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In this paper we present global coordinates for the kink-antikink breather sine-Gordon phase
space with a separatrix and singular points. Using these coordinates we derive reduced equations
governing perturbed dynamics, and we use them in a Melnikov calculation to establish the presence

of chaos in the reduced sine-Gordon system.

I. INTRODUCTION

In this paper we will introduce global coordinates for
the breather-kink (antikink) phase space. These provide
collective coordinates that are sufficiently general to de-
scribe the kink-antikink to breather transition in the
presence of perturbations.

Today one can find a large number of collective coordi-
nate representations in the literature. It is reasonable to
ask “why introduce yet another such representation?”’
There are three reasons that these new collective coordi-
nates interest us: (1) The most immediate and natural
source of chaos in the sine-Gordon partial differential
equation (PDE) is the breather to kink-antikink transi-
tion. Yet an analytical description of this transition un-
der “whole line” boundary conditions has proven elusive
because of the lack of a global representation of the phase
space including a separatrix which locates the transition.
The coordinates introduced herein provide this global
representation and Melnikov calculations are then im-
mediate. (2) There is an interesting correspondence be-
tween the kink (antikink)-breather phase space and that
of the double sine-Gordon equation that one of us (M.S.)
discovered with the collective coordinates.! (3) The glo-
bal phase space has a singularity, with a natural geome-
trical and physical interpretation.

The outline of the paper is as follows: In Sec. II we
define global coordinates for the reduced phase space; in
Sec. III we describe the connection to the double sine-
Gordon equation; in Sec. IV the geometry of the singular
points is presented; in Sec. V the equations in the pres-
ence of perturbations are derived; in Sec. VI a Melnikov
calculation establishes horseshoes in the reduced dynam-
ics; the conclusion discusses dangers in the use of collec-
tive coordinates.

II. BREATHER-KINK (ANTIKINK) REDUCTION
The sine-Gordon equation,

by —dxx Tsing=0, (2.1)
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has a two-parameter family of solutions in the form

—1 | coth@sinh[(z —7)sinhf]
cosh(x cosh@)

¢""‘(x,t,0,7‘)=4tan

(2.2)

A member of this family is known as a ‘“kink-antikink”
state. Each of these states represents the elastic collision
of a kink with an antikink. See Fig. 1. In the past
(t <<0), the state separates into an antikink far to the left
approaching a kink far to the right with equal but oppo-
site velocities. The relative velocity v is given in terms of
the parameter 6 by the formula

v=tanhf, 0<0< -+ o . 2.3)

In the distant future (¢ >>0), the kink and antikink ex-
change roles elastically. Representation (2.2) describes
the collision in the “center-of-mass frame,” with center of
mass at x=0. The collision occurs at ¢t =7. Notice that
o(x,t)>0 as x—>*o for any fixed ¢ yet,
o(x +ct,t)—>+27 as t— F o for all 0<c <v. Finally,
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FIG. 1. Kink-antikink collision.
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the energy of the kink-antikink state is given in terms of
0 by

F($*96,7))=16 coshd , (2.4)

hence the energy exceeds 16. There also exists the sym-
metric situation of a kink far to the left entering into col-
lision with an antikink far to the right. In our discus-
sions, we will always focus upon the other collision, and
then add this symmetric situation for completeness.

At lower energy the kink-antikink components bind
into a bound state called a “breather” (see Fig. 2). A
two-parameter family of breather solutions has the form

1 | tan(8®)sin[(t —7)cos6”]
cosh(x sin@?)

¢%(x,1,0° 7)=4tan (2.5)

Each member of this family of breathers is (i) even in x,
(ii) localized in x in the sense that ¢(x,7)—0 as x — T o0
for any ¢, (iii) periodic in time with temporal period

7T_

= w?=cos6?, 050”55 .

- (2.6)
o’

The energy of these breather states is given in terms of
the parameter 6° by

FH($?)=165in6" . 2.7

Notice that as 8°=1/2, the breather state has infinite
temporal period, and can be interpreted as a Kkink-
antikink state at threshold energy for binding:

FH($Y(8°=1/2))=FH($*(6=0))=16 . (2.8)

Frequently the breather solution is considered as an ana-
lytic continuation of the kink-antikink state through the
introduction of complex parameters:

T

6°=——ib .

2
An advantage of the parameters which we are about to
introduce is that both the breather and kink-antikink
families are realized in the same real phase space, without
any analytic continuation.

In both the breather and the kink-antikink cases, we
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FIG. 2. Oscillations of a breather.
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introduce as parameters the waveforms at x=0:
u=¢(x =0),
i=¢,(x=0).

2.9

In both cases it is useful to record the relationship be-
tween the (u,# ) and the (6,7) parameters: For the kink-
antikink case,

u =4tan"! |coth@sinh <z ,
16
a
4 cosh 6 coshf
u= S (2.10a)
1+coth?@sinh? | %
co sin 16
a _ .
16 =(t —7)sinh@ ,
and for the breather case,
=4tan"! |tan@’in |— | | ,
u an an@’sin 16
4cos | == |sin6”
a= , (2.10b)
I +tan26fsin? | &
tan“6"sin 16
b
a o, b
16 (z —7)cos6’ .

The inverse relationships can be computed explicitly.
Notice from (2.2) and (2.5) that the temporal evolution of
the parameters (6,a) is trivial in both cases: For the
kink-antikink case,

a,=16sinhf ,
(2.11a)
6,=0,
and for the breather case,
ab=16cos6” ,
(2.11b)

6’=0 .

For the temporal evolution of the parameters (u, ), we
consider each case separately. First we take the kink-
antikink case and use the transformation formula (2.10a),
the temporal evolution (2.11a), and the inverse of trans-
formation (2.10a) to obtain

u,=ua,
(2.12)
2

_ . u |u .
fi,= —sinu —tan— | —— +sin“—
4 | 4

Then we perform the same calculation in the breather
case using formulas (2.10b) and (2.11b), and obtain the
identical expression (2.12).

Parameters (u,# ) and the one time evolution (2.12) ap-
ply to both the kink-antikink and breather cases. We did
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not expect such uniformity. Indeed, that is why we cal-
culated the time evolution (2.12) separately for each case.
In retrospect this uniformity could have been anticipated
from reduction formalism in Hamiltonian mechanics, but
the result remains the same: parameters (u,#) with the
one time evolution given by (2.12) describe both the
kink-antikink and breather cases.

III. REDUCED PHASE SPACE:
GLOBAL COORDINATES

In this section we present in some detail a global
description of the kink-antikink breather reduced phase
space. First, some preliminaries: (i) From the definition
(2.9), restricted to the kink-antikink and breather
configurations we see that u ranges from (—2m,27),
while # from (— o0, + ). (ii) In terms of the (u,# ) pa-
rameters, the energy is given by

172
8

Sy — o, . au
FH(u,a) cosa/4) | @ +sin 2 (3.1)

and ranges from (0,+ o). (iii) The kink-antikink states
are separated from the breather configurations by the
F£=16 level curvel(s):

~_ 2 U

7 ==t4cos 4
Inside the separatrix (0 <% < 16) the motion is periodic
and represents the breather family; on the separatrix
(#=16), the phase point relaxes as t— o toward the
points (u ==+2m,7=0); the kink-antikink configuration
resides outside the separatrix (#>16). A numerically
generated graph of these level curves of # is depicted in
Fig. 3. If one focuses on the fact that (u,% ) are the posi-
tion and velocity of the field configuration ¢**(x,?) at the
midpoint (or center of mass) x=0, one realizes that the
phase point

(u(2),u(t))—(£27,0)

(H=16) . (3.2)

as t—t o (3.3)

124

FIG. 3. Phase space of breather-kink (antikinks); level curves
of the Hamiltonian H. Note the separatrix, the oscillatory
breather states, and the kink-antikink states. Note also the
singular point.
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for all members of the kink antikink family. [The middle
pendulum at x=0 is in the down configuration (¢ = —27)
long before the collision, experiences a (+47) twist dur-
ing the interaction, and relaxes back to the down position
(¢=+2m) long after the collision.] Although physically
apparent, the motion of the middle pendulum [¢(x =0)]
misses another physically obvious fact; namely, that as
t—t oo, the kink and the antikink carry (translational)
energy. Indeed, members of the kink-antikink family are
distinguished by the asymptotic value of the separation
speed v. The way by which the coordinate (1,7 ) detects
this asymptotic separation speed is that the Hamiltonian
function # in (3.1) is not defined on the lines u =+21.
Even at the points (+27,0) # is undetermined. In fact,
each level curve #=%f_.>16 approaches the singular
points (+2,0). The angle of approach measures the
asymptotic velocity. Clearly, the limit points of the tra-
jectories must be included in the phase space. At this
stage in the construction they are not, and the phase
space (as depicted in Fig. 3) is

(u,7)E(—2m,27m)X(— 0, 0) . (3.4)

In order to include these limit points one uses a process
known geometrically as “blowing up.” In this process
one completes the phase space (3.4) by replacing each
singular point (£2,0) with a line called a “distinguished
fiber.” The physical information carried by the two dis-
tinguished fibers is the asymptotic velocities, together
with the kink-antikink or antikink-kink nature of the col-
lision; the geometric information which they carry is the
angle at which each level curve # =%f_, > 16 approaches
the singular points. In this manner the global phase
space for both the kink-antikink and breather is the
blow-up given by the coordinate patch u =z —2m,
# =wz, with

z,=wz ,
. (3.5)
__ sinz
g
— 2 —
—tan | 2 427T —U’)‘tz-f-—;—sin2 z-2m 2.

Dynamical system (2.12) is then extended to a Hamil-
tonian system on the “blown-up”’ phase space. Note that,
by (3.5), the distinguished fiber (z =0,w =w) is a line of
fixed points.

IV. CONNECTION TO THE DOUBLE PENDULUM

In this section we describe an interesting connection
between the (u,# ) parametrization of the breather-kink

(antikink) states and the double pendulum.! We begin
with the dynamical system (2.12),
u,=u,
) (4.1)
i, = —sinu ~tan% uT-f—sinZ% ,

which has energy invariant (3.1),



6466
g > 1/2
u u
JHa) = |—+ - 4.2

FH(u, i) cosusa) |4 Tin (4.2)
Using this invariant, we rewrite system (4.1),

u,=u, @.3)

u =—sinu—&sini '

t 2 2 >

with A=%f%/64. The last equation (4.3) is that of the
double pendulum.

The correspondence between the dynamics of the
breather-kink (antikink) states and the double pendulum
deserves some discussion. The correspondence is be-
tween orbits of (4.1) and orbits for a family of double pen-
dula, indexed by the coupling strength A=%%/642>0.
More precisely, one begins with a level curve of # in the
phase space (u, % ), and associates to it one double pendu-
lum with coupling strength fixed by % at A=72/64; for
this particular double pendulum, there is one level curve
of its Hamiltonian %,

—2 2
7{D(u,ﬁ)=u7—cosu —Acos%, )\:% R
which is the original level curve of #.

Thus we are led to consider a family of double pendula
indexed by coupling strength A. The potential energies
for members of this family are sketched in Fig. 4. In the
“breather sector,” 0 <A <4 (0 <#£ < 16), the orbitals are
oscillatory [see Fig. 4(a)]. On the separatrix,
A=%*/64=4, and the potential is sketched in both Figs.
4(a) and 4(b). The threshold orbit which separates kink-
antikink states from breather states is also their separa-
trix. The kink-antikink sector has A=%2/64 > 4; the po-
tentials are sketched in Fig. 4(b). Notice that each kink-
antikink state remains associated to a separatrix, in each
case a separatrix for the double pendulum at coupling
strength A=7#2/64. We emphasize that in this double
pendula description, the breather to kink-antikink transi-
tion occurs at a bifurcation at (A =4) in the critical point
structure of the family of potentials (see Fig. 4).

One of us (M.S.) has built a mechanical analog for the
double pendulum, with two pendula coupled by gears.?
When one watches the oscillations of this mechanical
analog, one is actually watching the vibrations of a
breather.

We close this section by recording the analytical for-
mulas for the separatrix, which is the threshold between
the kink-antikink and breather states:

ﬁ(u,ﬂ)=l6=’ﬂ=i4cosz% , (4.4)
u=4tan" 'z, 4.5)
g=—2

1+¢2

V. REDUCED PHASE SPACE IN THE PRESENCE
OF PERTURBATIONS

In this section we will add the physical effects of dissi-
pation and external forcing. These effects will be incor-
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FIG. 4. Potentials for the associate double sine-Gordon
equation. (a) The breather case. (b) The kink-antikink case.

porated with the mathematical formalism, and approxi-
mations, of soliton perturbation theory.> >
We consider the perturbed sine-Gordon equation,

¢, — o, Tsing=¢€[f(t)—y¢,], 0<e<<]1 (5.1

and ask ‘“how do members of the breather (or kink-
antikink) family respond to weak dissipation and driv-
ing?” The answer is now well known. Predominantly
two effects occur: (1) the parameters of the soliton adjust
dynamically, and (2) additional degrees of freedom (such
as radiation) are generated. Both types of effects play im-
portant roles. It is dangerous to ignore radiation, partic-
ularly when studying chaotic behavior of the perturbed
PDE (4.1). Nevertheless, we shall do so and focus upon
the adjustment of the soliton’s parameters in an approxi-
mation which neglects any dependence of the soliton on
the generated radiation.

The formalism of soliton perturbation theory begins by
seeking a solution of (4.1) in the form
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Pp=¢’+ed, O<e<<1 (5.2) 6b=0%) ,
h
where o (1)
(1) &, =sin6°cos 16
b —1
=4 tan 5.3
¢ cosh(x sin6?) 63 . ..
With a projection formalism,* > one derives equations
where of motion for (8,¢)=(6% a®):
|
. —1 . a
cos% €y tand cosz% cotfsinh tané smﬁ
6,=—ef T oy — 1+ , (5.4a)
4 a 2 a .a 2p.:2 Q
cos@ |1+tan?6 sinz—lg 1+tan Osinzﬁ sin 1+tan20sin Te
sin—>
a,=16cosO—ef %ﬂ- 16 7z —cotfsinh ™! [tand sin—-
sin@ a 16
cos?0 |1+tan?6 sin?—
16
. a a sinfsinh™! [tanf sin—>
sin—cos—— 16
& 16 16 + cos’ 2 (5.4b)
372 . .
cosf . a . Qa 16
cosf |1+tan?6 sin?— 1+tan%0sin?—
16 16
Using (2.10b), we change variables from (6%, a®)— (u, % ):
a cosz%
o . u u . u
u,=u +EW A f 8smzcoszz+ Y sinh ! tan—4~ ]
2
u
. s U u L1 —1 u 2 U 4
+y#@ cos*— |17 tan— +sinh tan— | |16cos”"—+—— , (5.5a)
4 4 4 4 3u
cos”—
4
u 2 R
U, = —sinu —tanz —— +sin >
cos—l-l- isin—
~2 2
—€ X4 wf uT—sinZ— +4rf % 2sin%——)£;—sinh_1 tanh—z— +25in%cos%X”2l
24 cos* ¥ —sin? ¥ —
_ley @ su 5 |E 4 2 ¥4 o2 Esinh~! |tan
Y 4 cos 4 4 Sinlcoszl tan 4 cos 2 sin an 4
2 4
2
2 Z | sinh~! [tan %
—Lttan— LA +cos*X | |tant + * M (5.5b)
4 4 4 Ny ’ )

COoS™ —
4
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where the factors X and Y are given by
2

Equations (5.5) are the reduced equations for the
breather sector. The same reduced equations apply in the
kink-antikink sector. In the case of no dissipation (y =0)
we have derived equations (5.4) using a Hamiltonian
canonical formalism. The results of this calculation agree
with those in the literature. We have also compared this
case with sample numerical calculations of the perturbed
pde, obtaining good agreement. We did not check the
dissipative term against the expressions in the literature,
primarily because the behavior of the reduced model
should be rather insensitive to the details of the dissipa-
tive term.

VI. MELNIKOV FUNCTION FOR THE REDUCED
PERTURBED SYSTEM

In this section we use the Melnikov method to predict
the occurrence of chaos in the perturbed reduced system
derived in the preceding section, via the Smale-Birkoff
theorem.® As is well known the method consists in com-
puting the Melnikov function

M(tg)= [ Flu(t —t)]AX[u(t —1y)]dt  (6.1)
along the homoclinic orbit of the unperturbed system. In
(6.1) F denotes the perturbation vector, X is the vector
field, and A 1is the usual wedge product. The simple
zeros of M (as function of ¢,) indicate the occurrence of
transverse homoclinic intersections which in turn implies
the existence of a hyperbolic set (Smale horseshoe) in
phase space. To simplify the analysis we consider the re-
duced system (5.5a) and (5.5b) in the presence only of an
ac driver of the type f =sin(wt) (the extension to the case
y#0 is straightforward). To this end we rewrite system
(5.5a) and (5.5b) in the more compact form:

u,=u+eF (u,u),
(6.2)

~2
u .
— +sin“—
4

. u
u,= —sinu —tan—
! 4

+esin(wt)Fy(u,i) ,

with F=(F,F,) easily obtained from (5.5a) and (5.5b).
The Melnikov function is then computed as

M (ty)=€[P(u,ii )costy+R (u,u)sinty] , (6.3)
where
Plu,a)= [ sin(w)Q(u,2)dt ,
Ny (6.4)

Ru,a)= [ 7 cos(w)Q(u,m)dt ,

A. R. BISHOP, D. W. McLAUGHLIN, AND M. SALERNO
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with Q (u,#) given by
~2

O(u,7)=F,(u,&) | —sinu ——tan% lu—-l-sinz%
—F,(u,a)a . (6.5)

Equation (6.3) shows that M has simple zeros at
ty=-tan~ 1 L) (6.6)

@ R (u,u)

and therefore the reduced system has chaotic trajectories
in phase space.

VII. CONCLUSION

In this paper we have presented global coordinates for
the kink-antikink breather phase space with a separatrix
and singular points. A correspondence to the double
sine-Gordon equation has been established. Using these
coordinates we have derived reduced equations governing
a perturbed dynamics and used them in a Melnikov cal-
culation to establish the presence of horseshoe in the re-
duced system.

In conclusion we feel compelled to emphasize two
warnings about collective coordinate reductions.

(1) It can be very dangerous to neglect radiation, par-
ticularly when studying bifurcation toward chaos. An x-
independent background is certainly generated by the
homogeneous driver and is frequently very important in
the resulting dynamics. Long-wavelength instabilities of
this background can inject additional spatial radiation
modes into the field, whose interaction with each other
and with the original collective modes yields chaos. The
background may interact parametrically with the collec-
tive modes producing stable oscillations. Such phenome-
na will never appear in reduced system (5.5a) and (5.5b),
because both background and radiation modes are not a
part of the ansatz for the field.

(2) It is safest to use soliton perturbation theory when
the perturbation is both weak and slowly varying in time.
Although it is certainly possible to develop a theory valid
for a rapidly oscillating perturbation, to our knowledge
this has not been done mathematically.

Of course, the ansatz can be modified to include these
additional effects. Our point here is that, in any such
modification, coordinates (2.10) provide a global repre-
sentation of the breather-kink (antikink) component >f
the field. After such modifications, systems such as (5.5)
can be used for both analytical and numerical studies.
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