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An expression for the indirect interaction of surfaces through a liquid is derived that accounts for
inhomogeneity of the boundary conditions, which mimics the regular, irregular, or stochastic nature
of liquid structure perturbation along the surfaces. This leads to a new picture of hydration forces,
which gives an explanation of their main observable features: the dependence of the decay length
on the nature of the surfaces and its variation range, and the effect of surface ordering on the magni-

tude of the force.

I. INTRODUCTION

The interaction between two hydrophilic surfaces in
water and some other polar solvents at distances <3 nm
is dominated by the so-called “hydration” (or “structur-
al”) forces.!’? These forces are of crucial importance in
the stability of colloids,® for properties of wetting films,*
and in the interaction and fusion® of biological mem-
branes and macromolecules.>” They result, seemingly,
from an indirect interaction of the surfaces through the
solvent via the spatially correlated fluctuations of some
order parameter (polarization, density, etc.) perturbed at
the surfaces. These forces usually decay exponentially
with the distance, the characteristic length varying be-
tween 0.1 and 1 nm depending on the nature of the sur-
faces for a given solvent.!'?

The first attempt to describe this phenomenon was
made by Maré&elja and Radié¢.’ They used a Landau free-
energy gradient expansion, quadratic in the fluctuations
of the order parameter, which was later interpreted as the
local water polarization.® The interaction of the oppo-
sitely polarized water layers, adjacent to the surfaces,
thus led to a repulsion force. The nonlocal electrostatic
theory,!® which fit naturally in this context, was later ap-
plied in a series of works.!!”!* All these works used
homogeneous boundary conditions for the order parame-
ter or polarization at>!! or near!?”!* the surfaces. The
mode of the force decay so far was independent of the
type of the surface, being determined only by the correla-
tion function of the bulk water polarization fluctuations.
(The difference of the nonlocal water polarizability near
the interface from that of the bulk water was taken into
account in a more general formalism of Ref. 13; however,
its consequences were demonstrated by means of the
same ‘bulk-like” model example.) These theories gave
insight into the nonlocal nature of hydration forces.
However, they did not explain many of the observable
features, in particular, the dependence of the decay
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length on the nature of the surfaces.

These theories did not take into account the variation
of water orientation along the boundaries induced by the
alternation of positively and negatively charged surface
groups. This variation, which is typical for the systems
under study, especially for lipid membranes, would lead
to an interplay between attractive and repulsive contribu-
tions and may strongly change the picture of the interac-
tion.!>!® This idea was emphasized in Ref. 16 where
qualitative estimates were based on a superposition of at-
tractive and repulsive contributions with phenomenologi-
cal weight factors. However, no derivation of these terms
was proposed and no expressions for the preexponential
factors and decay lengths through the system parameters
were established.

Inhomogeneous surface charge distribution was con-
sidered within the classical electrostatic approach to the
interaction between surfaces due to dipole-dipole and
image-charge forces.!”"2° However, it soon became clear
that this approach failed to explain both the order of
magnitude and the main features of hydration forces.!®
Within the nonlocal electrostatic approach, the interac-
tion of lattices of collinear dipoles of a fixed orientation
was studied in Ref. 21. This theory revealed some in-
teresting features of the lattice discreteness effects (in-
cluding, e.g., the conditions of the appearance of an at-
tractive branch), but it did not manage to explain the
variation of the repulsive force decay length with the
changes in the structure of the boundary and some other
important properties.

In the present work, we study the role of the ordered
and stochastic (fixed or fluctuating) inhomogeneous
boundary conditions in the self-consistent field theory of
the hydration force acting between two planar surfaces.
It will be shown, in particular, that the preexponential
factor and the decay length in the repulsive mode of the
force are determined by the lateral correlations in the
values of the order parameter at the boundaries. Semimi-
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croscopic interpretation of the boundary conditions will
explain, for the first time, the main observable features of
the hydration forces for lipid membranes and colloids.

II. FREE ENERGY
AND DISJOINING PRESSURE

In the same way as Marcelja did,® we describe the wa-
ter film by the Landau free-energy functional

F=F,+ [ {agXn)+c[Vo(r)P}d’r , (1)

where @ is a scalar fluctuation field of the order parame-
ter. Its physical meaning may be concerned with, e.g.,
the polarization of water, V. The equilibrium value of ¢
is found from the minimum of the functional for which
the Euler equation gives

Ap=K*p , (2)

where k "!=V'c /a is the characteristic length of decay of
the correlation function (@(0)@(r)). The value of the
free energy is then given by

F=Fy+c [ds(gVg) , (3)

where the integration is performed over the surface,
bounding water. Considering the interaction of two
plane surfaces separated by the water layer, it is con-
venient to make the Fourier transform in the lateral
plane

¢(z,R)=71:E¢<z,Q)efQ'R, @)
Q

where (z,R) are the cylindrical coordinates with the z
axis normal to the surfaces and A4 is the surface area.
Then

2
%¢(2,Q)=<K2+Q2)<p(z,Q) . (5)

The boundary conditions for polarization (V¢) at the sur-
faces (at z =0 and z =L, where L is the thickness of the
water layer) are

do(z,R)

| =piten R,

z=0

do(z,R)

dz =p,+6p,(R) .

z=L

We separated here the homogeneous and inhomogene-
ous parts of the polarization at the boundaries;

(8p,(R))=(8p,(R))=0,

( ) denotes the statistical averaging. 8p(R) is either a
given fixed inhomogeneous field or a dynamic or random
static fluctuation field. For homogeneous boundary con-
ditions the solution is determined by the Q =0 eigenfunc-
tions of Eq. (5), while this will not generally be the case
for the lack of continuum translational invariance along
the surfaces. Characteristic lengths other than x~ ! may
then effectively appear in the problem.
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Let us define the correlation functions

S,/ (R)=1(8p,(r+R)8p,(r)+8p;(r+R)dp;(r)) , (7

where i (=1,2) labels the surfaces. Then the solution of
Eq. (5), subject to the boundary conditions (6) as substi-
tuted into Eq. (3), gives the expression for the free energy
of the water film F averaged over realizations of the
boundary conditions

(FY=Fy+Fpom+{Fin) » (8)

where the homogeneous and inhomogeneous terms are

Ac

Fhom=—2?[(p1+p2)2tanh(LK/2)
+(p,—p,)*coth(Lk/2)], 9)
(Fin)=c 3 (k*+Q%) 7172
Q
5$11(Q)+S5,(Q)
tanh[L (k2 +Q?)!/?]
25,,(Q)
—— e Q — = (10)
sinh[L (k*+Q*)" /%]
Here,
5;(Q)= [dRS;;(R)e QR . (11)

In the case of dynamic fluctuations, Eq. (10) is valid un-
der an assumption that the modes which contribute to &p
are much slower than the fluctuations of water polariza-
tion.

The disjoining pressure (here the hydration force) is
then given by

—_1/aF\_ 1
P= A<dL> A

For two identical homogeneous surfaces with

3(F)
oL

s =Phom+Pinh . (12)

ij

p1(R)=—p,(R)=const=p ,

Egs. (9) and (12) lead to the famous Maré&elja result’

2

[ A—
Prom sinh¥(kL /2) ’ 3
the repulsion exponentially decaying at large L with
characteristic length k!,

The contribution due to F, is much different. We
shall see that for many systems the hydration force is
determined just by the inhomogeneous term. For some
systems the Marcelja term may give a comparable contri-
bution and one should take into account both terms to-
gether. Below we analyze the properties of Py, .
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III. THE PROPERTIES
OF THE “INHOMOGENEOUS” CONTRIBUTION
TO HYDRATION FORCE

A. Fixed boundary conditions
For this case no averaging along the surfaces is needed:
S;(Q)=3[pi(Q)p;(—Q)+p;(Q)p;(—Q)] .

Let us consider, for example, the two identical periodic
surface perturbations:

8p,(R)=28p cos(q-R)
and
8p,(R)=—58p cos[q-(R—AR)],
shifted in the lateral plane by a vector, AR; ¢50. Then

VA4S
8p1(Q)= 5" (8q,4+8q,—q) »

) (14)
8p,(Q)=—5p,(Qle’ V4R
and, according to Egs. (10) and (12),
+ . 24 42172
P =c(8p) 1 cos(g AZR)coih[Likl/Zg )" 7°]
sinh’[ L (k*+¢q?%)'"%]
(15)

The surfaces which are free to adjust their mutual posi-
tions in the lateral plane will choose the energy minimum
corresponding to q-AR=(2n +1)m, i.e., the dips in the
8p,(R) profile would look at the maxima of the 6p,(R).
That results in a

_ c(8p)?
2cosh’[L (k2+¢H)17%2 /2]

a pure attraction exponentially decaying at large L with a
new characteristic length (k*+q%)~'/2. A similar result
was first obtained for the interaction of dipolar lattices in
Ref. 21.

It is rather obvious that with the violations of the
periodicity in 8p;(R) or 8p,(R) on the scales larger than
L, but smaller than V' 4, the oscillating term in Eq. (15)
vanishes or, at least, is smaller, the stronger these viola-
tions are (for two regular, but incommensurate lattices
such a conclusion has been rigorously proved). The re-
sult will then be determined by the first term in the
denominator of Eq. (15) which is purely repulsive with the
decay length [2(k*+¢?2)!2]7 L.

Pinh_

(16)

B. Fluctuation boundary conditions

The free energy described by Eq. (10) contains two con-
tributions of different origin. The one containing S,,(Q)
and S,,(Q) is the self-energy term. It describes the in-
teraction of each surface with a water layer of thickness
L (“surface solvation energy”). With the decrease of the
thickness of the polar layer L, system energy increases,
which gives rise to effective repulsion. The cross term
containing S,,(Q) is due to the interaction between per-
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turbations of the order parameter at different surfaces.
This contribution is always attractive because this kind of
interaction will tend to reduce the system energy.?

Hereafter we consider systems for which we know
from the experiment that the repulsion is dominating. In
this case, the term determined by intersurface correla-
tions can be neglected. The force is then given by an ex-
pression, which in the limit of 4 — o, looks as

P (L)=P(L)+P,(L), (17)

0S;(Q)
sinh?[L (k2 +Q?)!/?]

_ € = _
Py(L)=>— fo dQ (i=1,2).

(18)

[For simplicity, we consider isotropic surfaces for which
S,;(Q) are the functions of |Q].]

As we see from Eq. (18), the mode of the hydration
force decay is determined by both the water correlation
length «~! and the surface structure factors S;,(Q) and
S,,(Q). Equation (18) allows us to understand the quali-
tative behavior of P;,;,(L) even without particular ap-
proximations for structure factors.

Usually there are periodical oscillations in §,;(R) with
some wave number, g,, modulated by a decaying en-
velope of characteristic width £ Then S;(Q) has a
maximum centered at Q =¢, with a width £ '. In such
a situation we can easily predict the results in two limit-
ing cases.

When £2>>L (k*+g2%)~!/2, the main contribution to
the integral is given by Q =g¢,, so that

c{[8p;(R)}*)
P(L)=— 2 2 241727 °
sinh’[L (k" +¢g% )" "]

(19)

The decay length of the force is thus equal to
[2(k*+¢?%)'"2]7 L. This case is equivalent to the case of a
fixed periodic boundary condition with periodicity viola-
tions on large scales.

In the opposite limit, when £2<<L (k*+¢q2)"!/2, the
main contribution to the integral is due to the region near
of @ ~«k. The decay length then coincides with (2«)™},
the preexponential factor depending on the particular be-
havior of S;;(Q) at Q —0.

In the intermediate case there will be no single decay
length but a superposition of exponentials. Since the
diapason of the variation of L in the experiment is rather
narrow (1 nm <L <3 m), this might be considered as an
apparent exponential with an effective decay length A
which lies between the two limits

1 1

m <A< E . (20)
*

At large L (>>k/q2) the integrand in Eq. (18) is a
product of a function which goes down exponentially
with Q and of a “peak” function QS;;(Q) centered at a
value of Q which is larger than the decay length of the
first function. Therefore, the larger the width of the peak
£ 1is, the larger the integral is and the stronger the force
is.
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There is also a peculiar consequence of the inequality
(20). In the “‘strongly structured limit” &£— o, the
effective decay length would no longer depend on the wa-
ter correlation length k' if ¢, (~2m/ay, a, is the lattice
constant) is considerably larger than « .

Thus, we may suggest three actual rules for the fluctua-
tion mechanism of hydration forces (i.e., when the homo-
geneous contribution is negligible).

Rule 1. With the increase of the correlation range of
the surface structure factor, the effective decay range of
the hydration repulsion decreases.

Rule 2. At a large fixed distance between the surfaces,
the increase of the correlation range of the surface struc-
ture factor leads to the decrease in the absolute value of
the force.

Rule 3. The variation of the observable effective decay
lengths is limited from below and above. The lower limit
is the “period” of surface perturbation distribution (“lat-
tice constant”) divided by 47. The upper limit is one-half
of the water correlation range.

The shortest values of the lattice constant are limited
to the close packing distances so that the lower limit of
Aeg is =0.05 nm. The correlation length in water, as es-
timated by various authors,'®%2423 lies between 0.4 and 1
nm. So, the upper limit of A 4is =~0.2-0.5 nm.

A part of rule 3 may not be approved by a more gen-
eral theory which would go beyond the quadratic free-
energy functional of the present “linear response theory.”
This concerns an evaluation of the upper limit. Indeed,
the account for the ¢* term (“the nonlinear response”)
might give rise to an increase of A with respect to the
value of native water correlation length (which is likely to
be seen in colloid systems). Such a study is in progress
now. Within the quadratic (¢?) approximation, we do
manage to explain the variation of A, but only down
from (2x)~!. However, this just seems to be the case of
lipid membrane interaction.

IV. INTERACTION
OF PHOSPHOLIPID MEMBRANES

A. The nature of perturbation

To illustrate the results of the above given phenomeno-
logical analysis we consider the hydration interaction in
the best studied system of smectic mesophases formed by
neutral phospholipid bilayers>!'®2?% the bimolecular films
composed by amphiphilic lipid molecules. The molecule
has a polar head and two hydrophobic hydrocarbon tails.
The tails are packed inside the film, while polar heads
contact water. The bilayer has the properties of a two-
dimensional (2D) liquid; the molecules in it rotate around
their axes.

The water structure perturbation at the membrane sur-
face is induced mainly by the positive and negative
charged groups of the polar heads. The distance between
the positive and negative charges in one dipolar head is
fixed and equal to / ~0.4 nm.”” This dipole lies almost
parallel to the surface of bilayer so that the positive and
negative groups can be considered as lying in the same
plane.?”?® Then the surface perturbation can be written
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in the form
p,—(R)=fdR'[n,~+(R')—n,-"(R')]‘I’(R—R') , (21)
where

n*(r)= 3 8(R—RY)
k

is the surface charge density of positive and negative
groups and ¥ is the form factor of the perturbation. For
simplicity we assumed that + and — groups induce the
similar perturbations but with opposite signs. In this
case {p(R)) =0, so that we deal with a purely inhomo-
geneous, fluctuating boundary condition.?

B. Surface structure factors
From Eqgs. (7), (11), and (21) we find
S;(Q)=4|¥(Q)*N,(Q) , (22)

where we introduced the charge-density correlation func-
tion

NR)=([nT(x+R)—n " (+R)][n T (r)—n " (D)]),
(23)

N(Q)= [dRN(R)e QR (24)

N(Q) can be, in principle, extracted from the partial
structure factors measured by neutron scattering.

We now consider a 2D model of a bilayer which allows
us to get an analytical expression for N (Q). Let us as-
sume that a lipid molecule projection on a ‘bilayer
plane” has a center of rotation, relative to which the
orientation of the molecular dipole and the density of
molecules are statistically independent. We furthermore
assume that this center of rotation lies exactly in the mid-
dle between the positive and negative group. When the
orientations of different molecules are completely un-
correlated we get (see the Appendix)

S;:(Q)=24n; W (Q)|’[1—-Jy(QD] , (25)

where n; is the mean surface density of the polar heads
and J,, is the Bessel function. In the opposite, “strongly
structured limit” we assume that positive and negative
charges form a regular square lattice with a lattice con-
stant 2/. Then (see the Appendix)

S;:(Q)=16An2|W(Q)I218(Q — 7 /1) . (26)

The intermediate case may be described by the interpo-
lation

gnf 572
Yz N’(QHZ [Tn,- [1—J0(Ql)]

5,(Q)=4

+2§Q213 e —§Z(Q —n/h? .

27)

Here £ stands for a decay length of spatial correlation of
orientational and density fluctuations. The limits de-
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scribed above are reproduced by, respectively, £—0 and
§— 0. Plots of P, (L), calculated via Eq. (27) for the
case of identical bilayers (S|; =S,,) under the assumption
|W,(Q)?=W2/A4 [¥,(R)=W¥8(R)], are displayed in Fig.
1. They show the main tendencies prescribed by the phe-
nomenological analysis.

V. COMPARISON WITH EXPERIMENTS

Let us now look how the conclusions of the theory
match with the experimental facts.

A. The range of variation of the decay length

According to the present theory, three cases are possi-
ble.

(i) Purely inhomogeneous case. The effective decay
length A 4 should vary between 0.05 and 0.5 nm depend-
ing on the nature of the surfaces. For lipid membrane
systems the range of observed A. is 0.08 <A.4<0.3
nm. 5 16:26

(ii) Mixed case. When both the inhomogeneous and
homogeneous contributions are nonzero, at least two de-
cay lengths should be seen. The first one is the native wa-
ter correlation length k ~!. The second one is determined
by the nature of the surfaces and is at least two times
smaller. A sum of two exponentials with Aeﬁ]:0.3 nm

and A’eﬂ'zzl nm was observed in the interaction of mica

surfaces.>>8

(iii) Purely homogeneous case. One exponential decay
takes place here with water correlation length standing
for A+ This mode of decay is seen in the repulsion be-
tween silica surfaces with A.~0.7-1 nm.*

So, data for solid surfaces can be rationalized under an
assumption of nonzero mean values of polarization at
each of the surfaces. Somewhat large values of A 4 or Aesr,

4

consi+|ogIo P

n ()] [0 2]
1 1 1
uN//

. 65
i 2
Linm)

wl®

FIG. 1. Inhomogeneous contribution to the hydration force
[Egs. (17) and (18)] between two identical surfaces as calculated
with the help of an interpolation formula for the surface struc-
ture factor [Eq. (27)] given in the logarithmic coordinates to the
accuracy of a constant. k™ '=1 nm, / =0.5 nm; surface area per
unit bilayer molecule, n,”'=0.6 nm?. £ (nm): curve 1, 0; curve
2, 0.3; curve 3, 0.5; curve 4, 0.7; curve 5, 1; curve 6, 2.
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with respect to the native water correlation length sug-
gest that the nonlinear response of water to surface per-
turbation might be important here. A small decay length
in the interaction of lipid membranes indicates at the in-
homogeneous mechanism which is in a complete agree-
ment with the microscopic picture of surface perturba-
tion.

B. Peculiarities of hydration forces
in lipid membrane systems

Rigorous comparison with experiments requires the
knowledge of S;(Q) [Eq. (22)] or, at least, of N(Q) [Eq.
(23)], i.e., of the partial structure factors of positively and
negatively charged groups. Attempts to get such data by
means of the low-angle neutron scattering experiments
are in progress. However, at the moment, we may try to
explain a number of qualitative effects having based our
speculations on qualitative conclusions (sometimes not
exactly defined, or preliminary) about the ‘“degree of or-
der” in the lateral arrangement of polar heads.

(i) The dependence on the nature of the polar head. Let
us compare phosphatidylethanolamine (PE) bilayers,
where lateral interaction of polar heads is supposed to be
very strong,””!> with phospatidylcholine (PC) bilayers
where the interaction is likely to be weaker. If the order-
ing of polar heads in PE is indeed longer than for PC,
then according to rule 1, for PE the decay length A4
should be smaller due to the corresponding longer lateral
correlations in the surface water perturbation. Within
the framework of this picture, according rule 2, at large
distances the hydration force between PE bilayers should
be much smaller. Just this behavior is experimentally ob-
served.!6:26

(ii) The effect of the nature or phase state of hydrocar-
bon tails. The following tendency has been experimental-
ly established. The more saturated and, consequently,
more rigid the tails are, the more dense the packing of
the lipids is, and the weaker the hydration force is.>!52¢
The same tendency is observed for the liquid-gel phase
transition.>'®26 The nontrivial explanation of this is
again the strengthening of the lateral interactions among
lipid molecules with the saturation of hydrocarbon chains
or a liquid— gel transition. A simple increase of the den-
sity of the polar heads packing (which may reach 40%
here as a maximum) cannot beat the tremendous effect
due to the growth of the lateral structure correlation
range: the latter diminishes the hydration force by orders
of magnitude (rule 2). The tendency of the decrease of
A prescribed in this situation by rule 1, is also in a very
good agreement with the experiments.> %26

(iii) The action of phospholipases. These species tend to
cutoff polar heads from the bilayer, leaving behind, in the
lipid matrix, the hydrophobic diacylglycerol molecules
(DAG). At first glance, the hydration repulsion should
be diminished since the surfaces become, as a result, more
hydrophobic, but this is not the case. This process in-
creases the force at large distances.’! Is this result, the
manifestation of rule 2, due to a disordering action of
DAG? The increase in A4 predicted in this case by rule
1, is also observed.3!
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(iv) The action of cholesterol (CH). The effect is oppo-
site in the gel phase, where CH increases the hydration
force, and in the liquid phase where the force is dimin-
ished.!® The explanation may be concerned in a way with
the well-known opposite ordering effect of CH in these
phases: CH leads to a stronger ordering of the liquid and
disordering of the gel.!® The application of rule 2 then
reaches the goal.

This example, however, may be not the “best” one
since the discussed ordering of lipid tails might not neces-
sarily mean the increase in ordering of the polar heads.
The influence of cholesterol might be quite opposite here,
which requires, in fact, a more thorough analysis.

VI. CONCLUSION

An account for spatial dispersion of the boundary con-
ditions has led us to an entirely new picture of the hydra-
tion force. It gives a consistent physical explanation of
its main features, particularly interesting for lipid mem-
brane systems. We saw that the specific arrangement of
water molecules at the interacting surfaces is not crucial
for understanding the qualitative properties of hydration
interaction, but the nature of perturbation and the gen-
eral character of its distribution along the surfaces is cru-
cial.

In order to verify the predictions of the theory one
should either measure hydration forces in correlation to
the lateral surface structure factors of polar head groups,
or, at least follow the qualitative trends in hydration
forces with the definite strengthening of the lateral order
in the polar head distribution. We believe that the con-
sidered examples are encouraging for further applications
of the theory, though one must be careful with the facts
about the structure of lipid matrix and presumptions
about the order in the polar head region.

Thinking of lipid bilayers as a body of biological mem-
branes, we may now keep in mind that the strengthening
of bilayer ordering may be an efficient way to reduce the
hydration barriers controlling the membrane fusion. The
relaxation of the surface short-range order will lead to an
opposite effect making the membranes more resistive to
fusion. Collective reconstructions affecting the order,
manifested here via the analytical properties of the sur-
face structure factors, may be less costly for the nature to

J

N(Q)={2n[1—cos(Q-1)])

+_17< 2 [efiQ-(ijkk)(e —iQ-Ij/ZeiQ-Ik/Z
Jk

<k

+e

Here the first term reflects the rigid struture within one
molecule (n is the mean density of polar heads), while the
second term is responsible for intermolecular correlation
functions (j5<k). Since the orientations of the molecules
are independent, we have

(eiQ~Ij/2eiQ~lk /2> (eiQ'Ij/2><eiQ~lk /2) (AS)

iQ1./2 —iQl, /2  —iQd,/2 —iQ1 /2 Q. /2 iQ-, /2
e K —e e K2 =i T Tk
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facilitate or resist cell fusion or recognition than a reali-
zation of special chemical arrangements. We thus arrive
at a possible remarkable relation between the *function”
and statistical aspects of the structure of lipid mem-
branes.

If the formation of the boundary conditions is due to
hydration of negatively and positively charged groups,
one should also consider the direct electrostatic contribu-
tion to the hydration force. A nonlocal electrostatic
treatment of this contribution will be given in a subse-
quent publication.
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APPENDIX: CHARGE-DENSITY CORRELATION
FUNCTIONS FOR LIPID MEMBRANES

1. Completely uncorrelated orientations of polar heads

The Fourier transform of the charge-density correla-
tion function N(Q) determined by Egs. (23) and (24) may
be written in the form

NQ)=([n"(Q)—n"(QI?*), (A1)
where
_ioRE
nHQI=— o R (A2)

are the Fourier transforms of densities of the positive and
negative groups 7 (R)=38R—Rf). For the mole-
cules having the center of rotation R, lying in the middle
between the positive and negative groups

R; =R+, /2, Rf=R,—1,/2 (A3)

(I =|1,| is the separation between the + and — groups in
a molecule). After the substitution of Eq. (A3) into Egs.
(A1) and (A2) we find

(A4)
[
and
( eiQ-Ij/Z) — Q2 )
:<e—iQ~Ij/2)=<e—iQ-lk/2) . (A6)
After the averaging over the orientations of [ we find
N(Q)=2n[1—Jy(OD], (A7)

where J is the Bessel function.
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2. Regular lattice of polar heads

For the sake of simplicity we consider the simpliest
square lattice (with a lattice constant a) and parallel or-
dering of the polar heads along one of principal axes.
Then from Egs. (A1) and (A2) we find

N(Q)=2An2<26Q,qn[1——cosh(q,,-l)]> , (A8)
qn

where I (|1|=1) is the shift between positive and negative
sublattices. q, are the vectors of the reciprocal lattice.
Since the relevant values of L are much greater than
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g, '=1/m, it is possible for the calculation of P(L) to
keep in the sum (A8) only the first nonzero terms with the
smallest vector of the reciprocal lattice, q,. Then, in the
limit of 4 — o, after averaging over the lattice orienta-
tions, we find

N(Q)=4n%a8(Q —2m/a)[1—cosh(27l/a)] . (A9)

Usually for lipid membranes /=~0.4 nm and a ~0.7-1
nm, so we assume for simplicity that a =2/. Then

N(Q)=16r%8(Q —7 /1) . (A10)
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