) ) T

pi
=p It,. (r), a=3, . . . , M

where h;, , h, 2, and h, , +=3, . . . , M, are well-behaved
classical Ursell functions, whose fast decay is governed by
finite correlation lengths (in the present limit, the classi-
cal screening of the charges of the infinitely dilute species
1 and 2, is ensured by the charges of the other species
which have nonzero fixed densities). Furthermore, the
nonperturbative calculation of the present section shows
that, in the above limit, the findings relative to the resum-
mation of the large-distance behavior of the A

" terms of
the WK expansion are indeed satisfied (see Sec. VI).

8 =A' +o(fi ) .
240 m) m~

(7.27)
VIII. CONCLUSION

The special model studied in this section can be viewed
as a particular limit of the general quantum multicom-
ponent system described in Secs. V and VI. In this limit
the densities p, and p2 of the species 1 and 2 go to zero,
while the masses m, a=3, . . . , M, of the other species
go to infinity. We have checked that the expression (7.27)
of the coefficient 8 at the order fi is indeed recovered
from the general expression (5.12) by taking the limit of
pT (a, r, a20)/p, pz when p„p2~0 and m(4)

a =3, . . . , M (the other parameters being kept fixed). In
this verification, we have used (i = 1,2)

In this paper we have given strong evidences that there
is no exponential clustering for the equilibrium correla-
tions of quantum charged fluids. These evidences rely on
the perturbative Wigner-Kirkwood expansion (Secs. IV
and VI), the imaginary-time evolution equations (Secs. II
and V), and the model of two quantum charges immersed
in a classical charged fiuid (Sec. VII). Each term of the
WK expansion of the correlations decays algebraically at
large distances. This expansion then provides algebraic
lower bounds (under assumptions relative to the conver-
gence of the former). The analysis of the large-distance
structure of the imaginary-time evolution equations pro-
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vides upper bounds which are compatible with the per-
turbative results. The model allows an exact calculation
of the asymptotic behavior of the correlations of the
quantum charges, which is found to be algebraic (like
1/~r~ ) and to satisfy the above bounds. Thus, from this
ensemble of confluent arguments, we infer that the Debye
screening does not exist, strictly speaking, in real matter.

Of course, the absence of exponential clustering does
not mean that there is no screening at all. The equilibri-
um equations of Sec. II are formulated in terms of the
bare Coulomb potential, and at first sight, particle corre-
lations could decay as slow as ~r~ . The analysis of Sec.
II precisely shows that the slowest decaying terms do not
occur for fundamental reasons (KMS, locality). The
same remark applies to the diagrammatic analysis of Sec.
VI where the longest-range contributions are also exclud-
ed by general rules. As a result, the charge sum rule,
which states that the total net charge vanishes, still holds
as in the classical case (as well as the dipole sum rule for
the OCP). But the higher multipole sum rules no longer
hold in general, as shown in Secs. III—V. Furthermore,
the screening of external classical charges should be
better than the screening of the quantum charges of the
medium. In particular, the response functions should de-
cay faster than the internal correlations of the system.

The basic mechanism which induces the algebraic tails
in the quantum correlations is linked to the intrinsic
quantum fluctuations. In the functional integration for-
malism, these fIuctuations can be represented by filamen-
tous charge distributions. The interaction potential be-
tween the quantum charges involves multipolelike in-
teractions, arising from the "ghost" multipoles associated
with the filamentous distributions. As illustrated by the
perturbative analysis of Sec. VI, or by the exact calcula-
tion of Sec. VII, it is precisely these multipolelike interac-
tions which are responsible for the algebraic tails (this
mechanism is similar to the pollution scenario conjec-
tured by Brydges and Seiler' ). Since the above mecha-
nism is an intrinsic feature of quantum mechanics, the
algebraic decay of the correlations should occur at any
value of the thermodynamic parameters. We have
checked that the same effects occur in a classical system
when all the ions have an internal structure giving rise to
permanent dipoles. In this case also, this internal degree
of freedom prevents the screening clouds from being per-
fectly organized, and exponential decay is lost. However,
the correlations of structureless charges in a dipolar sol-
vent are expected to decay exponentially fast. ' Another
analogy, more natural, can be made between quantum
statics and classical dynamics of point charges. In both
cases, velocity and positional distributions cannot be
disentangled. In the classical dynamical evolution, any
perfect arrangement of the clouds is broken by the col-
lision processes, and the system cannot instantaneously
restore such an arrangement because of inertia effects. In
the quantum static case, the quantum fluctuations them-
selves are the disturbing factor.

We now comment on the role played by Fermi statis-
tics. We have given the explicit forms of the correspond-
ing algebraic tails for several models, in the semiclassical
regime (high temperatures and low densities) and in the

framework of Maxwell-Boltzmann statistics. For the
OCP, these statistics can be used without modifying the
bare Coulomb potential, because all the mobile charges
repel themselves. In the classical limit, the exchange
effects arising from Fermi statistics are expected to be ex-
ponentially small with A. Therefore the expressions
computed in Sec. IV are indeed the dominant terms in
the semiclassical regime for an OCP described by Fermi
statistics. For a multicomponent system, with positive
and negative mobile charges, the use of Maxwell-
Boltzmann statistics implies a regularization of the
Coulomb potential at short distances, in order to prevent
the collapse between oppositely charged particles. For a
real system described by Fermi statistics (such as mixture
of protons and electrons), this regularization procedure is
introduced on semiheuristic grounds with the help of an
effective A-dependent potential. Thus the expressions de-
rived in Secs. V and VI cannot be viewed as the leading
terms of a systematic expansion for the real system.

Furthermore, in a system of nuclei and electrons,
atoms or rnolecules can be formed with the familiar van
der Waals forces between them. Notice that these forces
are usually computed in vacuum. Our results show
that the van der Waals forces cannot be exponentially
screened by free quantum charges that are always present
in a nonzero density state. Therefore, in the presence of
atoms or molecules, there are two different mechanisms
providing algebraic tails. The first one, described in this
paper, exists intrinsically and independently of any bind-
ing process, while the second one (the van der Waals
forces) is due to the polarizability of quantum bound
states. The determination, starting from first principles,
of the precise form of the total algebraic tails induced by
the combination of the intrinsic and van der Waals rnech-
anisms is a difficult problem, even in the semiclassical re-
girne.

Our techniques obviously do not apply to the ground
state. At zero temperature, it is well known that the
discontinuity of the Fermi distribution induces algebraic
Friedel oscillations (like 1/~r~ ) in the correlations. As
far as the screening mechanisms are concerned, we expect
that the intrinsic quantum fluctuations should certainly
be not less disturbing than at finite temperatures, induc-
ing also algebraic tails in addition to the Friedel term.
This is supported by the observation that the coefficients
of the algebraic tails computed in Secs. IV and VI diverge
at T=O.

It is important to stress again that the usual mean-field
theories such as RPA or Thomas-Fermi do not take into
account properly the intrinsic quantum fluctuations since
they predict an exponential clustering (see Appendix H).
The situation is similar in classical dynamics where the
Vlasov approximation does not reproduce the spatial
algebraic decay of time-dependent correlations. ' ' This
is because the Vlasov dynamics reduces to a one-body
motion in a mean-field potential and consequently does
not include the collision process. A better understanding
of the failure of the RPA approximation, as well as how
it should be improved to incorporate the effects discussed
in this paper, is an open problem.

We finally discuss the possible observable implications
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of our findings. Since our explicit calculations pertain to
the semiclassical regime, we only consider real systems
under conditions such that the quantum effects are small.
The first one is a sodium chloride electrolyte at room
temperature, and the second one is the interior of some
white dwarf made of ' C nuclei embedded in a nonpolar-
izable degenerate electron gas. In both cases, we deter-
mine the crossover distance r0 above which quantum
algebraic tails dominate the classical behavior, equating
the expression (4.4) to the usual exponential law, i.e.,

2exP( —ro /g) 7 Pe P4

4n.g 16~2 m r 010
(8.1)

r0

In (8.1), g is the screening length, and the classical ex-
ponential is normalized in order to obey the charge sum
rule. This normalization as well as the use of (4.4) for a
two-component system give correctly the order of magni-
tude ro. Setting xo=rolg, the crossover equation can be
rewritten in the form (up to a dimensionless multiplica-
tive numerical constant)

'7
Xp a ag

x',e '-r-
a

2
~dB

(8.2)

where a —p
' is the mean interparticle distance,

I =Pe /a is the coupling constant, az =R /me is the
Bohr radius, and A,dB

- (Pfi /m )
' is the de Broglie

thermal wavelength. In a semiclassical regime, the two
last factors in the rhs of (8.2) are obviously small, imply-
ing ro large compared to g [g is of the order of few inter-
particle distances and the classical factor (a/g) /I is of
order lj. For instance, for the first system, T=300 K,
a —16 A (for a decimolar solution), g-a, I -1 (e must
be divided by the dielectric constant of water which is
close to 80), az -0.76 X 10 A (here m is taken equal to
the average of the atomic masses of Na and Cl) and
Ad&-0.073 A. Then (8.2) gives xo —60. For the second
system, T =10 K, a —360 F (p-10 g/cm ), g-a,
I -16, aii-0.066 F (e must be multiplied by Z with
Z=6 for ' C, and m is the atomic mass of ' C), and

A,dB-200 F. Then, (8.2) gives xo-40. In both cases, the
quantum effects on the clustering turn out to be very
small, and consequently the use of exponentially screened
effective potentials is legitimate from a quantitative point
of view. However, if we apply crudely (8.2) for the elec-
trons in a metal (replacing g by the Thomas-Fermi
screening length ATF), all lengths occurring in (8.2) have
the same order of magnitude and r0 is of the order A,T„.
This indicates that the use of an exponential effective po-
tential might be less reliable in this case.
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APPENDIX A: PROOF OF LEMMA 1

We divide again D, =D ',"U D ', ' into the two regions

lrl /2, lr'I —lr —r'lj ,

D ',"=Ir'llr —r'I ~ lrl/2, lr'I ~ lr —r'I
I .

(A2)

In D ',
' ' we have, when (2.28) holds,

We split the r' integral over the two regions
D, =

I
r'

I I
r —r'

I

~
I
r

I
/2 I and its complement D, .

In D, one has lr'I ~ lrl /2, and by (2.27),
llrl 'g(r —r')I ~M(lr —r'I). This shows that for
lr'I ~ lrl/2, lrl 'IF(r')g(r, r+r')I is bounded uniformly
with respect to r by the function IF(r')IM(lr'I ), which is
integrable when (2.28) holds. Hence it follows by dom-
inated convergence that

lim Irl
' f dr'F(r —r')g(r, r')

D

= lim Irl
' f dr'F(r')g(r, r+r')

r~

= fdr'F(r')h (r')

Irl
' f dr'F(r —r')g(r, r') ~ f dr' , M(r') 2

D(() ' D"' Ir —r'I lr —r'I'

f„,M(lr'I)
Ir'le lrl

(A3)

Similarly we find in D,' '

( 2
2 E

dr , M(lr —r'I)
Ir —r'I'

2
2 E'

, M(lr I) (A4)

The combination of (Al), (A3), and (A4) gives the result of the lemma.
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APPENDIX B: TERM (4.40b)

Using the property (4.34), the first term in the right-hand side of (4.40b) is expressed with the help of the two-point
classical correlations

(Q(r, )Q(rz)(V ) ) =(V, +Vz) p(r„rz)=(Vi+Vz) pT(r„rz) .

This quantity is rapidly decaying as ~ri
—

rz~ ~ ~.
To treat the second term (4.40b) in compact form, it is useful to introduce the operators

(81)

D"(r)= g 5(r —r, )V", (82)

D""(r)= g 5(r —r,. )V", V'," . (83)

Singling out the contribution of coincident particles

3 Jl

p, q p, v i,j =1 i j =1
EWJ I =J

and taking (4.41) into account, the second term in (4.40b) can be written as

g[(Q(r, )Q(rz)(V V~V)V~V ) —(Q(r, )Q(rz))((V~V V)V V )]
3= —e g f dry fdr4$" (rz —r4)

p, v=1

X [(Q(r, )Q(rz)[D"(r3)D (r~)]„,) —(Q(r, )Q(rz))([D"(r3)D (r4)]„,) J

3

+e g fdr3f dr4$" (r3 —r4)I(Q(r, )Q(rz)[Q(r3)D""(r4)]„,) —(Q(r, )Q(rz))([Q(r3)D""(r4)]„,) ) .
p, v=1

(84a)

(84b)

The decomposition of (84a) in fully truncated correlations is easily done with (4.48). Since (Q(r)) =(D"(r))=0 by
neutrality and translation invariance, only the partitions [4] and [2,2] contribute. The partition [4] involves the fully

truncated correlation (Q(r, )Q(rz)[D (r3)D (r4)]„,)T which is rapidly decreasing as ~r, —rz~~~. The contribution
of the partitions [2,2] to (84a) is equal to

3—2e p fdr3f dr4&~& (r3 —r4)(Q(r, )D"(r3))T(Q(rz)D (r4))T
p, v=1

3= —2e g f dr3 f dr4&& "(r3 r4) Vp3(Tr„—r )3V4)tz(Tr zr4) =2e f dr3 f dr4[(V ) P&](r3—r4)pT(r, , rz)pT(rz, r4) .
p, v=1

(85)

The second line results from the definition (82) and from the property (4.34), and the third line from integration by
parts. The Coulomb potential P(r) =P, (r)+$1(r) has been decomposed into a long-range Pl(r) regularized at the origin
and a short-range part P, (r). In (85), only the long-range part has been considered (contributions due to the short-

range part have a fast decay; see Appendix C). Then the function ( V ) P&(r) has a fast decay as well as

pT(r&, rz) =p(r&, rz) —
p . This implies that (85) is rapidly decreasing as ~ri —rz~ ~ ~.

The term (84b) is similar. The fully truncated correlation (Q(r, )Q(rz)[Q(r3)D (r4)]„,) T is rapidly decreasing as

~ r, —rz ~

~ oo. The partitions [2,2] give the following contribution to (84b):

3

2e g f dr3 f dr4$~1 (r3 —r4)(Q(ri)Q(r3) ) z (Q(rz)D""(r&) ) z.

p, v=1
3

=2e g fdr3f dr~&~& (r3 —r4)S(r, —r3)V~4V~T(rz, r4) =2e fdr3f dr4[(V ) Pl](r3 —r4)S(r, —r, }pT(rz, r4),
p, v=1

(86)
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which is short range for the same reasons as for (B5). fdr3f dr4f, (r3)&g(r, )g(rz)P(r3+r4, r4) & T. (Cl)

APPENDIX C: CONTRIBUTIONS
FROM THE SHORT-RANGE PART

OF THE POTENTIAL

In any expression, the short-range singular part at
r; =r of P", (r, —r ) or f, (r, —r ) occurs always in con-
junction with a correlation function which vanishes at
r; =r, so that integrals are locally convergent. When ex-
amining the asymptotic behavior of quantities involving
P", '(r, —rj) or f, (r, —r ) by truncating the correlation
functions, it suffices to omit the truncations involving the
arguments r; —r occurring in the potential. Then, the
integrals over these variables are also convergent at
infinity because of the short range of the potential itself.
As an example, we treat the singular short-range function

f, ( r ) in (4.44a).
For this, we truncate (4.45) without splitting the prod-

uct P(r3, r4)=[N(r3)N(r4)]„, and obtain the contribu-
tion

The function ( Q (r, )Q (rz)P (r3+ r4, r4) ) T vanishes at
r3=0 and tends to zero rapidly as the points r„r2, and r4
are separated. Thus the integral (Cl) is convergent and
has a fast decay as (r, —rz)~~. Similar arguments ap-
ply to all contributions due to the short-range part of the
potential which have been left over in Appendixes B and
D.

APPENDIX D: STUDY OF THE TERM (4.44b)

Let us show first that the integrals are well defined lo-
cally. We decompose P(r) =P, (r)+P&(r) with P&(r) regu-
lar at the origin and P, (r) integrable, and note that the
short-range part does not contribute to

pV"V dr', r —r' =0 . (Dl)

I'his implies, for instance, that

dr4 ", r3 I4 11 I2 N I3 I4 r5 dr4 I3 I4 I1 rp N I3 N r4 r5 (D2)

This integral is well defined at r4=r3 since the distribution function in (D2) vanishes there. The same argument applies
to all short-range parts P", (r) occurring in (4.44b). Integrability at infinity will be ensured by the cluster properties.
From now on, we consider only the long-range part of the dipole potential.

We decompose (4.46) into fully truncated correlations with the abbreviated notation

(Q(r, )Q(rz)[N(r3)~Q(r4)Q(r5)]„, ) =(12345). Since (m ) =(Q(r )) =0 form=i, 2,4,5 and (3)=(N(r3)) =p, only

the partitions [5],[1,4],[2,3],[1,2,2] contribute:

Ez(12345)= ( 12345 ) r + ( 3 ) ( 1245 ) T

+ (13) (245) + (23&,( i4S &,

+ ( 14 ) T ( 235 ) T + ( 24 ) T ( 135 ) T + ( 15 ) z. ( 234 ) r + ( 25 ) T ( 134 ) z.

+(34) (125) +(35) (124)

+ (4S ),(123&,

+&3&& i4&, (25&,+&3&(iS&,&24&, .

(D3a}

(D3b)

(D3c)

(D3d)

(D3e)

(D3f}

In (D3a), the arguments r, and rz occur in fully truncated functions, thus these terms have a fast decay [note that the
integral on r3 in the second term (D3a) is convergent since /~i (rz —

r4)P~& (r3 r5) —I /~ r—3~, ~r3~ ~ oo ].
Using translation invariance the contribution of the terms (D3b) to (4.44b) is of the form (up to a constant factor, and

with r]z=r, —rz)
3

fdr3S(r, z
—r3) f dr4 f dr5$~& "(r3—

r4)P~& (r3 —r~}(Q(0)Q (r4}Q(r~) ) z.

p, v=1
(D4)

Since the charge clouds labeled by r4 and r5 in (Q(0)Q(r4)Q(r~)) z. have no multipoles [the classical multipole sum
rules (3.2)], the expression in large parentheses in (D4) decreases faster that any inverse power of r3. Therefore the ex-
pression (D4), which is the convolution of two functions with rapid decrease, has also a fast decay as

~ r, z ~

~ ~.
The contributions of the terms (D3c) are of the form

f dr5gt'"(r3 —r5) ( Q (O)[N (r3)N (r~ )]„,) T
p, v=1

3

f dr3 f dr4$~"(r, z r3 r4)$(r4)— — (Ds)

Both expressions in large parentheses have a fast decay as
~ r3~ ~ oo, the first one because S(r) has no multipoles and the

second one because r3 occurs as the argument of a fully truncated function. Thus the convolution (D5) is rapidly de-
creasing as ~r&z~ ~ ~.
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The contribution of the terms (D3d) can be written as

3

f dr4(t~'(r4)S(r4) f dr3 f dr~PI'(r3 —r, )(Q(r, )Q(rz)Q(r, )) T
P, V= 1

—,
' f dr4(V' P()(r4)S(r4) f dr3V' QI(r3) fdr5(Q(r, )Q(rz)Q(r, ))T (D6)

since fdrV"V'P&(r)S(r)=5„, —,
' f dr(V P&)(r)S(r) by spherical symmetry. The function (V' Pt)(r) is integrable and the

contribution (D6) vanishes because of the charge sum rule.
The term (D3e) can be written as

3

f dr4$~& (r4) fdr, P~&'(r4 —r, )S(r, ) f dr3(Q(r, )Q(r2)Q(r3))T .
p, v=1

The integrals in the large parentheses are convergent and (D7) vanishes again by the charge sum rule.
The term (D3f),

(D7)

3

2p g f dr3 f dr44! (r12 r3 —r4)S(r4)
p, v=1

5 t 3 5 5 (D&)

being the convolution of two rapidly decreasing function [S(r) has no multipoles], has a fast decay.

APPENDIX E: CALCULATION OF THE NUMBER A IN (4.56)

One writes the multipole expansion of the dipole potential as
~
r

~

~ ~
V1 V

Q '''a
3+n

n (~0)

(summation on repeated indices) with the completely symmetric tensors

(El)

1 » p2 vl vy„„.. . , =,V V' V V (E2)

Notice that the harmonicity of the Coulomb potential implies

3

g y„„„.. . =0.
@=1

(E3)

Introducing (El) into f (r —a)= g„, &
[P"'(r—a)] one finds that the coefficients of the terms of order ~r~

' in the

development (4.52) are expressed by

I = 'V (y y +2y y, +2y, y, , ).
~1~2~31 4 ~ '

1 2»~ 2' 1 2~3~4 '
I 2» '

1 2~2I 3~4 '
1 2' 1 2~1I 21 3~4

Vl, V2

Taking (E3) into account, the number A (4.56) is therefore given by

(E4)

»~2 1 2

(y )'.' )"ll"2 1 2
(E&)

One calculates y„„„ from (E2)»i"2 1 2

y„„, = ",'r„r„r r, ——", (r„r„5,„ +r„r 5„,+r„r, 5„„+r„r, 5„,+r r, 5„,+r, r, 5„„)
) 1) 2 1 2» ) 2 1 2» ) 2 1 2» 1 ) 2 2» 2 ) 2 1 ) 2 1» 2 12 2» 1 1 2 P'1~2

(E6)

where r=r/~r~ is a unit vector, and one finds A=1260. when ~Y' —Y"~~ ~. Introducing the electrostatic po-
tential

APPENDIX F: DERIVATION OF THE ASYMPTOTIC
BEHA VIOR (6.33) V,~(Y"iX')= fdX"P(X"—Y")(Q(X')Q(X")) (F2)

In this appendix, we study the asymptotic behavior of
the convolution integral

d X'dX" Y' —X' X' X" Y"—X" F1 dX' Y' —X' V,ff Y X e (F3)

created at Y" by the charge distribution (Q(X')Q(X") )
centered at X', we can rewrite (Fl) as
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&t)(Y' —Y")J dX'V, [t(Y"~X') . (F4)

Since (Q(X')Q(X")) decays fast when X' —X"
~

and does not carry any multipole, V,&r(Y" X') decays fast
when

~

Y"—X'~ ~ &&(&. Therefore the asymptotic behavior
of (F3) when

~

Y' —Y"
~
~ (&&& can be obtained through the

expansion of P(Y' —X') around &t)(Y' —Y"), apart from
exponentially decaying terms. Taking into account that
V,[r(Y"~X') is spherically symmetric, i.e. , only depends
on ~Y"—X'~, we see that the resulting multipolar expan-
sion reduces to the monopole term

APPENDIX G: DERIVATION OF EXPRESSIONS (7.19)
AND (7.20)

In this appendix, we derive the expressions (7.19) and
(7.20) in the Debye-Hiickel approximation. The deriva-
tion is standard except for the fact that the energy is tern-
perature dependent through the densities (7.5) and the de
Broglie thermal lengths A, We consider first the electro-
static energy of the classical gas in the presence of a sin-
gle external charge density n, (r) (7.5). We obtain the ex-
cess free energy F ( g, ) (7.19) from the formula

f dX'V, (Y"~X') =/3 (F5)

Using the classical Carnie and Chan sum rule which
states i

pF f'pp=, (pU)) —&&.&.
a/3

(G 1)

we finally find that (Fl) behaves as /3 '(/)(Y' —Y") when
~

Y' —Y"
~

~ &&&&, apart from exponentially decaying terms.
This leads to the asymptotic behavior (6.33) because the
expression (6.32) is merely given by the application of the
operator DY.Dv" to (Fl).

where ( ) and ( )o denote, respectively, the thermal
averages with respect to the perturbed and unperturbed
energies U and Uo. In the Debye-Huckel approximation,
the correlations are neglected,

p
(pp)) —

& ~ &
=

—,
' f pr

fear'()(r

—r')&&&(r)&~~&L&(r')& +e, fdrf dr' [pn, (r)]()(r—r')&&)(r')&

(G2)

and the induced charge density ( Q (r) )oH is calculated from the linearized Poisson-Boltzmann equations with external
source e, n, (r) [notice that ( Q (r) )O=0 in the uniform system] with the standard result

e
—~lr —r'I

(Q(r))oH= — fdr', ein, (r'),
4ir tr —r'/

x =47re p/3 .

K is the inverse Debye length. The quantity (G2) is easily calculated with the help of Fourier transforms

(G4)

DH

(/3U) —(U, ),"=-'fdk(Q(k)) " (Q( —k)) "

+ ' fdk [/3n, (k)] (Q( —k)) "+ [/3n[( —k)], (Q(k)) "
~/3

' [k[' d/3
(G5)

and

K2
(Q(k))DH e, n, (k) .ki'+x' (G6)

Substituting (G6) into (G5), and noting the relations

a, , a p'
I/3 &)/3

I
k

I

'+ x'

one finds after some algebra

2x2

)
k)'+ ~' )k/'+ x'

2

(G7)

a DH 4~
a/3

'' 2 a/3
(/3U) —( U&& )&&

= /3f dk n, (k)ni( —k) [k['+~'
4m (G8)
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Hence it follows from (Gl) that
2

F= f dkn, (k)n, ( —k)
2 ' ' ski'+x'

4m

the external distribution n&(r)+n2(r) due to two fila-
ments, and this leads to (7.20).

APPENDIX H; DECAY RATE OF SRp~( r)
e] —x r —r'~

f dr fdr', n&(r)n, (r') .
2 r —r' (G9)

When the expression (7.5) of n&(r) is used, (G9) is identi-
cal to (7.19). The calculation of the eff'ective potential P,s.

(7.15) proceeds along the same line. Dne evaluates (Gl)
in the Debye-Huckel approximation in the presence of

I

In this appendix, we show that the quantum charge-
charge correlation of the OCP computed in the frame-
work of the RPA, SRt,~(r), decays faster than any inverse
power at large distances r, at finite temperature.

In the R.PA, one first computes the wave-number- and
frequency-dependent dielectric constant cap~(k crt) as

4~e 1
ERpA( k, ci)) = 1 — f de

haik (27r)

[frD(q) —fFD(q+k)]

Aq-k Ak

m 2m

(H 1)

where f„D(q) is the Fermi-Dirac distribution (z is the
fugacity)

fFD(q)= 1

[z 'exp(PA' q /2m)+1]
(H2)

The expression (Hl) must be understood as a limit when
the small real positive number 6 goes to zero. This limit
is easily computed using the theory of analytical func-
tions, with the result

PI( +r))
p~(k)=p f (H7)

oo g

respectively, with k a given unit vector, q~ a two-
dimensional vector orthogonal to k and P the principal
part.

The quantum version of the fluctuation-dissipation
theorem links the dynamical structure factor S(k, co) to
the dielectric constant e(k, co) through

4 me p m

yak 3 R
k mug k—P +—
2 Ak 2

and

eRtA(k, co)=1+R (k, co)+iI(k, co),

where R and I are real functions given by

(H3)

(H4)

—Ak lS(k, co) = Im
4~ [1—exp( /3fico)] (ek, co—)

(H8)

Ak
S~p(k, co) =

4~ [1—exp( —Pfico) ]
I(k, co)

I[1+R (k, co)] +[I(k,co)] )

(H9)

where Im denotes the imaginary part. Replacing e(k, co)

by (H3) in (H8), one finds

2 24' me me@

flak

k men k—P +
2 Ak 2 The corresponding expression of the static structure fac-

tor

In (H4) and (H5), the functions P, and P„are defined by

S(k)= f drexp(ik r)S(r)

directly follows from

(H10)

and

1
1(k) f dq~fFD(gk+q~)(2') (H6) S(k) = f d~ S(k, co)

with the result

(H 1 1)

(k
A'k f I(kco)
4~ — [1—exp( /3%co)][[1+R (k,—co)] +[I(k,co)] )

(H12)

For our purpose, it is sufhcient to study the analytic
properties of Saz~(k) on the real axis It is imm. ediately
seen from (H4)—(H7) and (H12) that Szz~(k) is analytic
at any k) 0. At k=0, we have to investigate the struc-
ture of the small-k expansion of (H12). The various
powers of k which appear in this expansion arise from the

contributions in the integral f dec of the follow-

ing three regions: (i) co small, (ii) co close to —co, (iii) co

close to cu, where co is the plasma frequency,p7

pco =(4rre p/m)' . The contribution of the region (i) is

easily obtained through the variable change co=Uk and
the expansion of the integrant in (H12) in powers of k at
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f du g s„(u)k"
16m mPe

(H14)

Taking into account the parity relations,
P~( —mv/iii)= Pii(—mu/A') and PJ( —mu/fi)

PJ(mu—/fi), we find that s„(u) is an odd function of u

if n is odd, and an even function otherwise. Furthermore,
for any n, s„(u) is integrable everywhere and decays like a
Gaussian when

I uI ~ ~ because so does Pi(mv/fi) in this
limit [P„(mu/fi) decays algebraically when IuI ~ Oc ].

I

fixed U. From the expansions

R (k, uk)= 4mm. e " k" d PR mv
2i"(2n + 1 )! d g2" + i

I(k, uk) = —4irme k " d Pi mv

fi k = 2 "(2n +1)i dg "+'

(H13)

1 —exp( —Piiivk)=PA'uk g (Piiivk)",( —1)"

o (n + I)!

we infer the contribution of the region (i) takes the form

Thus we can perform the integral J" du in (H14) term
to term. The resulting expression is an entire series in k,
with a first term proportional to k . We turn now to the
contributions of the regions (ii) and (iii). For small values
of k, the integrant in (H12) has two plasmon peaks cen-
tered at co=+co (k), with co (k) close to co and such
that

1+R(k, co (k)) =0 . (H15)

which is also Gaussianly small and behaves as
exp[ —Pmco (k)/2k ]. Therefore the contributions of
the plasmon peaks to S„pA(k) in the small-k limit, can be
computed, apart from exponentially small terms, by re-
placing the integrant of (H12) by the Lorentzians in
v=co —[+co (k)]

The height of these peaks diverges as
exp[Pmco (k)/2k ] when k~0, because for co finite and
k small, I(k, co) is Gaussianly small and behaves (apart
from a multiplicative power of k) as exp( —Pm co /2k ).
Furthermore, the width of these peaks is proportional to

II(k, co (k))/(c}R /c}co)(k, co (k))I,

I(k, +co (k))1

I 1 —exp[+/3iiico (k)] I

[I(k, +co (k))] + (k, +co (k)) v
Bco

(H16)

for co close to +co (k), respectively. After a straightforward integration over v running from —~ to Do, these contri-
butions become

Ak 1 7T

4ir2 I 1 —exp[ —pirico (k)]I c}R

1

I 1 —exp[Phco (k)] I c}R

Ak 1

(k, co (k))

Ph'co (k)
coth

2
(H17)

COp
oo

R (k, co)= — 1+ g r„(co)k "
CO n =1

(H18)

apart from exponentially small terms with k, where the
functions r„(co) are polynomials in 1/co; for deriving
(H18) we have used the parity of Pi(g) and the identity

S
= f drP. (r)= ', fde".D(q),(2'�)

which links the density to the fugacity for an ideal Fermi
gas. Inserting (H18) in (H15), we find that

(H19)

co ( k ) = co + g c„k2"

n=1
(H20)

plus exponentially small terms with k. Replacing co (k)
by (H20) in (H17), and taking into account (H18), we see
that the contribution of the regions (ii) and (iii) to the

As can be checked from the definitions (H4), (H6), and
(H7), the small-k expansion of R (k, co) for co fixed and
finite reads

k 2 A'cop Pirico
SRpA ( k ) — coth

4m 2 2
k~O (H21)

which shows that the RPA preserves the sum rule (3.23).

I

small-k behavior of SRp&(k) can be represented by an en-

tire series in k, apart from exponentially small terms
with k. Thus the small-k expansion of SRpA(k) has a
similar structure, and since SRpA(k) is analytic at any
k) 0, we finally conclude that SRp~(r) decays faster than
any inverse power of the distance r when r~ ~.

Note that at zero temperature, the Fermi-Dirac distri-
bution becomes singular at the Fermi wave number. This
induces a singularity in S„pA(k) at this wave number,
which leads to the well-known algebraic Friedel oscilla-
tions in S„p~(r) at large distances. Furthermore, the k
term of the small-k expansion of SRp&(k) is entirely
determined by the contribution of the plasmon peaks. At
this order, we can replace, in (H17), co (k) by co and
c}R /c}co( k, co ) by 2/co according to the expressions
(H20) and (H18). This gives
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