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We examine the dynamic behavior of a simple mechanical model of an earthquake fault. This
model, introduced originally by Burridge and Knopoff [Bull. Seismol. Soc. Am. 57, 341 (1967)], con-
sists of an elastically coupled chain of masses in contact with a moving rough surface. Our version
of the model retains the full Newtonian dynamics with inertial effects and contains no externally im-
posed stochasticity or spatial inhomogeneity. The only nonlinear feature is a velocity-weakening
stick-slip friction force between the masses and the moving surface. This system is being driven per-
sistently toward a slipping instability and, therefore, exhibits noisy sequences of earthquakelike
events. We observe these events in numerical simulations and are able to predict many of their
features analytically. Their size distributions are found numerically to be consistent with the
Gutenberg-Richter law. Some aspects of the size distributions can be understood by scaling argu-

ments.

I. INTRODUCTION

Recently, Bak, Tang, and Weisenfeld! have called at-
tention to the fact that many systems in nature operate
persistently at or near thresholds of instability, and that
such systems might be expected to exhibit anomalously
large, “critical” fluctuations. The prototypical example
is a pile of sand onto which new grains are added very
slowly. Once a sandpile achieves steady state, it is ex-
pected theoretically to exhibit avalanches with a wide
range of sizes as its slope fluctuates in the neighborhood
of a critical angle of repose.? An example of more im-
mediate interest, especially for those of us who live in
California, is an earthquake fault. The surface at which
two moving tectonic plates come into contact with one
another is persistently being driven toward a slipping in-
stability; and the slipping events, i.e., earthquakes, are
observed to occur with a wide range of magnitudes. **

In this investigation, we examine the behavior of a very
simple mechanical model of an earthquake fault. The
class of models that we consider was introduced over
twenty years ago in the seismological literature by Bur-
ridge and Knopoff.>® Unlike the cellular automata stud-
ied by Bak and his co-workers, '* the Burridge-Knopoff
model is a purely deterministic dynamical system that
consists of blocks and springs and obeys Newton’s laws of
motion. It is driven persistently toward a slipping insta-
bility induced by a nonlinear, velocity-weakening friction
law similar to the stick-slip coupling between the bow
and string of a violin.”

Our main conclusion® is that, without the addition of
any intrinsic spatial irregularities or external stochastic
forces, this model is capable of generating noisy se-
quences of slipping events whose size distribution is simi-
lar in important respects to what is seen in seismological
measurements. Specifically, the majority of the events
that we observe—although not always the largest
events—are distributed in size according to the
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Gutenberg-Richter law;* that is, the logarithm of the fre-
quency of events decreases linearly with their magnitude.
We observe such distributions in numerical simulations
and are able to describe many of their features by scaling
arguments. We also are able to predict properties of the
individual events by analytic methods. Although the
model is more nearly a caricature than an accurate pic-
ture of an earthquake fault, its features are sufficiently
realistic that we can begin to relate its various kinds of
dynamic behavior to physical characteristics such as
stiffness of the rock, the velocity dependence of the fric-
tion force, and the speed at which the plates are being
driven across each other. The results of this study also
provide some guidance about how to make more realistic,
predictive models of seismic phenomena.

There are interesting and possibly useful similarities
between the threshold criticality that we find in the
Burridge-Knopoff model and the behavior of other sys-
tems of current scientific interest. For example, the sand-
pile analogy has been proposed as a model for flux flow in
type-II superconductors.” The model also has elements
in common with theories of pinning and depinning of
charge-density waves in solids.!® Another situation that
looks at least superficially similar is a moving line of con-
tact between a wetting layer and its substrate, for exam-
ple, the upper edge of a drop of water as it slips intermit-
tently down a window pane. !!

The scheme of this paper is as follows. In Sec. II, we
describe our version of the Burridge-Knopoff model and
define the several dimensionless groups of parameters
that govern its behavior. Sections III and IV are devoted
to analytic discussions of various features of this
model—the instability of spatially uniform motions and
three qualitatively different kinds of nonuniform slipping
events. Our numerical solutions are presented in Sec. V,
which contains both pictures of the slipping events and a
statistical analysis of their frequencies of occurrence. In
Sec. VI, we point out that these size distributions seem to
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describe scale-invariant critical fluctuations with a
nonuniversal “anomalous dimension,” and we show how
this result may be used to predict the frequency of great
events which lie outside the critical region. Several fun-
damental questions regarding the interpretation and
significance of our results are addressed in Sec. VII. The
paper concludes in Sec. VIII with a brief summary of our
results.

II. BASIC FEATURES OF THE MODEL

Our version of the Burridge-Knopoff model’ is illus-
trated in Fig. 1. It differs from the original primarily in
that our system is taken to be completely uniform with
no spatial variations of any of its parameters and no
externally determined stochastic elements. It consists of
a chain of blocks of mass m coupled to each other by har-
monic springs of strength k. and attached to a fixed sur-
face, shown above the blocks in the figure, by leaf springs
or torsion elements of strength k,. The blocks are in con-
tact with a rough substrate which is moving at speed v to
the left as shown. Equivalently, the substrate may be
fixed and the blocks pulled to the right by the upper sur-
face acting through the “pulling springs” k,. In a quali-
tative sense, the blocks may be thought of as the points of
contact between two plates moving at relative speed v
along a lateral fault. The spring constants k, and k, de-
scribe the linear elastic response of the contact region to
compression and shear, respectively. The equations of
motion for the model remain the same if the blocks are
being displaced transversely, that is, in a direction per-
pendicular to the chain. In this case, the model would
look roughly like the line of contact between two plates
moving across each other at a subduction zone.

The crux of the model is the velocity-dependent force
of friction F between the blocks and the surface, shown
schematically by the solid curve in Fig. 2. Throughout
most of this analysis, we shall assume an idealized stick-
slip law, as shown here, with a static friction that can
take on all values between —F, and +F, at precisely
zero velocity, and with a sliding friction that decreases
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FIG. 1. Block and spring system for the Burridge-Knopoff
model. In our analysis, we assume that the system is spatially
homogeneous, composed of equal masses m, each connected to
its nearest neighbors by springs of strength k., and to a station-
ary surface with springs of strength k,. Each mass is subject to
the friction force F(X), which depends only on the velocity of
the block. The equilibrium spacing is a, which does not enter
directly into the equation of motion (2.1).

6471

e

FIG. 2. The slip-stick friction law. The function F(X)
ranges between *+F, at zero velocity and decreases monotoni-
cally to zero as |X| becomes large. Our numerical calculations
are based on the solid curve, for which F(X) decreases to half
of its maximum value at the characteristic speed v,. The dashed
curve describes slow, stable creep for a small range of speeds
|X| <vo, and has the same velocity-weakening behavior as the
solid curve for speeds of order v,. Because the dashed curve is
single valued for all X, the continuum limit Eq. (2.8) is well
defined for this choice of the friction law, and the velocity v,
determines a small-scale cutoff for slipping events as described
in Eq. (7.2).

monotonically with increasing slipping speed. This fric-
tion law introduces the only nonlinearity in the system
and is responsible for the instability that generates chaot-
ic behavior. In this regard, we differ from much of the
recent work in this field in that we do not assume a state-
dependent friction law or otherwise introduce explicit
memory effects.’>”!7 On the other hand, we do retain
inertial terms.
The equations of motion for this model are

mX; =k, (X;,—2X;+X;,_)—k,X,—F(v+X;), Q.1
where dots indicate derivatives with respect to time ¢ and
the X; are the displacements of blocks j measured from
their initial equilibrium positions. For the friction law F

we assume a function of the form

F(X)=Fy$(X /vy) , 2.2)

where ¢ vanishes at large values of its argument and is
normalized so that ¢(0)=—¢'(0)=1, and v, is some
speed that characterizes the velocity dependence of F.

We begin the analysis of (2.1) by rewriting it in a scaled
form that gives us some insight concerning the roles
played by the various lengths and times that occur in this
system. A natural choice for a timelike variable is

T=w (2.3)

2
ol W, =k, /m .

The quantity 27 /w), is the period of oscillation of a single
block attached to a pulling spring in the absence of slid-
ing friction. The maximum displacement of such a block
before slipping is Do =F,/k,, which is a natural unit in
which to measure X

X;=DoU;=(Fo/k,)U; . (2.4)
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In these units, (2.1) becomes
U,=1%U;,,—2U;+U;,_)—U;— ¢$Q2av+2aU;) ,
(2.5)
where

I*=k./k,, v=v/(w,Dy), 2a=w,Do/v;, (2.6)

and dots now denote differentiation with respect to 7.
The three dimensionless groups of parameters defined in
(2.6) are the fundamental quantities that govern the be-
havior of this system.

The dimensionless pulling speed v is the ratio of the
slipping time w;' to the loading time D, /v, where the
latter is the time that it takes for a pulling spring to be
stretched enough to overcome the static friction. For
very large events on real earthquake faults, slipping times
may be of order seconds and loading times of order tens
or hundreds of years; thus realistic values of v are less
than 1078 The parameter a is the ratio of the largest
characteristic slipping speed @,D, to the speed v, at
which friction is appreciably reduced. We expect the
model to exhibit larger undamped motions for larger
values of a.

Note that there is no natural length scale for measur-
ing position along the fault; the equilibrium spacing be-
tween the blocks, denoted by a in Fig. 1, so far appears
nowhere in these equations. The fact that the scaling of
distances along the fault is arbitrary and completely in-
dependent of the units in which we measure the displace-
ments X is important for understanding certain proper-
ties of this model. Although it is not mathematically
necessary to introduce the length a explicitly, there are
several practical reasons for doing so. First, assigning
units to distance along the fault is useful for dimensional
analysis. Second, it is convenient to be able to think of
the continuum limit of this model as one in which a —0,
as opposed to a limit in which the spacing remains fixed
and the functions U are constrained to be arbitrarily
slowly varying. Finally, we shall see that a has a physical
role to play as a short-wavelength cutoff.

Accordingly, we introduce variables with dimensions

of length
s=ja, E=la=al(k, /k,)"?, 2.7)

and—provisionally—take the limit ¢ —O0 in order to
write (2.5) in the form

*U
a 2

U=8-"——U—¢Q2av+2aU) . (2.8)
Equation (2.8) is not actually a well-defined partial
differential equation. There would be no difficulty were
we to introduce an arbitrarily narrow stable-creep region
at small velocities as shown by the dashed line in the
figure; we shall discuss the effects of such a modification
in Sec. VII. For the idealized law, however, the
multiple-valued character of ¢ at U=0 causes the system
to undergo discontinuous stick-slip events all the way
down to the one-block level; in other words, the numeri-
cal discretization of (2.8) that takes it back to (2.5) can
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never be performed at so small a length scale that the
stick-slip events will look spatially smooth. Nevertheless,
(2.8) is a useful representation of the underlying finite-
difference equation (2.5), and we frequently shall refer to
the two equations interchangeably. We see from (2.8)
that the length £ is a stiffness or equivalently, because 7 is
dimensionless, a sound speed. If £ is to remain finite in
the continuum limit, then /, the number of blocks in the
length £, must diverge like @ ~!. Working back through
the various parameters that we have introduced, we find
that m, kp, and F, vanish linearly with a in this limit, and

that k, is proportional to a ~'.

III. SOME SPECIAL SOLUTIONS
A trivial solution of (2.8) is

U =—¢(2av)=const , (3.1)

where the blocks are moving uniformly at the pulling
speed relative to the rough surface. Because of the form
we have chosen for the friction law, this solution is unsta-
ble against small perturbations of all wavelengths. To see
this, write

U(s,7)=—¢(2av)+u expligs +Qr1) (3.2)

and linearize (2.8) in u,;. The amplification rate Q is
found to be
Ug)=at(@’—1-¢g¢*'"?, (3.3)

which remains positive for all q. [@= —a¢'(2av)=a for
small v.] Because Re() remains finite for all g, this insta-
bility is not the kind that causes divergences at finite
times; deformations of arbitrarily short wavelength do
not grow arbitrarily rapidly. On the other hand, any
small irregularity in the positions of the blocks, no matter
how long or short its wavelength, is amplified while the
system is slipping in this manner.

A second spatially uniform solution of (2.8) is one in
which U (7) undergoes periodic motion satisfying

U=—U—¢Qav+2al) . (3.4)

A numerical solution of this equation is shown in Fig. 3,
where we have plotted the displacement U and the veloci-
ty U as functions of 7 for the case v=0.1, a=2.5. The
system alternately sticks (until U has reached its limiting
value —1 where the force exerted by each pulling spring
equals the maximum static friction) and then slips (until
the pulling springs are sufficiently compressed to stop the
motion) in unison, as if it were a single block. If « is
large, then ¢ is small throughout most of each slipping
event, and the solution of (3.4) for a slip that starts at
7=01s U= —cos(7). Remember that the units of 7 have
been chosen so that the slipping time 7 for this event is
of order w. Because the total displacement in this limit-
ing case is U =2, the system takes a time of order
T; =2/v—the loading time in these units—to return to
its slipping point U = — 1.

This uniform stick-slip motion is also unstable. A
linear stability analysis (not shown here in detail) indi-
cates that, as the system passes through the region of
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slipping speeds for which ¢’ is negative, irregularities in
the positions of the blocks are amplified by essentially the
same mechanism that was described in the first para-
graph of this section. This instability is illustrated in
Figs. 4(a) and 4(b), which are three-dimensional represen-
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FIG. 3. Periodic solutions. When the initial conditions are
spatially uniform, the system exhibits periodic stick-slip motion
that is identical to the stable solution for a single block. In this
solution, the blocks remain stuck for a time of order r, =2/v
until they reach the threshold static friction, and then they slip
for a time of order 7g==7. (a) and (b) illustrate, respectively, the
dimensionless displacement U (7) and the velocity U(r) for the
case a=2.5, /=10, and v=0.1. Similar solutions may be ob-
tained for propagating kinks as discussed in the text.
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tations of, respectively, the velocities U ; and the strains,
i.e., the differences U; ., — U, as functions of 7. We have
started the system with all blocks stuck and with an al-
most imperceptibly weak, uneven departure from exactly
uniform spacing. All blocks slip at approximately the
same time, as they would in an exactly uniform
configuration, but the irregularities are amplified strongly
during the slipping event and the system is left in a highly
irregular state once it comes to rest again.
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FIG. 4. Instability of uniform motion. We began this simula-
tion with a small spatial inhomogeneity in the displacements.
(a) illustrates the velocities Uj(‘r). As in Fig. 3 for uniform ini-
tial conditions, here we see that the most prominent feature is a
large slipping event involving the whole system. In this case,
however, the motion is somewhat irregular. The irregularity is
more evident in (b), which shows the strains U;(7)—U;_ (7).
Here we see more clearly how the initial mhomogenelty is
amplified during a great event. Afterwards, the system is left in
a highly irregular configuration which gives rise to a sequence
of smaller events before the next great event takes place. These
results were obtained for a=2.5, /=10, and v=0.01.
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Equation (2.8) also admits periodic solutions in the
form of propagating kinks. If we write

U(s,7)=U(rxs/B), (3.5)
then U satisfies
(1—-&/8)U=—-U—¢2av+2alU) , (3.6)

which is almost the same as (3.4) except for the reduced
“mass” on the left-hand side. These kinks must propa-
gate at speeds 8 which are greater than the sound speed &
in order that this mass remain non-negative. As func-
tions of 7, they look much like the uniform modes shown
in Fig. 3 except that, as 8 approaches &, the slipping time
decreases toward zero. In general, these propagating
modes must be just as unstable as the uniform ones. As
we shall see, kink propagation does appear in the larger
events that occur in open systems, and a vestige of the
system-wide, periodic solutions seems to coexist with
chaotic behavior.

IV. EVENTS OF VARIOUS SIZES

Most of the slipping events that occur in numerical
simulations of this model are not uniform or propagating
motions of the system as a whole but, rather, involve
smaller, connected groups of blocks. These events fall
into three distinct categories that we shall describe, re-
spectively, as ‘“microscopic,” ‘“localized,” and ‘“‘delocal-
ized.” In order to understand what is seen in the simula-
tions, it is useful first to look at events in each of these
categories from an analytic point of view.

The microscopic events, by definition, involve only one
or a few blocks. To describe them, we must use the
discrete version of the equations of motion (2.5) rather
than the continuum limit (2.8) in which such events are
invisible. Consider a connected group of n blocks whose
internal spacings are sufficiently uniform that the group
slips as a whole between blocks on either side which
remain stuck. Such a slipping event occurs when the
group has fallen far enough behind its neighbors that the
combined forces exerted by the n pulling springs and the
two external coupling springs are equal to the maximum
force of static friction. For example, the middle block in
Fig. 1 may be in such a situation.

Let the position of the center of mass of this group
U. .. beexpressed in the form

(4.1)

Note that we have shifted to a frame of reference in
which W, =0 when the blocks are stuck. The equation of
motion for W, is

W,=—Q:W,+1—¢(2aW,)+vr, (4.2)
where
2
Q=1+ % , (4.3)

and we have chosen the origin of the time axis so that the
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system will start slipping with W =W=0 at r=0. The
form of these equations can be understood by noting that
the pulling and frictional forces act equally on all the
slipping blocks but, for any n, only the two coupling
springs which connect the slipping blocks to the rest of
the system have any effect on the center of mass. Thus,
in (4.3), the relative effect of the coupling springs de-
creases as n becomes large. ]

For small n, we expect that the speed W, is small
enough that 2aW, <<1. Then we can linearize ¢ in (4.2)
and write

W,—2aW,+QiW,=vr . (4.4)

The solution of this equation is

W,,(T)=%[Qlexp(il‘nﬂ—ﬂiexp(—iI‘,,T)]
42y T @.5)
Q. 9
where
Q,=a+il,, T,=(Q2—a?)!"?. (4.6)

Because /? is generally a large number, T, is real for
sufficiently small n (or for any n if a < 1).
For small n, where (1, >>a, the solution (4.5) becomes

sin(Q,, 7)

Q (4.7)

TT—

n 2
Qn

n

The group of blocks comes to rest after a time interval
67=2mw/Q,, having moved forward a distance

3/2
(4.8)

In this limit, the slipping condition is immediately
satisfied at the moment the blocks come to rest and thus
the motion repeats itself continuously. Note, however.
that the average speed

6u/n v nv

& Q2 22

(4.9)

is much less than v for small n. Thus, although a group
of blocks undergoing a sequence of these small periodic
events is catching up with its immediate neighbors, it is
falling further and further behind the average displace-
ment of the system as a whole. In fact, this average speed
vanishes in the continuum limit in which la and na
remain fixed while @ —0.

In a more accurate solution, which retains the effects of
a nonzero a, the group of blocks moves further forward
than is indicated in (4.7) and sticks briefly between slip-
ping events. We shall see that these periodic sequences of
small events, usually involving only one or two blocks,
are prominent features of our numerical simulations. As
n increases, I',, decreases. Thus the larger slipping events
last for longer times, the blocks undergo larger displace-
ments, and the sticking time between events increases.
Quite quickly, however, the approximations leading to
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(4.4) fail, primarily because our assumption that the slip-
ping blocks are uniformly spaced is unrealistic for any
but very small values of n. What we have done, in effect,
is to assume that the strain, and thus the energy stored in
the coupling springs, is strongly localized at the ends of
the slipping region. There is no reason for this to happen
for large n.

To develop an analytic picture of larger events—those
which we call localized or delocalized, and which con-
tribute appreciably to the average forward motion of the
system—we must go to the continuum limit, i.e., Eq.
(2.8). In this limit, the condition that the blocks along
some section of the chain be just on the verge of slipping
is

gzdz—U—U=1 . (4.10)

ds?

That is, the sum of the coupling and pulling forces just
balances the maximum static friction continuously across
the whole slipping zone. The general form of (4.10) im-
plies that the strain dU /ds can be concentrated at most
within regions of size £ at the zone’s boundaries.
Specifically, the solutions U, of (4.10) can be written

U.(s)=—14+¢€cosh(s/§) , 4.11)

where we have arbitrarily chosen the zone to be centered
at s=0, and have used the symbol € to denote the dis-
tance of closest approach between U,(s) and the displace-
ment U =—1 at which the blocks must slip under the
influence of the pulling springs alone.

Having identified a region in which a slipping event is
about to occur, we now can ask what that event might
look like. As long as we stay within the zone where (4.10)
is satisfied, and as long as we never encounter negative
slipping speeds, we can write U (s,7)=U (s)+u(s,7) and
solve

2
ﬁ—§2%+u=l—-¢(2av+2au)g2ad . (4.12)
s

In writing the second, approximate version of (4.12), we
assume that the velocity # is much bigger than the pul-
ling speed v, but that au << 1 so that the motion does not
probe the nonlinear portion of ¢. No other approxima-
tions are involved. The fact that neither € or the position
of the slipping zone along the s axis (i.e., s=0) appear in
(4.12) is an exact consequence of the fact that the only
nonlinearity of (2.8) is contained in the velocity-
dependent function ¢.

Suppose, now, that the slipping motion is triggered by
a small pulse at some position, say s,—presumably a slip-
ping event on a scale appreciably smaller than the one we
are considering. More generally, the motion may be trig-
gered by a number of nearly simultaneous small pulses.
Within our linear approximation, however, such a
motion would be simply a linear superposition of the
motions generated by the single pulses. For simplicity,
we describe this event by the initial conditions

u(s,0)=0, u(s,0)=wy8(s —sq), (4.13)

where w, is proportional to the slipping speed during the
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triggering event. More precisely, if the triggering event is
the slipping of a single block, then, according to (4.7),
va
wy=—, (4.14)
° 2
the extra factor a being the width of the pulse. The sub-
sequent motion is

u(s,¢)=w0f% sm(rl;qr) explig (s —sg)+ar],
(4.15)

where g is a wave number and
L, =(&q*+1—a?)'"?. (4.16)

If we assume that the dominant contribution to the
Fourier integral in (4.15) comes from wave numbers such
that g& >>a, that is, that the pulse remains narrow com-
pared to £/a, then we find

u(s,7)=twee[8(s —so—E&7)+8(s —so+E7)] . 4.17)
Here, two exponentially growing velocity pulses are prop-
agating at the sound speed £ in opposite directions away
from the source point s.

If the slipping zone is not too large, the pulses must
stop at the edges; they do not grow large enough to cause
the blocks outside the zone to become unstuck and, thus
remain localized. In fact, it seems unlikely that one
would see well-resolved pulses in any but very large slip-
ping zones. Because of the frictional instability, small
propagating pulses—or superpositions of such pulses—
must be very noisy.

On the other hand, in a very large zone where € is so
small that U is close to its limiting value —1 across a
large part of the system, a pulse may become delocalized.
It may grow enough that it dislodges blocks outside the
initial slipping zone, and eventually may become so large
that the linear approximation fails in (4.12). In this case,
the pulse ceases to be amplified (¢ vanishes) and should
look much like one of the propagating solutions of (3.6),
perhaps with S=¢§ and, accordingly, a sharp front that
looks like a shock wave. We see both kinds of events—
localized and delocalized—in the numerical simulations
to be described in Sec. V. We shall present an explicit
mathematical criterion for localization in Sec. VI, and
this criterion will play an important role in our analysis
of the numerical results.

One feature of this model that has not been given prop-
er emphasis so far in this section is the amplification of
spatial irregularities while blocks slip. Our assumption in
analyzing both the small discrete events and the larger
continuous ones has been that the system is locally
smooth enough for an event of the appropriate size to
occur. The initial state of the slipping zone, of course, is
never ideally smooth, and we know from Sec. III that re-
sidual irregularities are amplified during the slipping pro-
cess by the frictional instability. In fact, the exponential
growth of the pulses in (4.17) is a manifestation of this
same instability.

We thus are led to the following qualitative picture of
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how chaotic behavior is generated in this model. An
event of extent, say, As amplifies irregularities on scales
smaller than As, and these irregularities subsequently
produce smaller events. At the same time, because the
blocks that are slipping in the zone As are catching up
with their neighbors on the average, the event is smooth-
ing the system on scales larger than As and, accordingly,
is preparing it for larger events. In this way, the events
of widely differing sizes that we have described in the
preceding paragraphs are generated irregularly and per-
sistently by the deterministic motion of this dynamical
system. To learn more about this complex behavior, we
turn next to numerical methods.

VELOCITY Uj(T)
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V. NUMERICAL SOLUTIONS

We have solved Eq. (2.5) numerically for various
choices of the parameters a, v, and /, with system sizes
L =Na up to N=400 blocks, and with a friction function
of the form
(5.1

é(») sgn(y) .

=1
1+yl
All results described here are for the case of free bound-
ary conditions—the chain simply stops at its ends.
[We did try periodic boundary conditions in a few ear-
ly tests with small systems (N=50). In those cases, the

0.06

VELOCITY Uj(r)

POSITION j

o

-0.02 50
0
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POSITION j

FIG. 5. Chaotic solutions. When the system has evolved from irregular initial conditions to a statistically steady state, we observe
a wide range of events, shown here for «=2.5, /=10, and v=0.01. (a) illustrates the smallest slipping events. Periodic one- and two-
block events are quite prominent, as well as two successive eight-block events. Note that the maximum velocity attained during the
events shown here is less than the pulling speed v (U <0); hence these events act mainly to smooth the system on small scales rather
than to release appreciable amounts of strain. (b) illustrates an intermediately large localized event. Here the maximum velocity is
much greater than v; hence some strain is released locally. (c) illustrates a delocalized great event. Note that the event is triggered by
a small slip in the interior of the system and propagates to the boundaries at the sound speed, as described in the text. The maximum
velocity during this event is approximately the same as that of the uniform event shown in Fig. 3(b), but the motion in this case is

highly irregular.
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motion eventually settled down into smooth, periodic
propagating modes of the form (3.5). This may have been
a finite-size effect.]

Generally, we started the system in a fully stuck
configuration with a small spatial inhomogeneity and al-
lowed it to run for ten or more loading periods 2/v before
accumulating data. After the system reached what ap-
peared to be a statistically steady state, we observed a
wide range of events, some of which are illustrated in
Figs. 5(a)-5(c) in the form of graphs of the velocities Uj
as functions of positions j and time 7. The parameters
used in computing these figures were v=0.01, /=10,
a=2.5,and N=50.

Figure 5(a) shows the system during a relatively quiet
period. Note that the vertical scale is greatly expanded
and that all events have maximum speeds that are less
than the pulling speed v (U <0). Most noticeable in the
figure are two successive events involving the same group
of eight blocks. Periodic, one-block, microscopic events
of the kind described in Eq. (4.7) are much in evidence, as
are a smaller number of two- and three-block events
which are less regular and less persistently repetitive.

In Fig. 5(b), we show the system during a time interval
in which a moderately large localized event occurred.
The maximum speed now is appreciably larger than v
and, in comparison, the one- and two-block events are
hardly visible. On the other hand, the slipping speed
achieved in this event is much less than unity, which, in
our units, is the maximum velocity (0,Dg) of a great
event like that shown in Fig. 3. Note the intrinsic irregu-
larity of this event.

Figure 5(c) shows a delocalized great earthquake of the
kind that occurs roughly once a loading period 2/v for
this choice of system parameters. This particular event is
reasonably well described by (4.17). It is triggered by a
small event in the interior of the system and the resulting
disturbance grows as it propagates at the sound speed in
both directions toward the edges. In this case the slip-
ping speeds do approach unity. The event finally dies out
as the moving pulses are reflected from the boundaries.
Again, note the amplification of irregularities.

We have generated a large amount of numerical data of’

the kind illustrated here, and have analyzed it in terms
similar to those used in the seismological literature. In
particular, the statistical analysis of Gutenberg and
Richter relates the frequency of seismic events to the
Richter magnitude, the latter being a measure of the am-
plitude of the motion expressed on a (base ten) logarith-
mic scale. The analogous relationship for our version of
the Burridge-Knopoff model is as follows.
Define the “moment” M of an event to be

M=35U;, (5.2)

J

where the sum is over all blocks which are displaced dur-
ing the event, and 8U; is the displacement of the jth
block. The corresponding ‘“magnitude” is u=InM. Let
FR(u)dp be the frequency of events, per unit length of the
fault, whose magnitudes are between p and u+du. Ac-
cording to Gutenberg and Richter (who, by necessity,
averaged over events observed throughout much of the
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world, not just on one fault), this function has the form

R(p)= = Ade b* (5.3)

g
where A is a constant (independent of M), and b=1. To
the best of our knowledge, there has not yet been a first-
principles, theoretical explanation of the b=1 law, nor
has there been much understanding about how to com-
pute the constant A.

Figures 6(a)-6(e) are graphs of In72(u) obtained from
our simulations with various values of the parameters a,
l=§&/a, v, and N =L /a. The events in each case fall
identifiably into the three categories described previously.

First, at the small-u ends of the distributions, there are
large numbers of microscopic events whose magnitudes,
in accord with (4.8), are of order

372
_n
212 ]

The quantity y,; (with a=1) is marked explicitly in each
graph and corresponds accurately to the position of the
first peak in each distribution. Subsidiary peaks near y,,
U3, etc. are visible, but are increasingly broadened be-
cause larger groups of blocks can slip with larger varia-
tions of their internal configurations. Such variations are
not accounted for in (5.4). As seen in Fig. 6(e), for exam-
ple, these subsidiary peaks are more pronounced for
larger values of a, i.e., weaker sliding friction. They also
are shifted toward larger u because (4.8) underestimates
the displacements that would be obtained from (4.5) for
large values of a.

Next, at the centers of these graphs, there are broad
groups of moderately large events—we shall see that they
are the localized events—whose distributions are con-
sistent with the form (5.3). That is, the functions InR(u)
have linear regions with slopes —b. Moreover, for
a = 2.5, the exponent b is indistinguishable from unity, in
agreement with the Gutenberg-Richter law. For reasons
that will becomes apparent, we shall refer to the part of
the distribution in which (5.3) is valid as the “scaling re-
gion,” and shall denote the function R in this region by
ﬁs .

Finally, at the large-u ends of the distributions, there
are groups of events which are too frequent to be con-
sistent with the scaling function (5.3). These are delocal-
ized great events of the kind illustrated in Fig. 5(b).
Their magnitudes may be, at most, of order yu; =In(2L)
because the largest possible earthquake is one which dis-
places the entire fault a distance 8U=2 and, therefore,
has a moment 2L. We can see from the figures that y, is,
in fact, an upper bound for u. In what follows, we shall
denote the corresponding part of the distribution func-
tion by (). This feature seems always to be present,
but, as seen in Fig. 6(d), is weaker for small a. As seen in
Fig. 6(c), the distribution 72 ; becomes broader for larger
values of L /€.

In addition to the results shown in Figs. 5 and 6, we
have obtained data from simulations with a variety of
other values of a, v, and L. The dependence on «a is par-
ticularly interesting. As a decreases, slipping friction be-

B, =In(nadW,)=In |2mwnav (5.4)
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comes less effective and, as a result, the motions become
slower and the displacements smaller in each event. In
Fig. 6(d), where a=1, we see that the scaling distribution
has become noticeably flatter—b is considerably less than
unity—so that the more extensive localized events have
become relatively more frequent. For a<1, we have
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found that these extended localized events tend to run
into each other in a way that makes the definition of an
isolated “‘event” required by (5.2) essentially meaningless.
Note that the condition a <1 implies that all of the
modes in (4.16), no matter how small the wave number ¢,
have oscillatory components; thus @ =1 may be a limiting
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FIG. 6. Size distributions obtained from numerical simulations: In7(u) as a function of u for various values of the system size N,
the pulling speed v, and the parameters a and /. For each graph, data were accumulated for the time T, given here in units of the
loading time 7, =2/v. The quantity u, is the magnitude of one-block events given in Eq. (5.4); E=In(2£/a) is the magnitude of the
largest localized event as predicted by (6.5); and pu; =In(2L) is the predicted magnitude of the largest event that the system can sus-

tain.
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FIG. 6. (Continued).

value below which some qualitatively different kind of
noisy but continuous creeping behavior occurs. On the
other hand, it is also possible that this transition, if it
happens at all, depends on the pulling speed v. In fact,
we found it necessary to reduce v to 0.001 in Fig. 6(d) in
order to obtain meaningful data. This point, which may
be important for understanding the distinction between
stability and instability in friction, clearly deserves fur-
ther study.

VI. SCALING THEORY

The structure of our version of the Burridge-Knopoff
model is sufficiently simple that many aspects of the dis-
tributions shown in Fig. 6 can be understood by dimen-
sional analysis combined with a liberal use of concepts
that have become familiar in the theory of critical phe-
nomena. We start by looking at &2 ¢(u) in the scaling re-
gion. Our earlier observation that position along the
fault s =ja scales independently of the displacements of
the blocks X;=D,U; now takes on special importance.
In Eq. (2.8), U is a displacement (in units of D), v has di-
mensions of displacement per unit time 7, and the only
quantity with the dimensions of length s is £. Of course,
both the block spacing a and the size of the system L also
are lengths that enter into the full statement of the prob-
lem. It seems plausible, however, to assume that the dis-
tribution of events in the scaling region is independent of
either of the latter quantities, that is, that there is some
range of sizes of events for which the continuum theory
(2.8), by itself, is an adequate description.

The  function R (u) has  dimensions of

[(dength) X (time)] !, and M has the dimensions of
(length) X (displacement); thus a general form for R un-
der these assumptions is

Relp)=—2C

6.1
M , (6.1)

26 ¢

where € is some function to be determined. The reason
for choosing the dimensionless combination aM /2§ as an
argument for @ will become apparent in the next few
paragraphs. In the scaling region, 575 behaves like a
power of M, and therefore we must be looking at the lim-
it

aM

o aM
287

28

aM

e z@o(a) , _E_)O . (6.2)

Comparing (6.1) and (6.2) to (5.3), we see that b =1—1n
and 4 =vCy(a/2£)". In the language of critical ex-
ponents, —m is an ‘“anomalous dimension.” The
Gutenberg-Richter law and most of our numerical results
indicate that 7 is approximately zero, but we see depar-
tures from this law at small a as shown in Fig. 6(d). Our
current best estimates for b and @, are shown for various
values of « in Fig. 7.

The question that arises immediately is whether the
limit in (6.2) is sensible. Are magnitudes of realistic
earthquakes consistent with the condition M <<2§/a?
Remember that £ is the distance traveled by a sound sig-
nal during the slipping time for a great event of the kind
shown in Fig. 3, and thus is of order kilometers for real
faults. An earthquake in which a kilometer of the fault is
displaced a distance of order unity (i.e., D, in dimension-
al units) is a truly colossal event. But that is only a part
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of the story. The more interesting part is the physical—
as opposed to purely dimensional—reason for using
aM /2& as the argument of the function @in (6.3). The
length 2£/a is a physically natural unit in which to mea-
sure moments of slipping events because it marks the
transition between localized and delocalized events as de-
scribed in the discussion following Eq. (4.17).

To see this, suppose that the stuck block at the edge of
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FIG. 7. The parameters b and €, which characterize the
scaling distribution % s(u) as defined in Eq. (6.2). These results
were obtained from the numerical calculations shown in Fig. 6
and other similar computations. All data shown here were ob-
tained for /=10, 0.001 <v<0.01, and 100< N <400, and was
accumulated for times 7 ranging between 407, and 10007, .
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a slipping zone has displacement U =0; that is, its pulling
spring is neither stretched nor compressed. In order to
dislodge this block, the adjacent slipping block must un-
dergo a displacement of order 8U =] "2, (In terms of our
original forces and spring constants, the latter condition
is k.6X =F,=k,D,.) Returning to (4.17), we have

va

412§ exp(als /) ,

SU(As)= [drii(sy+As,7)= 6.3)

where As =s —s, is the distance from the triggering
pulse (somewhere near the center of the zone) to the posi-
tion at which the displacement is being measured. Let £
be twice that value of As in (6.5) such that the localiza-
tion condition 8U (As)=I"? is just satisfied. That is, £ is
the full width of a slipping zone that is just marginally lo-
calized. Clearly,

Ex~ Eéln 48 . (6.4)
a va
The associated moment is
M=sz§GU(As)d<As)z2§/a. 6.5)

Thus the natural argument for the function @ in (6.1) is
M/M=aM /2&. The magnitude fi=InM is indicated
along the u axes in Fig. 6. As expected, this magnitude
does mark the upper end of the scaling region.

In the language of critical phenomena, £ is a correla-
tion length; it is the characteristic size of the largest lo-
calized events. Note that it diverges logarithmically as v
vanishes, implying that the pulling speed is the critical
parameter in this theory. The scaling region comprises
those events whose sizes As are in the range a <<As <<£&
or, equivalently, whose magnitudes p satisfy p, <<p <<fi.
This is a critical region in the sense that all natural length
scales have disappeared and thus the event within the
scaling region must be self-similar.

Two further tests of the scaling assumption are shown
in Fig. 6. According to (6.1), the function Rg(u)/v
should be independent of v in the scaling region. To
check this, in Fig. 6(b), we have plotted In(Rg) for
v=0.001 in order to compare it with the corresponding
function in Fig. 6(a) for v=0.01. The agreement is excel-
lent, the only difference being—as expected—that the
vertical scales differ by a factor of In(10) and the micro-
scopic events are shifted to smaller u for the smaller
value of v. In this sense, the scaling region becomes
larger as the critical parameter v approaches zero. Equa-
tion (6.1) also implies that 2 ¢(u) should be independent
of L (for L sufficiently large). This is shown in Fig. 6(c),
where we have increased the size of the system by a fac-
tor of 4 compared to Fig. 6(b), but have kept all other pa-
rameters the same. The only noticeable effect is that, as
mentioned previously, the region of great events extends
to larger u and the distribution R ;(u) is less sharply
peaked. Otherwise, the distributions are essentially iden-
tical in both the microscopic and scaling regions.

Let us turn now to the delocalized great events in the
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upper part of the distribution 7 ;(u) where u>f. An in-
teresting quantity to consider is the integrated frequency
of these events, i.e., the area under the distribution 7.
To compute this, we use the identity

JaM mw)=v . (6.6)

This is simply a statement that the cumulative effect of all
the events is to keep the blocks moving, on the average,
at the pulling speed. Let (v)g denote the contribution to
the left-hand side of (6.6) from events in the scaling and
microscopic regions

(v>s=f1fldM7€s(y) : 6.7)

where M| =exp(u,) is the moment of a one-block event
as given in (5.4). Similarly, write

(v)o=[7dM R =RsMq , ©.8)
where
2
Re=[ "duRgp) (6.9)
n

is the integrated frequency of the great events per unit
length of the fault, and M;=(v); /R is their average
moment. Then, because
v=_{v)g+{(v)gs, (6.10)
the frequency of great events on the fault as a whole is

_ <V)S

v

(6.11)

In the case M;=2L, the first factor on the right-hand
side of (6.11) is simply the loading frequency v/2. An ob-
vious question is whether the localized events in the scal-
ing region can move the system forward fast enough—
that is, produce a large enough (v)g—to reduce
significantly the frequency of great earthquakes.

To make further progress in answering questions of
this kind, we must look at specific situations. According
to Fig. 7, n=0 for a = 2.5, in which case

<V)S

Because p is proportional to In(v) according to (5.4), we
could, in principle, pull the system slowly enough to
make —pu,; become large and thus make (6.12) approach
unity. But, because Cy=~10"3, “slowly enough” means
v=1071% or less, which hardly seems reasonable. Our
conclusion is that the great earthquakes in this regime of
system parameters account for all but a few percent of
the average motion of the fault.

For values of a smaller than about 2.5, our simulations
seem to indicate that 7 is positive. In this case, the mi-
croscopic events do not contribute at all to {v)g, and we
can write

s (G (6.13)
v n

For a=1.0, our estimates shown in Fig. 7 indicate that

the right-hand side of (6.13) is about unity and indeed the
great events in this case, as seen in Fig. 6(d), are strongly
suppressed.

VII. QUESTIONS AND (A FEW) ANSWERS

A large number of questions are implied but left
unanswered in the discussion so far. In the following
paragraphs, we shall pose some of those questions explic-
itly and suggest a few answers.

(1) Is the Burridge-Knopoff model, as we have used it,
at all realistic? The fractional contribution of localized
events to the forward motion, i.e., the ratio {(v)g/v in
(6.10), seems to be much less than unity for all situations
in which we find the Gutenberg-Richter law (b=1) to be
valid. Does this result mean that the Burridge-Knopoff
model is purely academic?

This is indeed worrisome. However, several points can
be raised in defense of the model. In the first place, it is
not known whether the actual distribution of magnitudes
for a single real earthquake fault might not look qualita-
tively as predicted here, with a broad scaling region and
excess events at large u. We do know that the very few
great earthquakes that occur each year release more se-
ismic energy than all the hundreds of thousands of small-
er events combined, but the available statistical informa-
tion is not good enough to establish with certainty wheth-
er the frequency of these events lies above the b =1 line.

Curiously, although the great events in our model (for
large a) account for almost all the forward motion, it is
the smaller events in which much of the frictional dissi-
pation occurs. This is because most of the motion in the
great events is at speeds so large that the force of friction
is small. The net effect of a great event is that the poten-
tial energy of stretched pulling springs is converted into
compression of these springs, and is hardly dissipated at
all. The dissipative behavior of the system—in particu-
lar, the time-dependent relation between pulling speed
and pulling force—is an interesting topic for further
study.

Certainly, there are parameter ranges in our model for
which the localized events in the scaling region would be
very noticeable in the real world. The scaling region does
not (necessarily) describe just a very slow, effectively
stable creeping motion between periodic great events.
Slipping zones for event well within the scaling region ex-
tend over appreciable fractions of the overall length of
the fault. These events have magnitudes that are
sufficiently close to u; that they would lie well up on the
Richter scale if we were to convert our logarithims to
base ten and shift the u axis so that our great events oc-
curred near, say, a magnitude of 8.

(2) What is the underlying length scale a for a real
fault? Does it matter?

Although a does not appear explicitly in %5 as given in
(6.1), it does play an important role in the formula (6.4)
for £ and also in the lower limit of the integration that
defines {v)g in (6.7). The fact that a remains explicitly in
these formulas for observable quantities is among the in-
dications that our theory does not yet have a proper con-
tinuum limit. There is no a priori reason why there
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should not be one or more fundamental small length
scales in this model—for example, some characteristic
size of crystallites, rocks, or segments of plates. It seems
to us, however, that such an assumption would be un-
necessarily ugly, and that a much simpler possibility ex-
1sts.

Suppose that, instead of the idealized stick-slip friction
law shown by the solid line in Fig. 2, we consider a
modified law that admits stable viscous creep at speeds
less than some very small v, as shown by the dashed line
in that figure. Because the function ¢ is now single
valued everywhere, the continuum limit in (2.8) is well
defined, and the one-block events that have played some
role in our analysis must somehow be smoothed out.

To see how this happens, assume that the dimension-
less pulling speed v is much greater than vo=v,/w,D,,
and consider a portion of the fault that is creeping at a
speed less than v, that is, a portion that would be con-
sidered stuck in our original formulation. A stability
analysis like that summarized in Egs. (3.2) and (3.3) tells
us that small perturbations of wave number g decay at
rates —Q(q), where

Qg)=—ayt(ad—1—E2q*)!"? (7.1)

and ay=1/2v, is very large and positive. We now ask
the following: Which of these perturbations survive for
an entire loading period and thus are effective in trigger-
ing new events, and which are damped out? The answer
is that any perturbation for which ¢ is sufficiently large
that Q" > v /2 is damped out, where Q" denotes the slow
mode (with the plus sign) in (7.1). The wave number at
which this condition is marginally satisfied is

1 172

QOé_

Accordingly, the length a,=1/q, is the effective short-
wavelength cutoff for this modified model; the continuum
theory does not generate spatial structure on scales ap-
preciably smaller than a,. There is an interesting inter-
nal consistency to this choice of cutoff a =a,. In this
case, (7.2) becomes

£ _po v
2

a 2v,

R

2vg (7.2)

, (7.3)

and then the average speed of one-block events in (4.9) is
simply 8 W, /87=v,. Because § is known from the sound
speed, Eq. (7.3) may provide a useful route for determin-
ing the remaining physical parameters in the theory.

(3) Are real faults long enough to be, so to speak, in the
“thermodynamic limit?” What happens when they are
not?

In the theory of thermodynamic critical phenomena,
the intrinsic properties of a system are considered to be
those that are obtained in a limit in which the size of the
system is taken to infinity while all other parameters, in-
cluding the critical parameters, are held fixed. For our
system, the analogous limit would seem to require that v
remain fixed while L /€ becomes indefinitely large. If &
itself is of order kilometers or more, and £ diverges loga-
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rithmically in v according to (6.4), then L /E for real
earthquake faults is unlikely to be large enough to satisfy
this limiting condition. In our numerical simulations,
£/a =66 and 85 in Figs. 6(a) and 6(c), respectively; thus
the limit is far from being achieved in Fig. 6(a) where
L /a=100, but may be reasonably well satisfied in Fig.
6(c) where L /a=400.

For several reasons, however, the analogy to thermo-
dynamic critical phenomena is not entirely accurate. The
sum rule that determines the average speed, Eq. (6.10),
must be satisfied under all circumstances, and this con-
straint on the spectrum of fluctuations has no parallel in
the thermodynamic problem. So far as we can tell from
the numerical experiments that have been completed at
the time this paper is being written, the distribution of
events in the scaling region is unaffected by the size of the
system L, either in its functional form or its amplitude, so
long as v is small enough. The only exception to this rule
is that the scaling distribution may be truncated at some
u<p if L <& For a>2.5, the overwhelmingly largest
contribution to v in (6.10) comes from the delocalized
great events, and all of these would have to lie in a peak
near u=pu; =In(2L), as in Fig. 6(a), if L is not sufficiently
greater than £&. When o is small, this effect is less pro-
nounced because the scaling distribution contributes ap-
preciably to the sum rule (6.10), but a small value of L
still ought to induce a peak at the upper end of the spec-
trum. In general, our analysis predicts that great earth-
quakes must recur almost periodically, once each loading
time, on short faults.

We do not yet know what happens for very long faults.
For large a, the great events that account for the forward
motion are distributed according to some 7 ;(u) in the
region >[I, but we know little about this distribution.
Presumably it is smooth. Because its integrated moment
must be {u)s=v, and the upper limit for the integral
that defines {1 ); in (6.8) is now infinite, there must be a
v-dependent upper cutoff in 72 ;(u) or, equivalently, some
characteristic magnitude of the great events. A similar
statement can be made about the case of small a except
that, if the right-hand side of (6.13) is larger than unity,
the v-dependent cutoff must lie in the scaling region. It
remains to be seen, of course, whether real earthquake
faults ever are long enough for these considerations to be
relevant.

Finally, it should be noted that there is yet another
physical length scale that, while completely irrelevant
geologically, must be kept in mind in the interpretation of
numerical simulations and possibly also in the design of
laboratory experiments. This is the quantity 2£ /v, which
is the distance traveled by a sound wave during a loading
period. Ordinarily, this length should be much too large
to play any role in the dynamics of real systems, but it
can easily be chosen to be relatively small in simulations.
We have found that, if we increase v to the point that
2& /v becomes comparable to or smaller than L—that is,
if the loading period becomes comparable to the time tak-
en for a sound wave to traverse the fault—then we excite
what appear to be resonant propagating modes, and our
analysis in terms of isolated events breaks down. For ex-
ample, this happened when we tried to use v=0.01, with
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=10, for systems as large as N=1000. Our tentative
suggestion is that, for models of the kind considered here,
the natural “thermodynamic limit” is one in which the
critical parameter v vanishes as L becomes large in such
a way that £ <<L <<&/v.

(4) What important properties of real earthquake faults
are missing in this model? What might their effects be?

The potentially most serious limitation of this model is
its dimensionality. Real earthquake faults are two-
dimensional interfaces between three-dimensional plates.
Small slips occur in two-dimensional patches on this in-
terface, but great earthquakes break the surface and
propagate in a one-dimensional manner along the fault.
In either case, the associated strain fields extend into the
neighboring material in a way that cannot be modeled ac-
curately by our coupling and pulling springs.

Dimensionality is extremely important in thermo-
dynamic critical phenomena; it is one of a small number
of relevant parameters that determine the “universality
class” of a critical point. The model discussed here is so
unconventional, however, that we do not know what the
effective dimensionality is, or even whether the concept
makes sense. It seems to us most likely that the two-
dimensional nature of localized slipping events on the in-
terface between two plates must change the scaling distri-
bution significantly, but that the crossover between these
events and the effectively one-dimensional propagating
great events may correspond roughly to the delocaliza-
tion transition in our theory. Clearly, more work needs
to be done.

Another physically important feature that is missing in
our model is the interaction between faults, or between
remotely separated sections of a single fault. Because of
the idealized stick-slip friction law that we have used,
separated slipping zones cannot communicate with each
other unless all the blocks in between them become un-
stuck. Not even sound waves propagate through a stuck
region. As a result, we probably cannot expect to see aft-
ershocks in this model; there is no way for one event to
trigger another unless they are parts of the same slipping
zone or are immediately adjacent to one another.

In the latter regard, it might be interesting to explore
the effects of more realistic friction laws, perhaps with
stable creep at small velocity as suggested in item (2)
above, or with some combination of velocity hardening as
well as weakening, or with nonzero friction at high
speeds to simulate radiative losses. It is possible that
many such effects will have to be considered in order to
interpret aftershocks, swarms of events, quiescent periods
and the like—that is, in order to understand the dynamic
correlations that are important for predictive purposes.
We have hardly touched upon such correlations in this
paper, although they certainly do exist in this model.
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They will have to be understood in terms of simple mod-
els such as this one before it will make sense to look at
more complex situations.

VIII. CONCLUSIONS

In summary, we note the following.

The spatially uniform Burridge-Knopoff model of an
earthquake fault, with an idealized stick-slip friction law,
generates deterministically a wide range of slipping
events whose size distribution is similar in important
respects to what is seen in nature. The persistently
chaotic behavior of this model is a direct consequence of
the friction law, which causes small irregularities in the
system to be amplified during slipping motions.

The model produces three qualitatively distinct kinds
of slipping events: microscopic events, involving motions
on the smallest length scales accessible to the system;
large but localized events; and delocalized, great events.
The localized events are critical fluctuations; they are
self-similar over a range of length scales which becomes
infinitely broad in the limit of vanishing loading speed.
The distribution in magnitudes of these localized events is
consistent with the Gutenberg-Richter law.

In most of the cases studied here, the delocalized great
events play the dominant role in moving the system for-
ward on average at the loading speed. The degree to
which this is true depends upon a single dimensionless
group of parameters, denoted here by the symbol «,
which is the rate at which disturbances are amplified as a
result of velocity-weakening friction. The length of the
fault also plays a significant role in determining the rela-
tive frequency of great events. In general, great events
are relatively more important and more nearly periodic
on shorter faults and for larger values of a.

Among the questions left unanswered in this paper is
how the conclusions might be modified in a more realis-
tic, three-dimensional model of an earthquake fault, or in
a model with a more realistic friction law. Also, we have
not discussed dynamic correlations between events in this
model, nor have we addressed the problem of how to cal-
culate the critical behavior from first principles.
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