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Soliton dynamics in a formamide stack using a Taylor-series expansion for the potential surface.
II. The Pariser-Parr-Pople Hamiltonian
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The effects of explicit electron-electron interactions described by the semiempirical Pariser-Parr-
Pople Hamiltonian on soliton dynamics in formamide stacks as a model system are investigated. It
is shown that explicit treatment of electron-electron interactions does not influence the properties of
solitary waves in the model system. Possibilities that solitary waves might serve as charge carriers
in stacked systems after doping are discussed.

I. INTRODUCTION

For the explanation of the long-range efFects of carci-
nogen binding and release in DNA, ' Ladik and
Cj'zek ' suggested a mechanism which invokes the con-
cept of conformational solitons. Solitons are used for the
interpretation of a wide range of physical and chemical
phenomena (see Ref. 9 for a review and Refs. 10 and 11
for a short list of phenomena explained by solitons). The
existence of such solitary waves in a formamide stack has
been shown numerically, ' using a Hiickel-type Harnil-
tonian similar to that formulated by Ladik and Cizek. '

Formamide has been chosen as simple model system
since the molecule contains the same sequence of heavy
atoms as the nucleotide base cytosine.

The present series of papers deals with the numerical
study of the details of this simple model system. We feel
that only after a full understanding of the model system is
it reasonable to attack the formidable problem of realistic
DNA models. In Ref. 11 (an earlier paper in this series)
it was shown that explicit treatment of the m. electrons of
the system on the Hiickel level is not necessary. In Ref.
11 the Hartree-Fock (HF) potential surface of a formam-
ide dimer was expanded into a sixth-order Taylor series
in three geometrical degrees of freedom. Then the poten-
tial energy of the system is taken as the sum of such pair
potentials. It was possible to reproduce the results given
in Ref. 10. In the preceding paper, referred to as paper I,
the exact equations of motion had been derived and ap-
plied. Qualitative differences in the behavior of the sys-
tem compared to the approximate equations of motion
used in Refs. 7, 8, 10, and 11 had been found. Also in pa-
per I the intermolecular dispersion energy was intro-
duced into the model, using London's formula. It turned
out that the dispersion energy has considerable influence
on the properties of solitary waves within the system. In
Ref. 13 we have studied in addition the effects of irnpuri-
ties on the soliton.

However, our model is based on the assumption that in

stacked systems of this kind only first-neighbors interac-
tions are of importance. Long-range interactions, if
present, should have their origin in the m electrons of the
system. For a Hiickel-type model we have already shown
that there are no long-range interactions present. How-
ever, in trans-polyacetylene it turned out that electron-
electron interactions, which are included only indirectly
via the parameters in Hiickel-type models, have a strong
influence on the properties of solitons. ' Therefore in this
work we want to study the influence of electron-electron
interactions using the Pariser-Parr-Pople (PPP) model for
the m. electrons on soliton dynamics in a formamide stack.

II. METHOD

The model system consists of a stack ef N planar for-
mamide molecules with parallel molecular planes (see
Fig. 1 of the preceding paper). The z axis is perpendicu-
lar to the molecular planes. The stack is described by
three geometrical degrees of freedom per molecule n: z„,
6„,and y„; z„ is the negative difFerence between the actu-
al position of the plane on the z axis (Z„) and its equilib-
rium position Z„"= (n —1)ZO, wh—ere Z'('=0. Zo is
chosen to be 3.36 A, as in B-DNA (B conformation).
is the angle between the C—H bond and its projection
onto the plane perpendicular to the z axis containing the
hydrogen. 6„ is defined as negative if the rotation occurs
in the positive z direction. y„ is the rotation around the z
axis relative to the equilibrium position P'„'= —(n
—1)tbo, with Po being 36' as in B-DNA.

In the quantum-chemical treatment of planar molecu-
lar systems one can distinguish between three difFerent
kinds of molecular orbitals (MQ's). First of all there are
the so-called core or inner-shell orbitals. These are local-
ized near the nuclei and their contributions to chemical
bonding are negligible. The second kind of orbitals are
the o. orbitals which, in planar molecules, are symmetric
with respect to the molecular planes. These orbitals form
so-called lone pairs and chemical bonds. They are local-
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ized mainly between two atoms (bonds) or at one atom
(lone pairs). The third kind are called vr orbitals. They
are antisymmetric with respect to the molecular planes
and are usually delocalized over the entire molecule. In
ab initio Hartree-Fock calculations, if the molecular
plane is perpendicular to the z axes of the coordinate sys-
tem, the m. MO's are linear combinations of the p, atomic
orbitals only.

Semiernpirical m-electron methods assume that the
electrons occupying n MO's can be separated from the
core and o. electrons. Since in our system we are interest-
ed in the interactions of stacked planar molecules which
are rather far away from each other (3.36 A) one can
safely assume that mainly the delocalized ~ electrons
contribute to these interactions. To justify our previous
assumption (Ref. 11 and paper I) that the potential ener-

gy of our system can be computed as the sum of first-
neighbor pair interaction energies, one has to study the
behavior of the ~ electrons. Namely, one has to show
that they do not give rise to long-range or nonpairwise
additive interaction contributions. This was already done
for the case of a Hiickel-type model for the ~ electrons. '

The comparison of the results of Refs. 10 and 11 confirms
the assumption made in Ref. 11 and paper I.

However, in case of trans-polyacetylene we have shown
that the explicit inclusion of electron-electron interac-
tions into a Huckel-type model can change even the qual-
itative properties of a system considerably. ' Therefore
one has to apply the Pariser-Parr-Pople model Hamiltoni-

Fc, =r;c; . (2)

Here c;, is the coefficient of the atomic p, orbitals at atom
r in the MO i and c, is the energy eigenvalue of this MO.
F is the PPP-RHF Fock matrix. Since each atom con-
tributes one p, orbital to the system, F is of dimension
rnN XmN, if our stack consists of N molecules with m ~
centers (atoms having P, orbitals). In a formamide stack
the dimension of F is therefore 3N X 3N, for a cytosine
stack it would be 8NX8N. The overlap matrix is as-
sumed to be the unit matrix due to the zero differential
overlap (ZDO) approximation (all products y„y, are as-
sumed to vanish if the p, orbitals g„and g, are not at the
same atom).

The Fock-matrix elements are given by

an' also to our system and compare the results to those
of a Hiickel model and of paper I. In case of the PPP
model the total potential energy of the system is given by

V=E +V +V~.
Here E contains all effects due to the ~ electrons only,
while V contains all energy terms due to a-e'lectrons
(also o min-teractions), while Vs is a term due to a back-
bone which is necessary to stabilize a stack like nucleo-
tide base stacks. Vz is described in detail in paper I.

The vr electrons are described by the PPP-RHF (re-
stricted HF for closed-shell systems) eigenvalue equa-
tions:

mN

F„,= I„+,'y„„P„—„+g —(P„—Z, )y„,(1—5„,) 5„,+(P„, , y„,P„, )(1———5„,),
~=1

(3)

where 5„, is the Kronecker 5. The quantities I„,y„„and
P„, are parameters and will be discussed in Sec. III. Here
we only want to mention that y„, represents a two-
electron integral

P„,=g O, c,„c.. . (4)

where 0, is the occupation number of MO i. Finally the
one-electron part H of (3) is given by

mX
I„—g Z, y„,(1—5—„,) 5„,

f=1

+P„,(1—5„,)—:a„5„,+P„,(1—5„,) .

Then starting from a guess on P one can construct F, di-

All other two-electron integral types vanish due to the
ZDO approximation. Z, is the net charge of atom t after
all its ~ electrons are removed (+ 1 for C,O and +2 for N
in formamide). The indices r, s, t run over all rr centers of
the system. P is the charge-density-bond order matrix
and is given by

agonalize it, compute a new P and iterate until self-
consistency is reached. In the first time step of a simula-
tion the guess on P can be obtained from the P matrices
of the free molecules. In all consecutive time steps as
guess the converged P of the preceding step is taken.

In the Hiickel approximation used in Ref. 10 only H
is taken as the Hamiltonian matrix. Thus no iterations
are necessary. The a's and P's have been assumed as
(converged) ab initio Fock-matrix elements between cor-
responding p, atomic orbitals. The o. s and intramolecu-
lar f3's have been taken from a calculation on the mono-
mer, the intermolecular ones from dimer calculations.
They had been expanded as a Taylor series of sixth order
in the three geometrical degrees of freedom. '

Having obtained a converged P one can calculate E as
mN mN

F. =
—,
' g (H„, +F„,)P„,+ —,

' g Z„Z, y„,(1 —5„, ) .
r, s =1 r, s =1

(6)
The second term represents the nuclear repulsion energy
between the ionic cores. In dynamic simulations one
needs also the derivatives of E with respect to the
geometrical degrees of freedom q„„[q„+=(z„,8„,q)„);
p, =1,2, 3). They are given by'
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BE mN 'a „
(1—5„,)

q p n y g 1
8q p n

P„,+— (Z„Z, ,'—P„—,+P„„P„P,—„Z, P„—Z„]
2 Bqpn

It was shown' that terms containing BP„,/Bq„„which
arise from differentiation of (6) cancel each other exactly.
The derivatives of P„, and y„, depend on the parametriza-
tion and will be discussed below (Sec. III).

To obtain V we have computed E and the ab initio
HF energy VH„of dimers (see Fig. 1 of the preceding pa-
per) for 400 different geometries in a range ~b,Z~ ~ 0.5 A,
~b,8~ ~ 15', and ~b, y~ ~ 15' (for details see Ref. 11). Then
V of a dimer is defined as

VD'= VD —ED .o HF

V is expanded in a Taylor series

(i+ j+k) ~6
VD = g rC„„~z'Sajaq ",

i,j,k ~0
(9)

where Aq=q2 —q„and the total V is obtained by sum-

mation of the pair potentials
(i +j+k) ~6

V
i j,k =1

N —1

K,,k g b,z„'b,g hJg„",
n=1

(10)

where Aq„= q„+1—q„. The potential constants K; k

have been computed by a least-square fitting of V to the
400 values of V . As in Ref. 11 where simply the com-
plete HF potential was fitted with a series of the type of
Eq. (9) the values of V could be reproduced to an accu-
racy of =9 phartree with the ansatz (9). The derivatives
of V with respect to q„„can be calculated in a straight-
forward way from (9).

The explicit expression for the kinetic energy T, the
equations of motion, and the time simulation procedure
are described in detail in paper I.

III. RESULTS AND DISCUSSION

First of all, we have to specify the parameters entering
the PPP model. One can think to use ab initio Hartree-
Fock one-electron matrix elements for the a's and f3's,
and the HF integrals ( rs

~
rs ) for the y's. If one does that

and computes a simple formamide molecule one obtains
unreasonable results. For instance, the energy spacings
between the one-electron levels c.; are greater than 100 eV
and excitation energies are greater than 70 eV. The
reason for this is that the electron-nuclear attraction
terms in the one-electron HF matrix elements are com-
puted with the naked nuclear charge and thus are far too
large in absolute values. For m.-electron calculations the
nuclear charges must be shielded by the 0. electrons.
Therefore the use of semiempirical parameters seems to
be reasonable, at least for the intramolecular terms.

As in usual PPP parametrizations we neglect all I3„, if
atoms r and s are not covalently bound, thus all inter-
molecular P's and the intramolecular Po ~ are neglected.
yyy is chosen as usual as the difference y„„=2,—8„,

where 2„ is the ionization potential and 6„ the electron
affinity of the valence state of atom r. The values chosen
are given in Table I together with the P's. For I„usually
J„ is used. However, if one computes a formamide mole-
cule using the J values from Table I, the charge distribu-
tion especially at the N atom differs strongly from the ab
initt o(ne't charge of )+1 on N) one. The reason for this
is that N contributes two m electrons to the system and
thus the use of the first ionization potential (which is
correct for the yyy where valence state ionization poten-
tials are necessary) is not appropriate. Therefore we use
the second ionization potential for N which is 29.2 eV.
Calculation of the formamide molecule with this set of
parameters leads to a lowest one-electron level being 5.58
eV below the corresponding ab initio HF level. Therefore
we have subtracted 5.58 eV from all 2's to obtain the I„.
This final set of parameters together with the intramolec-
ular parts of o;, and the intramolecular y's is given in
Table II.

The intramolecular y's are computed with the well-
known Ohno formula '

y e
2 2

+R„,0.5(y„„+y„)

—1/2

TABLE I. Values used for the ionization potentials 2 and
electron affinities 8 of the valence states of the atoms occurring,
the y„values computed from them, and the P values used (all
values in eV).

Atom Bond

C
N
0

11.24
12.25
17.25

1.27
—0.10

1.46

9.97
12.35
15.79

C—N
C—0
N—0

—2.39
—3.11

'Experimental, from Ref. 17.
Experimental, from Ref. 18.

'Following Ref. 19.

With this parametrization we obtain an electronic energy
of —3.389 395 hartree, a nuclear repulsion energy of
1.277 066 hartree, and E = —2. 112 329 hartree
= —57.48 eV for the formamide molecule. The energy
levels c, and net atomic charges q„ for the molecule ob-
tained with different methods are given in Table III. Ob-
viously the agreement for the two occupied levels is very
good between HF and PPP while in the Huckel model
the level spacing is =3 eV too large. The virtual level
occurs in both semiempirical models lower in energy than
in HF. However, virtual levels are in general too high in
HF calculations. The net charges are in moderate agree-
ment between HF and PPP, while the Huckel method
gives the charge at carbon far too low.

For the intermolecular y's we use the first-neighbor
HF integrals ( rs ~rs ) fitted in the same way as V . The
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C

TABLE II. Intramolecular y values (in eV) as used in the
calculations together with the intramolecular contributions to
a,. and the final values of I, (in eV).

Atom N 0

T„(tT) pV)

&0.0
N
C
0
a„(eV)

I„(eV)

12.3500
7.3655
5.6582

—36.6437

23.62

9.9700
8.7016

—29.1125

5.68

15.7900

—31.6880

11.67

Ohno parametrization cannot be used for this purpose be-
cause it is specially fitted to a planar arrangement of p,
AO's not to a stacked one, as occurring in the inter-
molecular y's of our system. Also simulations of soliton
dynamics using Ohno integrals and one-electron ab initio
Fock-matrix elements for H lead to unreasonable re-
sults.

In Table IV the interaction energies in a formamide di-
mer and trimer (in equilibrium geometry) are given. For
the trimer also the nonpairwise additive term together
with the second-neighbor contribution is given. The en-
ergies are calculated with the HF method, with the direct
potential fit used in Ref. 11 and paper I, with the Huckel
method of Ref. 10, and finally with the PPP method. Ob-
viously in the case of the Huckel method the assumption
that most of the intermolecular interaction energy is due
to ~ electrons is not fulfilled. In the Hiickel method E is
at tractive and only the large repulsive o. potential
corrects it to the correct repulsive HF value. On the oth-
er hand, in case of PPP the electronic energy E is some-
what too repulsive and is corrected by a rather small at-
tractive o. term. Therefore we conclude that our parame-
trization leads to a consistent model of the HF interac-
tions in formamide stacks. Second-neighbor HF integrals
are two orders of magnitude smaller than the first-
neighbor ones and can be neglected.

In Fig. 1 we show the time evolution of the local kinet-
ic energy of a stack of 30 units after an excitation of
z2 = —0.3 A. The first and last unit of the stack has been
kept fixed. The three plots have been computed with the
potential fit method (a), the Hiickel method (b), and the
PPP method (c). Obviously there is no visible difference
between the three methods. The initial excitation ener-
gies are 25.76 meV (potential fit), 27.64 meV (Hiickel),

T„(m e

75
s)

&0.0

75
ps)

10.0

FIG. 1. Local kinetic energy T„as function of site ( n ) and
time (t) in a stack of 30 units after an initial excitation of
z2=——0.3 A. (a) Direct HF-potential fit; (b) Huckel model; (c)
PPP model.

and 26.06 meV (PPP). The mean kinetic energies are
14.61 meV (potential fit), 15.29 meV (Hiickel), and 14.56
meV (PPP). As Fig. 1 shows the velocities and shapes of
the solitons are identical. Thus one concludes that the
applicability of the potential fit method can be fully prov-
en numerically with the help of these results. In the cal-

TABLE III. Energy levels c; and net atomic charges q„ for the formamide molecule obtained with
the ab initio HF, the Huckel, and the PPP method (energies in eV).

Method

HF"
Huckel"
PPP

—12.94
—16.32
—12.94

E(

Level No.
2

—8.35
—8.18
—8.51

8.62
6.47
6.23

N

—0.051
+0.123
+0.056

q„
Atom

C

+0.304
+0.080
+0.285

0
—0.253
—0.204
—0.341

'Minimal atomic basis set applied.
Parameters from Ref. 10.
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