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Soliton dynamics in a formamide stack using a Taylor-series expansion for the potential surface.
I. Exact equations of motion; dispersion energy
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The exact equations of motion for a stacked system are derived and their properties are discussed.
Results of numerical simulations of soliton dynamics are presented and compared with the previ-

ously published ones using an approximate treatment. Qualitative and quantitative differences are
found. The intermolecular dispersion energy is included via London's formula into our model of
solitary waves in stacked systems. It is shown that first-neighbor terms are of sufficient accuracy.
The explicit London formula is fitted by a sixth-order Taylor series. The qualitative properties of
solitary waves are not changed too much upon inclusion of dispersion energy. Quantitative changes
in velocity, kinetic energy, and effective mass of the waves are found.

I. INTRODUCTION

The concept of solitons is nowadays widely applied for
the explanation of certain properties of chemical and
physical systems. For example, dynamics of magnetic
materials, ' rotations around o. bonds in polymers or
phase changes have been studied using soliton models.
A well-known example is the the charge transport in
lightly doped polyacetylene where solitions are suggested
to be the charge carriers. Also in biologically active
materials such as proteins solitons are believed to serve as
carriers of energy. The model suggested by Davydov
was applied to periodic a helices of proteins. The
aperiodic nature of proteins as well as the effects of phy-
siological temperatures on these solitons have been stud-
ied by several authors. ' However, recently the state vec-
tor ansatz used in Refs. 8 —10 was criticized. " Also for
the dynamics of the sugar phosphate backbone of deoxy-
ribose nucleic acid (DNA) a soliton model was suggest-
d 12

Therefore it seems to be reasonable to invoke for the
explanation of the nonlocal inAuence of carcinogens on
DNA in chemical carcinogenesis' also a soliton model as
suggested and formulated by Ladik and Cizek. ' Howev-
er, before attacking the formidable problem of nucleotide
base stacks numerically it seems to be reasonable to study
the properties of smaller model systems. For this pur-
pose a stacked arrangement of formamide molecules
seems to be appropriate.

%'ithin this model system we have shown the existence
of solitary waves numerically using a Huckel-type model
Hamiltonian. ' Recently we have shown that the explicit
treatment of the m. electrons is not necessary (Ref. 16).
However, as already mentioned in Ref. 16 for these stud-
ies' ' an approximate version of the equations of motion
was applied. Therefore, to develop the mathematical
model further we present in this work (paper I) of the
series a discussion of the exact equations of motion and a
comparison to the approximate version of them. Numer-

ical results are also presented.
Further we study the inAuence of intermolecular

dispersion energy, using London's formula' which was
previously applied to nucleotide base dimers, ' ' to
larger nucleotide base stacks, ' and also to the interac-
tion between selenium helices.

Finally in the concluding paper (II) (Ref. 24) the expli-
cit inclusion of electron-electron interactions using a
Pariser-Parr-Pople —type model for the m electrons is dis-
cussed and compared both with the simpler Huckel-type
model' and the direct potential fit used in Ref. 16 and in
this work.

II. METHOD

Formamide has been chosen as the model because the
same kinds of nonhydrogen atoms occur also in cytosine.
The geometrical arrangement of the molecules is the
same as described in detail in Ref. 16 (see Fig. 1). N pla-
nar formamide molecules are arranged with parallel
molecular planes along the z axis which is perpendicular
to those planes. For each molecule three geometrical de-
grees of freedom are considered. z„ is the negative
difference between the actual position Z„of the plane on
the z axis of the nth molecule and its equilibrium position
—(n —1)Zo=Z„", where ZI'=0. Zo is chosen to be
3.36 A as in 8-DNA. 8„ is the angle between the C—H
bond and its projection onto the plane perpendicular to
the z axis. y„ is the rotation around the z axis relative to
its equilibrium value P'„'= (n —l)go,—with Pc=36 as
in B-DNA. Thus the position vector r,„ofatom i in mol-
ecule n is related to the positon vector r;o of atom i in a
molecule having an unperturbed geometry
(Z',"=y", =e", =0) by

r,„=D'(&p„,8„)r;&&—[(n —1)Zo+z„ te, .

Here e, denotes the unit vector in the z direction and

D'(tp„, &„)=D(tp„) D(&),
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with

cosg„sing„O
D(y„)= —sing„cosP„O

0 0 1

and

P„=(n —1)$0+(p„,

D(8„)=
cos8„0 sin8

0 1 0
—sin6„0 cos8„

The total energy E, is given as the sum of the kinetic en-

ergy T and the potential energy V:

E, =T+ V, V = VHF+ V~+ED (4)

The Hartree-Fock potential VHF is computed as a sum of
pair potentials. Each pair potential is expanded into a
Taylor series in hz, A8, and Ay and fitted to the ab initio
Hartree-Fock (HF) potential surface of the dimer shown
in Fig. 1 (see Ref. 16 for details). A more detailed discus-
sion of V and of the backbone potential Vz is given in

Appendix A.

The dispersion energy ED is the leading part of the in-
termolecular correlation energy. In this work we use for
the calculation of ED London's formula' which is of
empirical origin.

For the intermolecular dispersion energy of an adenine
stack —0.2865 eV have been obtained, using the ab initio
HF method (split valence atomic basis set) and second-
order perturbation theory applying the MO's obtained.
With London's formula and the parameters of Khang
and Jhon for the corresponding dimer —0.2891 eV was
obtained. ' From this remarkable agreement one can
conclude that the use of London's formula for stacked
systems seems to be justified.

The dispersion energy ED is given by London's for-
mula as

a eh I IhEnm 3yy g "& "(R~m) —6

g h g h

Here o. is the atomic polarizability and Ig the valence
state ionization potential of atom g. Rgh is the distance
between atom g in molecule n and atom h in molecule m.
The details for the calculation of Rgh from the geometri-
cal degrees of freedom of our model are given in Appen-
dix D. The different ag and I values are taken from Ref.
26 and given in Table I. The total dispersion energy of a
stack of X units is calculated to be

N —1 N

ED =2 g g g Cgq(Rgh )
n =1 m =n+1 g, h

with

n, rn =1
(1—5„)g Cgh(Rsh )

g, h

(6)

nit 1 : z
l 1 T1

3 agnhIgIh

H

.~p R

1.01 R
N -- -

— H

}20 1200

For molecular dynamics in addition the derivatives of ED
with respect to z„, 8„, and cp„are necessary. Differ-
entiation of (4) with respect to q„„(q,k =-zk, qzk =tlk,
q 3k

=gl, ) yields

Zo BED N= —12 g (1—5„„)g Cg„(Rsh )

g h qpk

ll N
~ f Unit 2: z, 'P $0; P (0

——————~x'

The differentiation of R h with respect to q„k is outlined
in Appendix D.

However, as shown numerically in Sec. III second
neighbors' dispersion energies turn out to be negligible.
Thus in (6) m can be restricted to n + 1. Furthermore, it

TABLE I. Atomic polarizabilities a and valence state ioniza-
tion potentials I for the atoms in formamide from Ref. 26.

FIG. 1. Geometrical arrangement of a stacked formamide di-

mer. Molecule 1 is in its equilibrium position and molecule 2 is
distorted to z2, 8~, cp, . Both molecules are planar, molecule 1 is

0

situated in the xy plane, Zo =3.36 A, $0=36, and the internal
coordinates of the molecules are the same as in Ref. 15.

Atom

C
0
N
H

1.382
0.460
1.090
0.386

I (eV)

11.22
17.25
12.25
13.61
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(9)

with the help of a least-squares procedure to the 400 ex-
plicitly calculated points as described in detail for VH„
alone in Ref. 16. The largest error obtained is 0.24 meV.
The shortcomings of this computer-time-saving pro-
cedure are discussed in Sec. III. The potential of a stack
of N units is then given by

turns out that the dispersion energy can be fitted with a
Taylor series in the same way as VHF. Thus finally we
can take the ab initio Hartree-Fock energies of a dimer in
400 points on the energy hypersurface (in the range

~

hz
~

~ 0.5 A,
~
h8~ ~ 15 ', and

~
b,y~

~ 15 '), the dispersion
energies computed by (6), and fit the series (for dimers)

i+j+k 6

( VH„+ED ) = g K,

~knez'b,

8~6 p",
i,j,k~0

H =T+ V =
—,
' g q „+K„q„+V . (16)

The exact equations of motion can be obtained using
the Lagrange equations of the second type

d aL aL
dt aq Bqn

=0 (L =T —V) (17)

is the moment of inertia 0 which in the exact treatment
is a function of 8„. Therefore also the coupling term
K„(3,2) between 8„and y„appears. However, z„and

are independent and thus decoupled [K„(3,1)=0].
Note that Eqs. (8) and (9) generally are valid, while for
the special case treated here M, =M„,=M, =M„=O.
On the basis of Eq. (13) one can write down the Hamil-
tonian function which is useful for quantization as

i+j+k ~6
( VHF+ ED )—

i j,k ~0

n —
1

K,'k g b.z„'b,8'„b,(p„", (10) or

where Aq„=qn+, —q, .
In Refs. 14—16 the kinetic energy was approximated by

d aT.
aq

aT.
aq„

av
aqn

(18)

A N
T = g T„=—,

' g (Mz „+Oo8 „+0 jv„),
n =1 n =1

where M is the mass of a molecule and the 0's are the mo-
ments of inertia. However, as already pointed out in Ref.
16 the expression is approximative since the three coordi-
nates are not independent. To obtain an exact formula
for T one has to use the time derivatives r,„of the posi-
tion vectors r, n of the atoms

] 2~gmi inr~ (12)

where m, are the atomic masses. After a rather tedious
derivation (see Ref. 16) and using the abbreviation
q„+ = (z„,8„,p„) and the corresponding column vector q„
one can write

The first term on the left-hand side of (18) leads to

n d (K, )

aT
d a d —"'"

aK„
Knqn+n ag n

(19)

aTn 1 aK„
=2qn aqn qn

, aK„
2 q'ayq e

n

(20)

where eo = (0, 1,0). Thus we obtain

since K„depends on time only implicitly via 6„. Fur-
ther,

+
Tn 2q n Knqn

where [K„(i,j ) =K„(j, i)]

K„(1,1)=M,

K„(2,1)=M, sin8„+M cos6„,

K„(3,1)=0,
K„(2,2) =M „+M,
K„(3,2)=M, cos8„—M, sin8„,

K„(3,3)=M,„cos 6„+M +M,.sin 6„
+2 M„, sin8„cos6„.

(13)

(14)

aK„aK„+~
a~ q+

n

or in a more compact form

K„q+Q„=F„,
where

and

Fn

av
aq„

Q„(1)=(M, cos8„—M sin8„)b „,
Q„(2)=Y„g„,

av
aqn

(21)

(22)

(23)

(24)

In (14) the abbreviations

M = g m, , M„= g m, p;o M„,,
=- g m, p;o~;o (15)

with p, v—=x,y, z have been used. Obviously K„(2,1)
represents the coupling between 8 and z. K„(2,2) is
nothing else than the moment of inertia 0&, while K„(3,3)

Q„(3)= —(M cos8„+M, sin8„)8 „—2Y„g„j„,
with

Y„=(1 —2 cos 8„)M,+ (M —M„)sin8„cos8„. (25)

The relation of these exact equations of motion to the
approximate ones of Refs. 14—16 is discussed Appendix
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B, while in Appendix C some constants of motion are de-
rived. These are total energy E„the z component of the
total momentum P„and z component of the total angu-
lar momentum L, .

For the solution of Eqs. (22) one can rewrite them as

are somewhat smaller than in the case of the approximate
equations, the kinetic energies carried larger. Thus the
kinetic masses of the solitions are considerably larger if
the exact equations are applied.

Therefore in case of realistic systems like DNA, where

q„=K '(F„—Q„) (26)

since it can be numerically verified that for our model
system K„(B„)is nonsingular in the full range of 8„.
Equation (21) can be solved numerically using a Runge-
Kutta algorithm correct up to fourth order in the time
step. A time step size of ~=0.005 ps proved to be
su%cient to keep the total energy constant within
=O. l%%uo of the time average of the total kinetic energy.

III. RESULTS AND DISCUSSION

(a)

$„(meV)
-", 0

k~~lNggE ~~g~,

"0
+/f 30g

-10.0

A. Equations of motion and backbone potential

Here we want to study the effects of the additional
backbone potential V~l ' (see Appendix A) as well as of
the exact equations of motion in comparison ot the ap-
proximate equations. For this purpose the dispersion
term ED has not been included in the calculations report-
ed in Sec. III A. We have used a stack of 50 formamide
units for this purpose where the first and last molecule
has been kept fixed. In this way the somewhat artificial
linear potential terms Vz' (see Appendix A) can be
avoided. As initial excitation zz = —0.4 A and z49 0.3
0
A is used. In this way the collision of two solitary waves
can be studied and due to their different kinetic energies
one can also decide if reflection or penetration occurs
upon collision.

In Fig. 2 we show the local kinetic energy T„as a func-
tion of site index n and of time t, for the different cases
studied. These are applications of the approximate equa-
tions of motion without [Fig. 2(a)] and with [Fig. 2(b)]
backbone potential V~ ', and application of the exact
equations of motion for the same two cases [Figs. 2(c) and
2(d)]. In Fig. 2(a) one observes, as expected from the re-
sults of Ref. 16, two narrow solitary waves which carry
different kinetic energies, but having the same velocities.
They cross each other without any visible perturbation.
As Fig. 2(b) shows there are no longer solitons present in
the system (approximate equations of motion) if the back-
bone potential Vz ' is applied. The main difference be-
tween the systems corresponding to Figs. 2(a) and 2(b) is
that in the former case the total potential is only a func-
tion of bq„while in the latter it depends also on the indi-
vidual 8„coordinates. This agrees with preliminary cal-
culations on double helices where due to the hydrogen-
bonds potential terms of this kind also appear. In these
calculations using the approximate equations of motion
also no solitary waves could be found.

If the exact equations of motion are applied the situa-
tions is reversed. Without Vz ' no solitary waves occur
[Fig. 2c)], while with Vsl ' there are solitary waves in the
system [Fig. 2(d)]. However, in contrast to the approxi-
mate equations of motion their velocity is now dependent
on the kinetic energy carried away. The soliton velocities

T„((T)(V

l0.0

T„(meV)

S/(

~ ~

ply:.
~l

«Cl~

10.0

"75
«:""g

p t(}'s)
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0
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20

-
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FIG. 2. The local kinetic energy T„ofa stack of 50 formam-
ide units as function of site n and time t using fixed chain ends

0 0

and an initial excitation of z2= —0.4 A and z49 +0.3 A. (a)
Approximate equations of motion, V~ '=0. (b) Approximate
equations of motion, V& 'WO. (c) Exact equations of motion,
Vz '=0. (d) Exact equations of motion, V~ 'WO.



6442 WOI.FGANG FORNER 40

due to the backbone and to the hydrogen bonds certainly
potential terms depending on q„ instead of only Aq„
occur, the use of the exact equations of motion is of ut-
most importance. First of all, the approximate equations
would artificially predict the absence of solitary waves in
the system, secondly the properties of the waves occuring
in both systems of equations, are rather diA'erent.

The absence of solitary waves in absence of Vz ' for the
exact equations of motion has to be discussed in some
more detail. For this purpose we used an initial excita-

0
tion of z, = —0.5 A and an open chain of 50 units. The
eA'ects we would like to discuss occur also in the system
shown in Fig. 2(c) but are more obvious in the system
shown in Fig. 3. In Fig. 3(a) the local kinetic energy is
shown again. Obviously the excitation emits shock waves
without solitary character. Figure 3(b) shows total and
total kinetic energy. T(t) is an oscillatory function with
no special features. To obtain a deeper insight into the
problem we use in Fig. 3(c) the same presentation of the
time evolution as in Ref. 16. The ordinate shows the time

in picoseconds. For each time step displayed a dashed
line represents the stack axis. The abscissa shows z in
bohrs and z„ in bohrs/6. For a better visualization the
deviations z„, 8„, and y„ from equilibrium were multi-
plied by 6. Thus each molecule is shown at the position
(n —1)ZO+6z„and is symbolized by a triangle. The ro-
tation axis for the 8„are displayed as being perpendicu-
lar to the paper plane for all molecules. Therefore 68„ is
shown directly as the rotation of the triangle. Finally,
6y„ is given by the base line of the triangle symbolizing
molecule n. If cp„ is positive the triangle stands on its
base line; if y„ is negative it stands on its top corner. Ob-
viously in this case the whole stack is moved along the z
axis accompanied by a large rotation of the units both in
6„and g„. Since the potential is only a function of Aq, ,
simultaneous shifts of all coordinates can occur isoener-
getically. While in the approximate equations of motion
such motions are forbidden by the conservation laws this
is not the case in the exact equations. Here a simultane-

(a} .41 i

, ht 4~!IÃW, %+

E{m~v)

{bj
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7
a ~ I 1

~ 5 . ~ / I
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gi yl. e yL. 1. . . — .. p. g5 y1 . ." j
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i If I TZ. J I L:I 2 t. 4~1' I-' JlW I' l~'1~ ll lI g(L ~I 1 I Z| If II

I I I I I T I I I I I I I I I I I I I I I I I I I I I I I I I I! I I I I I I I I I I I I I I I I I I~~
I
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0
FICx. 3. Time evolution of a stack of 50 formarnide units using open ends after an initial excitation of z, = —0.5 A applying the ex-

act equations of motion and Vz '=0. (a) Local kinetic energy T„as function of site n and time t. (b) Total energy E„relative to its
initial value (dotted line) and total kinetic energy T (solid line) as functions of time (t). (c) Time evolution of the coordinates as de-
scribed in the text.
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ous shift of all z„must be accompanied by a similar shift
of all 8„ to conserve the component of momentum P,
(see Appendix C). Consequently a similar shift of all q&„

must occur to conserve the angular momentum com-
ponent L, . At the end of simulation all z„values are be-
tween 1.3 and 1.7 A, all B„values between —75 and
—87, and the y„values between —26 and 12'. Thus
the system in this case relaxes to an unrealistic geometry
which has rather low energy and can be reached by a
momentum and angular momentum conserving motion.
(The two momenta are conserved to 0.5 X 10 and
0.6X 10 - a.u. , respectively; a.u. =atomic units. ) The in-
troduction of V&

' which depends on 8„ instead of b,8„
makes this relaxation energetically unfavorable and the
initial excitation relaxes by emitting a solitary wave
whose motion also conserves P, and L, .

Finally, one has to explain the reasons why use of the
backbone potential V&

' together with the approximate
equations of motion does not lead to soliton formation.
In Figs. 4(a) and 4(b) we compare the approximate
(without Vst ') and exact (with Vs ') equations of motion
for a stack of 30 units. From Figs 4(a) and 4(b) one can
see that there are no qualitative differences between the
two solitary waves. Only its velocity is reduced if the ex-
act equations are used. In Figs. 5(a) and 5(b) the coordi-
nates z„, 8„,and y„are plotted as a function of site n for
different time steps. Obviously the soliton formed in the
approximate model has a complex structure with maxima
in z„(=0.3 A), 8„(=8'), and in y„(= 1 ) traveling to-
gether. At 3 ps the wave is already rejected. If V~

' is
included a much larger energy is needed to obtain 8
values up to =8'. Since the solitary wave (using the ap-
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FIG. 4. Comparison of the effect of the strength of the backbone potential using V& '=0 together with approximate equations of
motion (a) and V&

' (b), 0. 1 V&
' (c), 0.05 V&

' (d), and 0.01 V&
' (e) together with exact equations of motion for a system of 30 units and

0
fixed chain ends after an initial excitation of zz = —0.4 A. Time evolution of the local kinetic energy (T„)as function of site and time.
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proximate equations) has a composite structure in all
variables it cannot form in the low-energy region if V~

' is
included. As seen also from Fig. 6(b} the exact equations
allow also solitons which are formed only from structures
in the z and y coordinates.

As mentioned in Appendix A, the backbone potential
Vz may have been constructed from a too rigid model(2)

compared to realistic systems like DNA where the back-
bone is more flexible. To estimate how strong Vz ' has to
be at least to allow soliton formation (using the exact
equations) we have performed simulations using 0. 1V~ ',

0.05 V~, and 0.01 Vz as backbone potential. The results(2) (2)

are shown in Figs. 4(c},4(d), and 4(e). Obviously one can
reduce V~ to —„ofits magnitude and still observe a soli-(2)

ton. Only for —,
'

V&
' the soliton cannot be formed be-

cause the energy barrier is then small enough that again
the unphysical state discussed above can be reached. The
form of the soliton does not change too much upon
reduction of Vz

' until 0.05 V~ '. Only oscillations in the
8 coordinates start to occur. In Table II the soliton
properties obtained from the five calculations shown in
Figs 6 and 7 are summarized. As already discussed the
main differences between approximate and exact equa-

Method

E

E
E

0.00
1.00
0.10
0.05
0.01

tp

(ps)

2.5
3.3
3.5
3.6

Us

(km/s)

26.69 3.63
27.68 2.75
26.32 2.59
25.75 2.52

no solitary wave present

(m, )

710
1290
1380
1430

tions of motion are reduction of soliton velocity by
=36% and an increase of kinetic mass by = 82%.
Reduction of V~

' reduces the kinetic energy carried and
the velocity, but increases the kinetic mass. From these
results one can conclude that the actual strength of the

TABLE II. Time tp a solitary wave needs to travel once
through a stack of 30 units (fixed chain ends, 90.72 A) after an
initial excitation of z2= —0.4 A (excitation energy V' '=50. 32
meV), mean value T of kinetic energy, velocity U, of the wave,
and its kinetic mass m* (in electron masses m„m * =2T/U, ) us-

ing approximate (A) and exact (E) equations of motion and
different strengths of the backbone potential V& (Vz =a V~").

0, 2

0, 2
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10 20 25 g (deg)
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n
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FICx. 5. Same as Figs. 4(a) and 4(b), but showing the coordinates z„,8„,and y„as functions of site n at time t = 1 ps ( ———), 2 ps

( ), and 3 ps (. . .).
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potential V~
' is not too important for soliton formation,

unless V~ ' is larger than a certain threshold. In our case
this threshold occurs between 0.01 V~

' and 0.05 V~ '.

B. Dispersion energy

For a stack of 31 units we have computed the potential
energy as function of the coordinates of the central unit
(16). In Figs. 6(a) —6(c) the contributions of the dispersion
energy ED calculated with London's formula to the po-
tential as function of z, 6 are shown. In Fig. 6(a) the first
neighbors' term ED", in Fig. 6(b) the second neighbors'
term ED ', and in Fig. 6(c) the third neighbors' term ED '

is shown. Obviously ED ' is two, and ED ' three orders of
magnitude smaller than ED". Thus the dispersion energy
contributions ED"' with n ~2 can be neglected. The
dispersion energy curves as functions of 8,6 and y, 6 are
very similar. Thus we include in our calculations only
the first neighbor dispersion energy. In Figs. 6(d) —6(f) we
show the total potential energy V = VH„+ED"+ Vs (see
Appendix B for the backbone term V~) as a function of
z, 6 [Fig. 6(d)], 8,6 [Fig. 6(e)], and p, 6 [Fig. 6(f)]. Obvious-
ly there is a rather strong dependence of V on 8„and z„
but only a weak dependence on y„. In Fig. 6(e) we show
V(z, ) where the linear backbone potential terms, intro-
duced to stabilize the chain, are included. Obviously
there occurs a maximum at z& = —0.4 A and the barrier
is only =2 meV. Thus the linear potential in case of
dispersion is not sufticient to stabilize the chain. There-
fore, we use fixed chain ends in all our simulations. An
alternative to that would be a closed ring. However, in
this case, as discussed below, from each excitation two
waves would be emitted. Thus we prefer the fixed chain
ends model.

To study the errors introduced by use of VD(fit) we
have computed soliton dynamics in a stack of 50 units us-
ing an excitation of z49 —0.4 A and fixed chain ends as
well as both VD(fit) and VD. In Table III the initial exci-
tation energy V' ', mean kinetic energy T, the time to, the
solitary wave needs to travel once through the stack, its
velocity U„and its kinetic mass m (for calculation of

m ' it is assumed that T corresponds to the kinetic energy
of the wave) as function of z49 are given. Obviously
VD(fit) gives correct velocities and excitation energies.
However, kinetic energy and thus kinetic mass is overes-
timated. But the approximate potential VD(fit) can be
used to obtain qualitative information about solitary
waves. Especially for studies on our model systems
VD(fit) seems to be of sufficient accuracy. However, for
future studies on realistic nucleotide base stacks one has
to use London's formula explicitly. For —0.2 A(z49

0(0.2 A no solitary waves are observed. In these low-
energy cases the energy is distributed unformly on the
chain.

A striking difference between the two potentials occurs
for z49 = —0.4 A, shown in Fig. 7. In case of VD(fit), Fig.
7(a), a solitary wave travels through the chain, however, a
considerable part of the excitation energy remains in an
oscillation at the chain end. In Figs. 7(b) the usual high-
frequency oscillatins in T(t) (see Sec. III A) are seen and
a minimum at the reflection from the chain end. Figure
7(d) (London's formula) shows oscillations which are
much slower and three sharp minima at the two
reflections and at the collision. Figure 7(c) computed
with London's formula is strikingly different from Fig.
7(a). The excitation at z49 emits first the same solitary
wave as seen in Fig. 7(a). But in this case two waves are
emitted. The second one is immediately reflected at z~o
and then follows the first one. Using VD(fit) [Fig. 7(a)]
the second wave is trapped. The difference between
z49 +0.4 A and z49 —0.4 A is obvious. In the former
case molecule 49 is shifted towards the fixed end molecule
and by oscillating back emits the solitary wave. In the
latter case molecule 49 is shifted towards the free mole-
cule 48. This is repelled and the first solitary wave starts
to travel. However, by oscillating back molecule 49 emits
the second wave which is immediately reflected. Note
that in case of z49 —0.3 A both models give two soli-
tary waves. Thus VD(fit) can be safely used for small ex-
citations as expected.

In Table IV we show soliton properties as function of
chain length X after an excitation z& &=+0.4 A using

TABLE III. Initial excitation energy V' ', mean kinetic energy T, time to the solitary wave needs to pass once through the stack
(50 units, ends fixed), velocity v, of the wave, and its kinetic mass m /m, as function of the initial excitation z49, computed with
sixth-order fit of the dispersion energy ("fit") and directly with London's formula ("London" ).

0

Z49 (A)
fit'

V' ' (meV) T (meV) to (ps) v, {km/s) m /m,
London'

V' ' (meV) T (meV) to (ps) v, (km/s) m*m,
—0.4'
—0.3

0.2'
0.3
0.4

23.06
10.66
4.02

10.66
23.06

16.95
7.95
4.25
7.92

15.21

8.1

9.0
9.8
8.5
7.5

1.95
1.75
1.61
1.86
2.11

784
457
288
403
601

23.10
10.86

10.86
23.10

12.99
5.47

5.82
13.52

8.0
9.0

8.5
7.5

1.97
1.75

1.86
2.11

589
314

296
534

'CPU time t L,„"d „/t « "=1.48; m, : electron mass.
The distance is equal to 47 unit distances which is 157.92 A.

'While for direct use of London's formula two solitary waves are emitted, in case of the fit one of them is trapped at the chain end.
0

In both cases two waves are emitted; for z = —0.2 A and smaller no solitary wave is present.
'Calculation with explicit formula not performed. In case of fit negative potential energies occur.
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VD(fit). Obviously for N =50 and 60 the kinetic energy
T, the velocity of the solitary wave, and its kinetic mass
can be regarded as converged with respect to N. There-
fore we use N =50 for our further calculations. For corn-
parison between solitons in the simple Hartree-Fock po-
tential (VHF) model and in the models introduced here,

namely, VD(fit) and VD, we use the more interesting case
of soliton collisions with initial excitations z2= —0.4 A
and z49 0 3 A. In Table V the soliton properties ob-
tained from these calculations are listed, where the T
values for the single solitons are taken from extra calcula-
tions for these sohtons. Obviously the excitation energy
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~ ~FIG. 7. Time evolution of a stack of 50 units after initial excitation z49 —0.4 A using fixed chain ends. {a) Local kinetic energy

T as function of time (t) and site (n) using VD(fit); (b) kinetic energy T and total energy E, (relative to t =0) as function of time (t) us-T„ as
ing VD(fit); (c) same as (a), using VD, and (d) same as (b), using VD.
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TABLE IV. Mean kinetic energy T, chain length Ro, time to
the solitary wave needs to pass Ro, its velocity U„and kinetic
mass m */m, (m, is the electron mass) as function of the chain
length N for an initial excitation z»=+0.4 A (V' '=23.06
meV) and fixed chain ends, using the sixth-order fit for the
dispersion energy.

Property Soliton VHF VD(fit)

TABLE V. Comparison of soliton properties using the poten-
tials VHF, VD(fit), and V& (see text for explanation) computed
for the case of two solitons in a 50-unit stack [initial excitations
zz = —0.4 A (I) and z~9 =0.3 A (II)].

20
40
50
60

13.73
14.76
15.21
15.47

57.12
124.32
157.92
191.52

3.1

6.1

7.5
9.0

T (meV) Ro (A) to (ps} U, {km/s)

1 ~ 84
2.04
2.11
2.13

713
624
611
600

V' ' (meV)
T (meV)

U, (km/s)

m */m,

I+ II
I+II

I
II
I
II
I
II

76.1

42.3
27.7
14.6
2.8
2.6

1270
790

33.8
20.9
15.2
7.9
2. 1

1.9
601
403

34.0
19.3
13.5
5.8
2. 1

1.9
534
296
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FIG. 8. Local kinetic energy T„as function of time (t) and
site (n) using fixed chain ends for different potentials, chain
lengths N, and initial excitations [the case of VH„ is shown in
Fig. 2(d)]. (a) z2 = —0.4 A, z49 =0.3 A, N = 50, VD; (h)

z24 z25 0 2 A N 50' VD (fit) (c) z49 0 4 A Ã 100
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FIG. 9. The coordinates z„, 8„,and g„as functions of site n

in a stack of 80 units after an initial excitation of z79 —0.4 A,
using VD(fit) and fixed chain ends at 3.25 ps ( ———), 6.25 ps
( ), and925ps( ~ - - ).
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holds for the kinetic mass m'. However, while VD(fit)
reproduces the velocities exactly, it overestimates the ki-
netic energy and kinetic mass of the waves considerably
compared to VD.

In Fig. 8 we show T„as a function of time and site for
some soliton simulatins. In Fig. 8(a) the case zz= —0.4
0 0
A and z49 0.3 A is shown for VD. In these cases and for
VH„[see Fig. 2(d)] the solitons penetrate each other un-
disturbed.

In Fig. 8(b) we show T„as a function of site and time
for the more important case of an excitation in the center
of the chain, usiny VD(fit). Figure 8(b) shows the case of
z24= —z25=0. 2 A. Here two waves are emitted but a
part of the excitation energy is trapped in an oscillation
in the center of the chain. However, this may well be an
artifact of Vn(fit).

In Fig. 8(c) we show T„as function of site and time in
a large stack of 100 units after initial excitation of
z99 —0.4 A. In this simulation the solitary character of
the wave can be seen. After some initial relaxation the
height of the narrow peak does not change in time. Also
its width remains unchanged. Even after reflection the
wave is unperturbed. Figure 8(c) suggests that the wave
could travel through even much longer chains than 100
units (336 A) without any visible broadening.

Finally in Fig. 9 we show z„, 8„,and y„as function of
n for three different times in a stack of 80 units. In con-
trast to the local kinetic energy the geometrical distortion
broadens somewhat with time. In case of z„ the width of
the distortion increases from =6 sites at 3.25 ps through
=12 sites at 6.25 ps to =20 sites at 9.25 ps. This distor-
tion in the z„ is followed by a very narrow and small dis-
tortion in 8„. The distortion in the y„has almost the
same shape as that in the z„but is followed by a slow and
sharp peak. In the kinetic energy the soliton manifests it-
self as a very narrow energy packet. This corresponds to
the sharp change in z„ from 0.0 to —0.4 A within rough-
ly four lattice sites. The relaxation of the distortion,
however, is connected with a very small kinetic energy
and thus occurs very slowly.

sion energy using London's formula into our model for
soliton dynamics in stacked systems. It was shown that
second-neighbor dispersion energy terms are already
negligible. The dispersion energy can be expanded into a
Taylor series as the Hartree-Fock potential if only quali-
tative conclusions are desired. For quantitative calcula-
tions, high-energy excitations, and in realistic systems the
explicit use of London's formula is indispensable. Upon
inclusion of dispersion energy excitation energies, kinetic
energies, soliton velocities and kinetic masses are consid-
erably reduced compared to a HF potential. Thus the in-
clusion of dispersion energy into a realistic model is of ut-
most importance. We found solitary waves emitted from
excitations at the chain ends as well as from central exci-
tations. They carry roughly —, of the initial excitation en-

ergy through the stack. The solitary waves penetrate
each other unperturbed and are able to travel through
long segments of the stack (N ) 100).

As the next step we show in paper II that electron-
electron interaction need not be included explicitly into
the model. Calculations on the influence of impurities on
soliton dynamics have been published elsewhere. After
completion of these model investigations one is in a posi-
tion to investigate the more complex, but realistic prob-
lem of DNA. In this case environmental effects have to
be included using random forces and dissipation terms.
Finally, we want to mention that the kinetic masses of
the soliton in these stacked systems are rather large
() 100m, ). Therefore the use of quantum equations of
motion most probably will not be necessary. However,
this has to be shown by numerical calculations.
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APPENDIX A: CORRECTIONS
TO THE HARTREE-FOCK POTENTIAL

IV. CONCLUSION

We have introduced and applied the exact equations of
motion for the dynamics of stacked systems. Significant
differences to the results obtained previously in an ap-
proximate verison of the equations are reported. Espe-
cially it turned out that for more realistic potential func-
tions (introducing also a backbone potential holding to-
gether the stack) than previously used only application of
the exact equations of motion leads to solitary waves.
Potential functions of this kind depend not only on the
coordinate differences Aq„but also on the coordinates q„
themselves. They necessarily occur if the backbone is in-
cluded in a more realistic way, in case of hydrogen bonds
in double helices, and also if higher energy excitations
should be considered. Thus incorporation of the exact
equations of motion into the model is an important step
before realistic systems like DNA stacks which exhibit
the above-mentioned features can be treated.

Further we have introduced the intermolecular disper-

i+j +k~6 .V —1

VHF= g K;,k g hz„'b8'„Ay„",
n=1

where

+~qn qn+1 qn~ qn = n~~n~'pn)

(A 1)

(A2)

Ansatz (Al) contains an approximation which deserves
some discussion. Namely, while the dimer energy is only
a function of hz and Ay and not of the individual coordi-

The potential V applied in our calculations consists (ig-
noring the dispersion term) basically of two different
parts, namely, the Hartree-Fock potential VH„and a
correction Vz which is due to the backbone which exists
in realistic DNA stacks. The construction of VH„ is ex-
tensively described in Ref. 16 so we do not want to dis-
cuss it at this point. VH„of a stack is written as a sum of
pair potentials, where the constants K; k were determined
as described in Ref. 16:
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nates, for 8 and the energy depends on both 8, and 82
and not only on A8. In Table VI in columns 7 and 8 we
give the directly computed HF energies [using the GAUSS-
IAN 74 (Ref. 29) program] and those obtained from our
fit compared to the case of Az =A8= Ay =0 in meV for a
number of dimer geometries. We give six groups of
geometries where within a group A8 is the same but the
individual 8, and 82 values are dift'erent. Thus our fit
(column 8) gives the same energy within such groups.
The last two groups contain the maximal possible values
of hz and hy for the sake of comparison. Obviously the
error introduced by the assumption that the energy de-
pends only on A8 is =6—10 % for high-energy
geometries ( & 50 me V) and =4% for low-energy
geometries. Thus for our model studies with low-energy
excitations the approximation that one takes into account
only h8 seems to be justified. However, it is also obvious
that for more realistic calculations on DNA stacks with
high-energy excitations a Taylor-series expansion in four
variables (b,z, 6„8z,hy) has to be used. Also the range of
the fit has to be extended. Calculations along these lines
are already in progress.

One can see that in our minimal basis-set calculations
the basis-set superposition error (BSSE) plays an impor-
tant role. Therefore interaction energies are in general
too small. In the fifth column of Table VI we give the in-
teraction energies VHF computed in this way for the di-
mer geometries listed. A usual way to correct this error
is the counterpoise correction, where also in the mono-
mer calculations the full basis set of the dimers is applied.
The sixth column of Table VI gives the corrected energies
VH„(BSSE) obtained in this way. However, the counter-
poise correction overestimates the BSSE, since now the
variational spaces for the electrons in the monomer cal-
culations are too large. As Table VI shows the BSSE in
our calculations is rather large, and moreover does not
lead to the same upward shift of all interaction energies.
However, for our purpose the interaction energies are
unimportant. We are only interested in the energy of a
given dimer with respect to the reference geometry
(bz=hd=by=0). Thus the large BSSE does not affect
the results of our dynamical simulations.

Let us now turn to the "backbone" term Vz. Its intro-
duction is necessary because neither formamide nor nu-

TABLE VI. Interaction energy (in meV) in a formamide dimer computed with the ab initio
Hartree-Fock method (V„'„)and corrected against basis set superposition error [V'„„(BSSE)]as well as
energies relative to the equilibrium energy computed with the Hartree-Fock method ( VHF) and with our
sixth-order Taylor series [V„„(fit)]for different geometries (bz, 8„8z,b, y).

Az

(A)

—0.5
—0.5
—0.5

—0.5
—0.5
—0.5

0.5
—0.5

0
7.5

—7.5
—15.0
—7.5

0

+ 15.0
7.5
0

+ 15.0
7.5
0.

15.0
7.5
0

15.0
7.5
0

0
7.5

—7.5

0
7.5

15.0

0
—7.5

—15.

0
—7.5

—15.0

0
—7.5

—15.

—7.5
—15.

—15.0
—15.0
—15.0
—15.0
—15.0
—15.0

VHF
I

40.65
40.07
40.79

26.84
27.12
26.99

99.72
97.94
96.06

596.37
566.16
549.07

153.86
151.07
142.83

872.63
859.69
842.19

146.04
23.70

VHF(BSSE)

49.71
49.77
50.36

29.41
29.49
29.50

142.07
137.50
136.15

808.86
769.90
752.86

205.19
202.23
197.27

1133.08
1122.42
1114.87

203.48
24.74

VHF

0.0
—0.58
+0.14

—13.81
—13.53
—13.66

59.07
57.29
55.44

555.72
525 ~ 51
508.42

113.21
110.42
102.18

831.98
819.04
801 ~ 54

105.39
—16.95

VHF (fit)'

0.0'

—13.37(3.3% )

55.35(6.7% )

506.36(9.8% )

102.84( 10.1% )

774.73(7.4% )

105.43
—16.96

29.39
56.60

—11.26
15.59

0 0 0 15.0 36.77
0 0 0 —15.0 67.45

'Numbers in parentheses indicate the maximum errors in percent of VHF(fit).
Equilibrium dimer energy: —333.359 327 hartree.

'Equilibrium dimer energy: —333.359 332 hartree.

—11.25
16.31
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B (eV/rad )

0.
0.0265
1.9577

—0.0992
4.4574
0.6961

6
7
8
9

10
11
12

B,, (eV/rad )

—300.7116
—17.3695

11 314.8551
214.5970

—188 315.5451
—1090.5620

1.1227 X 10'

TABLE VII. The coefficients B, (in eV/(Rad)"] for the poly-
nomial applied in the backbone potential Vz '.

Energy
type

E

8=10
+412.337 839
—912.375 434
—500.037 595

8= —10

+412.227 592
—912.265 203
—500.037 611

+2.9998 eV
—2.9994 eV
+0.4354 meV

TABLE VIII. Nuclear repulsion (E„),electronic (E,), and to-
tal energy (E, ) (all in hartrees) for a stack of three units and a
tilting angle of 8=+10' of the center molecule as well as the
di6'erences 4E =E&0—E &o between these energies, calculated
with a minimal basis set.

cleotide base stacks are stable in themselves in the
geometry of B-DNA. The most simple way to con-
struct such a potential V~'' is to use a linear ansatz for it

X —1

v,"I= y (w, sz„+w,av„+w, a+„),
n =1

(A3)

V~("= A, (z~ —z, )+ A~(t)~ —t), )+ A~((p~ —y)) (A4)

for a stack of X molecules. Therefore an alternative way
to stabilize the equilibrium geometry would be simply to
fix the two molecules at the two ends of the stack.

However, as discussed in Appendix C for our case at
least for the angle 8 information about the form of the
backbone potential is necessary since in case of 6 the re-
sults depend qualitatively on the presence of the potential
term V~ '. To obtain a rough estimate of such a potential
we have computed the energy of the molecule shown in
Fig. 10 as function of 8 where 6 corresponds to the rota-
tion around the z axis leaving the CH3 group (z is in this
figure not the direction perpendicular to the stack) un-

where the constants A„A &, 3 are chosen in such a way
that the first derivatives of the total potential in a
predefined "equilibrium" geometry are zero (see Ref. 16).
In this way V&" contains only a minimum of information
about the real backbone, namely, that it stabilizes the
"equilibrium" geometry. Since in (A3) most terms cancel
V,"' simplifies to

n v=O
(A5)

The coefficients B are given in Table VII. The small
term B, leads to a slight shift of the equilibrium
geometry. However, since 0"& 1 this shift is unimpor-
tant. Although B,2 seems to be rather large, one should
keep in mind that even for the largest possibly occurring
value 8=15', its contribution to Vz ' is only 0.12 eV.
Thus

v = v'"+ v'"
B B B (A6)

is the complete backbone potential applied in this case.
If one considers a system of three units and looks at the

HF-potential energy as function of 8 of the molecule in
the middle, one may expect that the symmetry
V(8)= V( —t)) occurring in our potential ansatz is not
realistic. Therefore we show in Table VIII the nuclear,
electronic, and total energy of this system for 8 = 10' and
—10'

~ Obviously nuclear and electronic energies of the
system are diA'erent. However, their sums are in a very
good approximation the same in both cases giving a near-
ly constant total energy (see Table IX).

changed. This is only a first estimate for V~
' since the

sugar-phosphate group in the real DNA backbone is far
more Aexible than the rigid CH3 group applied here.
However, for our model calculation such an estimate
seems to be sufficient. The energy has been computed for
13 values of 6 within —15 ~ 8 ~ 15' and a polynomial of
12th degree has been adjusted to them leading to

APPENDIX B: RELATIONS BETWEEN EXACT
AND APPROXIMATE EQUATIONS OF MOTION

In this appendix we want to discuss in some more de-
tail which approximations lead from the exact equations
of motion described here to the more simple ones used in
Ref. 16. First of all, in the simpler equations z, 6, and y
are treated as independent coordinates. Thus they can be
approximately correct only for small values of 8, ideally
for 6=0. Putting 6=0, in the equations of motion [(14),
(22), and (24)] we obtain the approximate equations

FIG. 10. Sketcn of the molecule used for calculation of the
V~

' backbone potential.
M"„+M 8„+M,6 „=—

n



SOLITON DYNAMICS IN A FORMAMIDE. . . . I. 6453

M, z„+(M„,+M„)6„+M,ij„M—„j„=—Bv N N

Lg=9g g 6„, L =6~ g j„.
n =1

(C2)

From the geometry of our model system it follows that
M, =M„=M, =0. Further M„+M„=0& and M
+M =8 (in the 8 =0 approximation). Thus (Bl)—(B3)
reduce to

Mz„+M 8„=—~ . Bv
Zn

(B4)

M z„+0~a„=—
n

~

2 Bv
0 jb„—M

vs„

(B5)

Obviously the 8 =0 approximation is not suScient to ob-
tain the simple equations of motion used in Ref. 16. Ob-
viously

M„= g m;x;o=MR, , (B7)

where m; are the masses and x,-o the x coordinates of the
atoms in the references geometry, and R is the x coordi-
nate of the center of mass. Therefore the simple equa-
tions of motion assume further that the rotation axis for
6 contains the center of mass of the molecule which is
not the case in our system. The other additional term in
(B6) contains —M„which is one of the so-called prod-
ucts of inertia. The occurrence of this term is due to the
fact that the coordinate system is not oriented parallel to
the main axes of the tensor of inertia, i.e., this tensor is
not diagonal in the reference geometry. Thus if we fur-
ther assume that the molecule is situated with its center
of mass in the origin of the coordinate system and orient. -

ed such that the main axes of its tensor of inertia are
parallel to the coordinate axes we obtain the equations of
motion used in Ref. 16 from (B4)—(B6):

M„8„+{M„+M )ij„+2M„,B„g„M—~8 „=—
~V'n

(B3)

From the Lagrange equations we know that

aL d aL
BQ'n dt Qq

(C4)

Thus together with (C3) one obtains

d . d BL BL d .

d dL
dt „gq (C5)

and hence

q„„L=0.—d BL

n, p ~9np
(C6)

Since V = V{q„)and independent of q„or r one can write

aL . ar. ."
q„„

n, p ~9'np n p Bgn

~ ~~np~.
1 ~ '

( +~ ~

n, p 9np,

= g q+K„q„=2r . (C7)

Together with (C6) and L = T —V we obtain

—(T+ V) =0d
dt

(C8)

and thus —as expected —the total energy is conserved.
If Vz =0, and thus V= V(hq„) one can derive other

conserved quantities, by using

In case of the exact equations of motion it is more
di%cult to derive the conserved quantities. Since the
Lagrange function L is not explicitly dependent on time t,
i.e., L =L (q„,q„), the total energy is conserved '

L = g q„„+ q„„, p=1, 2, 3 . (C3)
d aL . aL

n p gnp 'Bg np

Mz n

av - av .. av0~8„=—,0 y, =— (B8) av
~One

av „, av
Oaq„„"N aaq.

(1 —5„,) . (C9)

APPENDIX C: CONSTANTS OF MOTION

As obvious from (B8) the constants of motion for the
approximate equations are total energy, total momentum
P

Then our equations of motion are

K„q„+Q„= (I —5„~)— (1—5„,) .
av av

Bhqn n' BAq„

(C10)
Summation of Eqs. (C10) over n leads to

N
P=M gz„,

n =1

and total angular momenta L&,L

(Cl)
N

g (K„q„+Q„)=0 .
n =1

The first equation of (Cl 1) can be written explicitly

(C 1 1)

M g z„+M, g (8„sin8„+b„cos8„)+M g (8„cosB„—8 „sin6„)=0 (C12)
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M g z„+M„g (8„cos8„)+M,g (8„sin8„)=0d . d (C13)

and thus

d
P, =O,

di

where P, is the z component of the total momentum, given by

P, = —M g z„—g 8„(M„cos6„+M,sing„) .
n n

(C14)

(C15)

Thus in the exact case P, is more complicated than in the approximate one since here also rotations around 8„contrib-
ute to it. Note that conservation of P, holds also for Vs '%0 because the dependence of Von z„ is not affected by Vs '.
That (C14) is correct can be most easily verified by calculating directly the z component of the center of mass of the
stack and its total time derivative using Eqs. (1)—(3).

In the same way one can compute the z component L, of the total angular momentum of the stack which is given by

L, = —g [y„(M~~ +M„cos 8„+M„sin~8„+2M, sing„cos8„)+8„(M,cos8„—M ~ sin8„)] . (C16)

Differentiation of (C16) with respect to time yields

I., = —+[K„(3,2)8„+K„(3,3)jp„—8 „(M, sin8„+M c st„) 2I'j „8„—]di

3

g K„(3,p)ij„„+Q„(3)
n ~ @=1

(C17)

Since (C17) is nothing else than the negative of the third
component of Eq. (Cl 1) we have shown that

and

nm
Rgh =rgm rgb (D 1)

L, =Od
di

(C18) (D2)

and therefore also the z component of angular momen-
tum is conserved. Also (C18) holds if V~ 'WO.

From the second component of (Cl 1) another con-
served quantity can be derived. However, this conserva-
tion holds only if V~[ '=0. Therefore we do not want to
elaborate on this here. We only want to mention that it is
related to the conservation of L& in the approximate
equations. Its nonconservation if V~ 'WO is due to the
fact that a potential depending on g„and not on b,q„ is
due to an external force, backbone or environment.
However, until the system remains conservative the total
energy is conserved in any case.

This leads to

Rsi, =[(D' ri, p D„'r )sp—
—2(Z —Z„)(D' ri, p

—D„'rsp) e,

+(Z —Z„) ]'

For the definition of D„' see Eqs. (2) and (3).
X"„',the p component (p=x, y, z) of xs„, is given by

X& =
x&p cosp coslf +y& sing„+ zsp cosP„sin8„

Xs„' = —xsp sing„cos8„+yap cosP„—zs, sing„sin8„,

(D3)

APPENDIX D: COMPUTATION OF DISTANCES
BETWEEN ATOMS AND THEIR DERIVATIVES

X „'=—x asind„+z Dcos8„. (D4)

In this appendix we would like to outline shortly the
computation of the distances R~& between two atoms g
and h in the formamide units n and m, respectively, as
function of the coordinates q„and q . Finally, the
derivates of the R "& with respect to the q are given.
Starting from the reference molecule (see Table IX for its
coordinates) one obtains the position vector rs„of atom g
in molecule n from the position vector r 0 of g in the
reference molecule from Eqs. (1)—(4) in Sec. II. Then the
vector pointing from g to h is given by

Atom No.

H
C
0
N
H
H

0.0
1.080 00
1.690 00
1 ~ 815 00
2.825 00
1.31000

0.0
0.0
1.056 55

—1.273 06
—1.273 06
—2.147 74

TABLE IX. Cartesian coordinates of the reference molecule
0

(in A) (all z coordinates are 0).
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Then one can write

3

Rg~ = g (Xg' —X"„)—2(Z —Z„)(xq' —X~„')

1/2
+ (Z —Z„) (D5)

If one defines

the straightforward differentiation of (D4) and (D5) leads
finally to

gR nm
gh

aa
3

g (Xf' —X"„')Xg

(Z Z )X32 (R nm) —
1

gR nm

y (xg' —x~„')xg.'
~V'm

—(z —z„)x," (R"„-)-'

BR "„
=( —Z +Z„+Xi, ' —X „')(R "i, )

m

(D7)

'H. J. Mikeska, J. Phys. C 11, L29 (1978).
2K. Maki, J. Low. Temp. Phys. 41, 327 (1980).
K. J. Wahlstrand, J. Chem. Phys. 82, 5257 (1985); K. J.

Wahlstrand and P. G. Waylnes, ibid. 82, 5259 (1985).
4S. Aubry, J. Chem. Phys. 64, 3392 (1976); M. A. Collins, A.

Blumen, J. F. Currie, and J. Ross, Phys. Rev. B 19, 3630
(1979).

~W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.
42, 1698 (1979); W. P. Su, Solid State Commun. 35, 899
{1980);W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys.
Rev. B 22, 2099 (1980); W. P. Su and J. R. Schrieffer, Proc.
Natl. Acad. Sci. U.S.A. 77, 5626 (1980); F. Guinea, Phys.
Rev. 8 30, 1884 (1984); A. R. Bishop, D. K. Campbell, P. S.
Lomdahl, B. Horowitz, and S. R. Phillpot, Phys. Rev. Lett.
52, 671 (1984); W. Forner, M. Seel, and J. Ladik, Solid State
Commun. 57, 463 (1986); J. Chem. Phys. 84, 5910 (1986); A.
Godzik, M. Seel, W. Forner, and J. Ladik, Solid State Com-
rnun. 60, 609 (1987); C.-M. Liegener, W. Forner, and J. Ladik,
Solid State Commun. 61, 203 (1987); S. R. Phillpot, D. Baer-
iswyl, A. R. Bishop, and P. S. Lomdahl, Phys. Rev. B 35,
7533 (1987).

S. Kivelson and D. E. Heim, Phys. Rev. B 26, 4278 (1982); A. J.
Heeger and J. R. Schrieffer, Solid State Commun. 48, 207
(1983); Z. G. Soos and S. Ramashesha, Phys. Rev. Lett. 51,
2374 (1983); H. Sasai and H. Fukutome, Synth. Met. 9, 295
(1984); W. P. Su, Phys. Rev. B 34, 2988 (1986); S. Kivelson
and Wei-kang Wu, ibid. 34, 5423 (1986).

7C. L. Wang and F. Martino, Phys. Rev. B 34, 5540 (1986); W.
Forner, C. L. Wang, F. Martino, and J ~ Ladik, ibid. 37, 4567
(1988); W. Forner, Solid State Commun. 63, 941 (1987); R.
Markus, W. Forner, and J. Ladik ibid. 63, 135 (1988); H.
Orendi; W. Forner, and J ~ Ladik, Chem. Phys. Lett. 150, 113
(1988).

A. S. Davydov and N. I. Kislukha, Phys. Status Solidi B 59,
465 (1973); A. S. Davydov, Phys. Scr. 20, 387 (1979); A. S.
Davydov, Usp. Fiz. Nauk 138, 603 (1982) [Sov. Phys. —Usp.
25, 898 (1982); A. S. Davydov, in Biology and Quantum
Mechanics (Pergamon, Oxford, 1982); W. C. Kerr and P. S.
Lomdahl, Phys. Rev. B 35, 3629 (1987).

A. C. Scott, Phys. Rev. A 26, 578 (1982); A. C. Scott, Phys. Scr.
29, 279 (1984); L. MacNeil and A. C. Scott, ibid. 29, 284
(1984); A. C. Scott, Philos. Trans. R. Soc. London, Ser. A 315,
423 (1985).
P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett 55, 1235
(1985); A. F. Lawrence, J. C. McDaniel, D. B. Chang, B. M.

Pierce, and R. K. Birge, Phys. Rev. A 33, 1188 (1986);H. Bol-
terauer, in Structure, Coherence, and Chaos, Proceedings of
the MIDIT Workshop, 1986, (Manchester University Press,
Manchester, 1986) H. Motschmann, W. Forner, and J. Ladik,
J. Phys. Condensed Matter 1, 5083 (1989).

' D. W. Brown, K. Lindenberg, and B. J. West, Phys. Rev. A

33, 4104, 4110 (1986); D. W. Brown, ibid. 37, 5010 (1988); D.
W. Brown, K. Lindenberg, and B. J ~ West, Phys. Rev. B 35,
6169 (1987); 37, 2946 (1988); B. Mechtly and P. B. Shaw, ibid.
38, 3075 (1988).

' J. A. Krumhansl and D. M. Alexander, in Structure and Dy-

namics; Nucleic Acids and Proteins, edited by E. Clementi and
R. H. Sarma (Adenine, New York, 1983), p. 61.
E. Boyland, in Symposium on Carcinogenesis, in Proceedings
of the Israel Academy of Sciences, Jerusalem, 1968, edited by
E. D. Bergmann and B. Pullman (Jerusalem Academic Press,
Jerusalem, 1969); J. Ladik, S. Suhai, and M. Seel, Int. J.
Quantum Chem. QBS5, 35 (1978); J. Ladik, ibid QBS13, 3.07
(1986); A. K. Bakhshi, J. Ladik, M. Seel, and P. Otto, Chem.
Phys. 108, 223 (1986); K. Laki and J. Ladik, Int. J. Quantum
Chem. QBS3, 51 (1976); F. Beleznay, S. Suhai, and J. Ladik
ibid. 20, 683 (1981).

'4J. Ladik and J. Cizek, Int. J. Quantum Chem. 26, 955 (1984);
J. Ladik, in Molecular Basis of Cancer, Part A, edited by R.
Rein (A. Liss, New York, 1985), p. 343.
D. Hofmann, W. Forner, and J. Ladik, Phys. Rev. A 37, 4429
(1988).

'6W. Forner, Phys. Rev. A 38, 939 (1988).
' K. S. Pfitzer, Adv. Chem. Phys. 2, 59 (1959).
~sJ. Ladik, P. Otto, and W. Forner, Int. J. Quantum Chem.

QBS10, 73 (1983).
' W. Forner, P. Otto, and J. Ladik, Chem. Phys. 86, 49 (1984).
2oP. Otto, Int. J. Quantum Chem. 28, 895 (1985).
2'P. Otto, Int. J. Quantum Chem. 30, 275 (1986).

P. Otto, J. Mol. Struct. 188, 277 (1989).
P. Saalfrank, P. Otto, and J. Ladik, Chem. Phys. Lett. 153,
451(1988)~

W. Forner, J. Ladik, P. Otto, and F. Martino, following paper,
Phys. Rev. A 40, 6457 (1989).

2~M. Aida and C. Nagata, Chem. Phys. Lett. 86, 44 (1982).
Y. K. Khang and M. Jhon, Theor. Chim. Acta 61, 41 (1982).

27M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972), Eq. 25.5.20, p. 897.

28D. Hofmann, W. Forner, and J. Ladik (unpublished).
J. A. Pople and W. Hehre, GAUSSIAN 74, Indiana University



6456 WOLFGANG FORNER

Quantum Chemistry Program Exchange lQCPEi Program
No. 236.

3oJ. Langlet, P. Claverie, F. Caron, and J. Bouive, Int. J. Quan-
tum Chem. 19, 299 (1981).

3~See, e.g., H. Goldstein, K1assische Mechanik (Akademische

Verlagsgesellschaft, Frankfurt am Main, Federal Republic of
Germany, 1974), p. 58.

D. Hofmann, W. Forner, and J. Ladik, J. Phys. Condensed
Matter (to be published).


