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It is shown that the Knudsen problem ("paradox" ) can be resolved by the flow-rate formula for a
non-Newtonian fluid flowing under a pressure gradient in a circular tube, as reported elsewhere.
The flow-rate formula exhibits a minimum in the low-pressure regime but gives the Hagen-
Poiseuille linear dependence on pressure in the high-pressure regime. Since the generalized hydro-
dynamic equations used for the derivation of the flow-rate formula are derived from the Boltzmann
equation, the present solution of the Knudsen problem is well founded on the kinetic theory of
gases. The nonlinear transport processes, which increasingly manifest themselves as the gas density
decreases, are the cause for the emergence of a minimum in the flow rate for rarefied gases in circu-
lar tube flow. The entropy production and also the drag coefBcient are calculated as a function of
pressure difference, Reynolds number, and other parameters characteristic of the system.

I. INTRODUCTION

Influenced by the Kundt-Warburg experiment, ' which
provided insight into the nature of gases in rarefied con-
ditions, Knudsen performed various experiments, and in
1909 reported an experimental investigation into the va-
lidity of the Hagen-Poiseuille volume flow rate for
rarefield gases flowing in a long circular tube. Through
the experiment he discovered that, although the volume
flow rate of the gases investigated follows the prediction
by the well-known Hagen-Poiseuille velocity profile when
the mean pressure is in the range of normal gas pressure,
it does not vanish as the mean pressure approaches to
zero, but increases, thereby exhibiting a minimum at a
low pressure. See Fig. 1 in which Knudsen's original
figure is reproduced. In fact, he was able to fit his data
for the volume How rate per unit pressure dift'erence Qk
to the following empirical formula:

1+cip
Q„=ap+b

1+c~p

where

a =vrR /8L, go,

b =4&2mR /3L +pi,
and c, and c2 are numerical constants that depend on the
nature of the molecule comprising the gas, with R and L
denoting the radius and length of the circular tube, go the
shear viscosity of the gas, and p, the specific density of
the gas at temperature T when the pressure is equal to 1

dyn/cm, and p the mean pressure. The first term on the
right-hand side of (l) is the Hagen-Poiseuille law predic-
tion and the second term is the one giving rise to the
aforementioned minimum since it yields a finite value of
Qk which is higher than the value of the first term as p
approaches zero. Knudsen obtained the parameter b by
using the cosine law for scattering off the surface by the
molecules, but b, c„and c2 may be treated as adjustable

parameters. Because of the second term in (1) Qk has a
minimum at a nonzero value of p, and this phenomenon
is referred to as the Knudsen paradox in the rarefied gas
dynamics literature. Since it is really not a paradox
from the viewpoint of a broader hydrodynamic theory,
we will refer to it as the Knudsen problem. The presence
of such a minimum was later confirmed by Gaede.

Much later, the Knudsen problem was studied theoret-
ically in the case of plane Poiseuille flow. ' Since experi-
ments were performed in a circular-tube flow geometry, it
was not possible to compare the aforementioned theoreti-
cal results with experimental results, but their results pre-
dicted the existence of a minimum in the volume flow
rate. The theoretical analyses in Refs. 7 and 8 are made
with the Bhatnagar-Gross-Krook (BGK) kinetic equa-
tion adapted to the plane Poiseuille flow geometry and
subjected to the specular and reflective boundary condi-
tions leading to slip boundary conditions. There is, how-
ever, no theoretical study available for the problem in a
circular-tube flow geometry. In this connection we re-
mark that the cylindrical coordinates necessary for
description of circular-tube flow do not yield a kinetic
equation in a sufficiently simple form that is easily amen-
able to mathematical analysis.

In this paper we report on a simple analytic result for
the volume flow rate for a rarefied gas flowing in a circu-
lar tube subject to a pressure gradient. We take an ap-
proach that applies generalized hydrodynamic equations
developed previously. In previous papers' '" on general-
ized hydrodynamics there are reported the velocity
profiles and volume flow rate of a fluid flowing in plane'
and circular-tube" flow geometry when the constitutive
equation for shear stress is non-Newtonian, namely, non-
linear with respect to the shear stress. Such constitutive
equations for stresses and other macroscopic variables
have been derived from the Boltzmann equation by
means of the modified moment method. ' This is a
method for solving the Boltzmann equation or other ki-
netic equations in a way consistent with the thermo-
dynamic laws so that the macroscopic properties predict-
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FIG. 1. Reproduction of Knudsen's data on CO2.

ed by the evolution equations so obtained are in confor-
mation with the thermodynamic laws. In a series of pa-
pers' ' on rarefied gas dynamics, which are in many
ways related to the present study, it is shown that the
constitutive equation for the shear stress used here gives
rise to correct flow profiles and effective transport
coefficients. Therefore the constitutive equation used
here is not only well founded on the kinetic theory of
gases but also known to be reliable in describing trans-
port and fluid dynamic properties of dilute gases, and,
consequently, the volume flow-rate results obtained there-
with should be interesting to examine in connection with
the Knudsen problem. We also calculate the entropy
production associated with the flow and the drag
coefficient as a function of pressure difference, Reynolds
number, aspect ratio, and molecular parameters charac-
teristic of the gas of interest. Since the analysis leading to
the volume flow-rate formula is reported elsewhere, we
shall present only the final results except for a brief sum-
mary of the equations involved so that the paper is self-
contained and the reader can work out the results with
ease.

II. GENERALIZED HYDRODYNAMICS
AND THE VOLUME FLOW RATE

of the axial symmetry. The flow is assumed to be in the
positive direction of z, the angular component u z of the
velocity u is equal to zero, and the radial velocity u„ is
also equal to zero for the following reason.

Since we are interested in a steady flow, the steady-
state equation of continuity is

V pu=O

which in the cylindrical coordinates takes the form

& a i a a(pru„)+ — (pue)+ (pu, )=0 .rdr " rBO az
(3)

Since the density p and velocity components do not de-
pend on z and 6, we obtain from (3)

(pru„)=0,a
Br

or on integration

pru, =const .

Since u„=O at the boundary r =R (tube wall), we con-
clude that u„=O everywhere since pAO. Since u8=0, we
conclude that

We assume that a fluid is laminarly flowing in a circu-
lar tube of length L and radius R, subject to a longitudi-
nal pressure gradient. The pressure difference between
the entrance and exit of the tube is denoted by
Ap —=p, —pf where p,- and pf are the pressure at the en-
trance and exit of the tube, respectively. The fluid is
maintained at a constant uniform temperature and there-
fore there is no heatPux We also assum. e that the normal
stress differences are negligible Since there . is axial sym-
metry in the system, the appropriate coordinates are cy-
lindrical coordinates which we denote by (r, 8,z), the
direction of flow being parallel to the z axis. Since the
length of the tube is assumed sufficiently long so that the
end effects are negligible, the flow properties, and in par-
ticular, the fluid velocity components, are independent of
z. Moreover, they are independent of the angle 0 because

u=(0, 0, u, ) .

Let us denote the traceless symmetric part of stress ten-
sor by H and the normal stress differences by

N i
=H„—H„„, N2 = II„,—Hgg, (4)

where H„„, etc. , are the normal components of H. We
will denote the (rz) component of II by II

rr—= rr =rr,„,
which is the relevant shear stress since all other off-
diagonal components are equal to zero for the present
flow problem. Then, the momentum balance equations
are
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r(Nz N—, ) — (2Nz+N, ) =0,ap l a
Br 3r dr 3r

ap ia rH=O .
Bz r Br

(6)

(7)

theory and experimental foundations are firm.
The velocity component u, can be determined from the

pair of equations (7) and (9). By using (8) and (9) in (7),
we can easily find the velocity profile

We emphasize that (6) and (7) are, respectively, the exact
r and z component of the steady-state momentum balance
equation for the problem. Since the normal stress
differences are assumed to be negligible, setting
N, =Nz =0, we obtain from (6)

Bp
ar

and thus the pressure is seen to be independent of r.
Since we also assume that the pressure gradient in the z
direction is constant, we find

u, (r) = (R /r5)[cosh5 —cosh(5r /R ) ]

subject to the boundary conditions

u, (R)=0,
(au, /ar )„=0.

(14)

(15)

5=~R Ap /2L go . (16)

We note that because of the second condition in (15) the
shear stress H is given by H = r b p /2L. This follows
from (7). In (14)

p= z+pAp (8)
The velocity profile (14) reduces to the well-known
Hagen-Poiseuille velocity profile

The shear stress H can be shown to obey the equa-
t10 12, 14, 17 u, (r)= (R —r )

Ap
4L go

(17)

IIq (II)=2iloy

where

q, ( II ) =sinh~ /~,
]c= v.H/go,

r = [2zlo(m„kzi T/2)' ]' /&2nkji Tcr,

y = —2 '(Bu, /Br ),

(9)

(10)

(12)

(13)

as the parameter 5 gets small.
The number of particles flowing in the tube in unit

time is given by the formula
R

Q =2mn f dr ru, (r) . (18)
0

By substituting the velocity profile (14) and performing
the integration, we obtain from (18)

Q = n (2zrlr5)[ —,
' cosh5+ 5 (cosh5 —1)—5 'sinh5]

with zoo denoting the Chapman-Enskog (Newtonian)
shear viscosity of the gas, m„and o. the reduced mass and
the size parameter of the molecule, respectively, and n
the number density. The constitutive equation (9) is ob-
tained from the steady-state evolution equation for H by
setting N, =N2=0 for the present flow geometry. The
evolution equations for stress tensors H„„H„, etc. , are
den ved from the Boltzmann equation by using the
modified moment method, ' which makes sure that the
thermodynamic laws are fully satisfied by the constitutive
equations derived from the kinetic equation. The factor
q, enters into the theory because in the modified moment
method' the collision term in the Boltzmann equation is
computed in a cumulant expansion which is equivalent to
a resummation of an infinite series in the Knudsen num-
ber of the distribution function. Since the Chapman-
Enskog' series may be considered a series in Knudsen
number, the q, factor compensates for the inadequacy of
the first-order Chapman-Enskog solution for the distribu-
tion function which is the first-order term in the Knudsen
number series mentioned. In this connection it must be
mentioned that the first-order Chapman-Enskog solution
gives rise to the constitutive equation (9) for II with q, = 1

and, consequently, the Navier-Sto'ces equation at the hy-
drodynamic level. Note that the latter is the hydro-
dynamic equation used to obtain the Hagen-Poiseuille ve-
locity profile shown below (Qii„). The constitutive equa-
tion (9) has been tested for various problems in rheology'
and fluid dynamics' in the past. Therefore its kinetic

nvrR hp
(

SL go

—:Qiip( I+~Q )p

where

b, Q =85 [—,
' cosh5+ 5 ( cosh5 —1 ) —5 'sinh5] —1

=45 [sinh (5/2)+ [cosh(5/2)
—25 'sinh(5/2)] j

—1

wR 4'
8L zlo% T

(19)

(20)

where 8 is the gas constant and we have used the equa-
tion of state p =n9tT. Note that Qiip is the Hagen-
Poiseuille formula for the volume flow rate apart from
the factor 9t T that appears since Q is the number of parti-
cles flowing through the tube of radius R per unit time,
but not the volume fiow per unit time. [Note that Qb re-

hp
suits from (6) with N, =Nz=0, (7) and (9) with q, =1,
i.e., the Navier-Stokes equation. ] To understand the be-
havior of Q as p is varied, we now return to the
definitions of parameters ~ and 5. Since ~ is inversely
proportional to p =n%T [see (12) above], so is 5. There-
fore AQ vanishes as 5~0 and thus Q becomes a linear
function of p in the limit. This is the prediction by the
Hagen-Poiseuille velocity profile, which also predicts that
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Q vanishes at p =0. Experiments by Knudsen '3 and
Gaede show that Q does not vanish at p =0, as pointed
out in Sec. I. Since 5 is inversely proportional to p, the
former diverges as p ~0, and so does Q:

Q -p exp(5o/p) as p ~0 (21)

where 5o is such that

I 5 [—,'cosh5+5 (cosh5 —1)—5 'sinh5] ) =0,

which yields the transcendental equation for 6 at the
minimum

5 (10+5 )sinh5 —5(2+5 )cosh5 +10=0 .

Thus the pressure at the minimum is given by

p =60/5

(22)

(23)

where 5 is the solution of (22). There are two solutions:
6 =-0 and approximately 2.30. The latter is the value of
interest to us. The parameter 5 depends on Ap, tempera-
ture, viscosity, and other molecular parameters as well as
the aspect ratio 8/L. Especially the Ap dependence is
significant since the flow rate depends sensitively on the

= roR hp /21. rjo,

ro = [27)o( m „kz T /2) ' ] ' ~ /&2o

Therefore it is easy to infer that there exists a minimum
in Q at some value of p. The location of the minimum is
given by

applied pressure difference (or gradient) as well as the
mean pressure. Knudsen reduced the flow rate with hp
and presented the data without stating the Ap values in
his paper and monograph. This absence of Ap values is
understandable since he, when judged from his interpola-
tion formula (1) which does not include hp in it, appeared
to have thought that the flow rate is linear with respect to
bp and thus felt that Q„ is the same for all values of bp.
Contrary to his formula (1), the present flow-rate formula
(19) depends on bp. Although Gaede's data do not cov-
er the post-minimum region of pressure, being confined
to the low-pressure region, he gives the pressure value at
the entrance of the tube in the case of hydrogen. Since
his formula contains a logarithmic singularity we, howev-
er, find it difficult to match it with the exponential singu-
larity of the present theory and get a meaningful value of
the desired pressure value. For this reason a quantitative
comparison with experiment is found to be impossible
with the kind of data available. Under these cir-
cumstances we are compelled to just verify the existence
of a minimum in terms of dimensionless parameter 5, un-
less we arbitrarily guess the parameter 6o. Guessing the
value of 60 is equivalent to assuming a value of Ap. Since
there seems to be some merit in this manner of compar-
ison, by taking 60=0.07 and 0.1, in Figs. 2 and 3 we have
compared for CO& the flow rates Qk and Q

—= Q I(T/bp,
where Q is given by (19), calculated as a function of p in
units of cm Hg. The parameters a, b, c, and cz have the
following values in units commensurate to the cm Hg
units for pressure:

a =0.048 80/cm Hg, b =0.034 89,
c

&
=43.13/cm Hg, c& =53. 10/cm Hg .

0.02

0.015—

O 0.01

(3
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I I
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0.3 0.4

FIG. 2. Reduced flow rate (Qz and Q ) vs pressure (in units of crn Hg). 50=0.07.
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FICx. 3. Reduced flow rate (Q„and Q) vs pressure (in units of cm Hg). 6o=0. 1.

See Ref. 3 for the source of these parameters which are
here converted into the units indicated. The prediction
by the formula (19) clearly shows a minimum at a small
value of p. When the factor bc, /cz is subtracted from
(1), the two formulas (1) and (19) in the large-p limit not
only give a linear p dependence in agreement with the
Hagen-Poiseuille prediction, but also numerically coin-
cide with each other. Therefore (19) is an interpolation
formula covering the whole pressure range. It must be
noted that Qk in Figs. 2 and 3 are, in fact, the experimen-
tal data since Qk is calculated from the interpolation for-
mula (1) proposed by Knudsen who fitted his data to it.
Note also that a better comparison could have been
achieved in Figs. 2 and 3 if an optimum value of Ap were
chosen for fitting, but the present author does not consid-
er such a fitting meaningful because the limitations aris-
ing from the lack of experimental information on the Ap
values may make such a nice looking fitting misleading.
Both theory and experiment may need improvement after
all.

The basic reason for the appearance of the minimum is
in the fact that the effective viscosity diminishes as the
parameter 5 increases, and thereby the gas becomes in-
creasingly less frictional, as the gas density (or the mean
pressure) decreases. The Navier-Stokes equation does not
have a mechanism for a diminishing viscosity, and the ab-
sence of such a mechanism is the reason for the Hagen-
Poiseuille result being in variance with experiment at low
pressure. The mathematical mechanism for a diminish-
ing effective viscosity is provided by the nonlinear factor
q, appearing in the constitutive equation (9) for II, which
gives rise to an effective viscosity vanishing" in the
boundary layer that gets thinner as 5 increases or the
density decreases. We have already noted how this non-

g,„,=k~g '~ sinh]c,

where

g =(m„/2kii T)' /(no )

(24)

Since II=rbp/2L, there follows from (11)

1~=5/,

where g=r/R, and therefore we obtain

o,„,=So5 'g sinh(5$),
where

Qp2g 2

4L &ok&T

(25)

The entropy production in (25) is at position g. A more
interesting quantity is the global entropy production
which is obtained by integrating (25) over the volume of a
unit height of the cylinder. We define reduced global en-
tropy production by the formula

R
X=2m'So ' dr ro,„,(r) .

0

This is easily calculated to be

X =4vrR 5 [ ,'cosh5+5 —(cosh5 1)—5 'sin—h5],
(26)

linear factor enters the present generalized hydrodynamic
theory. We find this factor plays many subtle and impor-
tant roles in fluid dynamics when the system is far from
equilibrium. Some of its effects are reported in references
already cited. ' ' '

The entropy production associated with the flow can
be calculated with the formula' '
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which is seen proportional to the flow rate Q; see (19).
Thus we see that the energy is dissipated in direct propor-
tion to the number of gas molecules drawn out of the
tube.

Another quantity of interest is the drag coefficient at
the tube wall. It gives a measure of the mean kinetic en-
ergy dissipated into frictional heat at the surface of a
body over which the flow occurs. It is defined by the for-
mula

2vrRL 11(R )

2mRL ,'p. ( u,—)
(27)

Cg =% '/F(5), (28)

for which we have used the maximum velocity at r =0
u = u, (0)=(R /r5)(cosh5 —1),

and have defined the Reynolds number A therewith

A=pu R/go .

where (u, ) is a mean velocity. In the present case of
flow it may be defined by

R
( u, ) =2m J dr ru, (r)/mR

This is the usual definition of the mean velocity used in
connection with the drag coefficient for tube flow. Note
that this mean velocity is proportional to the flow rate Q
already computed.

The formula (27) can be easily computed by using the
shear stress and velocity profiles obtained earlier. It may
be given in the following form:

The function F(5) is then given by

F(5)=2[ ,'c—osh5+5 (cosh5 —1)

—5 'sinh5] /5 (cosh5 —1), (29)

which is equal to —,', at 5=0 and positive for 5)0. It in-
creases exponentially as p decreases, and thus the drag
coeflicient decays like exp( —5) as p~0. We thus see
that C& agrees with the drag coefficient for the Hagen-
Poiseuille flow in the small 5 limit C&Hp =16/A. A de-
tailed analysis' of the parameter 5 shows that it is pro-
portional to the Reynolds number A and the Knudsen
number. Therefore the drag coefficient is a nonlinear
function of A. In Fig. 4, Cz —=%Cz is plotted against the
mean pressure: it vanishes exponentially as p decreases
and thus indicates that the kinetic energy of flow is dissi-
pated less and less into viscous friction energy or, put in
another term, heat, as the mean pressure diminishes.
This vanishing of the drag coefficient at low pressure is
helpful for understanding the singular behavior of Q at
p =0 since the kinetic energy of the flow is, on the aver-
age, increasingly less dissipated into frictional heat at the
wall in the low-pressure limit where the molecules tend to
move in parallel to the tube wall under a pressure gra-
dient without a significant number of collisions with ei-
ther the wall or other molecules. Thus the rarefied gas
acts under a pressure gradient as if it is a collimated beam
moving along the tube. This seems to account for the
singular flow rate, although the latter appears to be in
variance with the experimental results of Knudsen.

$0—

0.1 0.2
P(cm Hg)

0.3 0.4

FIG. 4. Reduced drag coefficient Cq*=%Cz vs pressure (in units of cm Hg) for 50=0.1. The reduced drag coefficient for the case
of 6„=0.07 is aim. ost identical with the one presented in this figure.
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III. DISCUSSION AND CONCLUSION

The resolution of the Knudsen problem presented in
this work is achieved by a completely hydrodynargical
method since the generalized hydrodynamic equations
are used for calculating the flow rate of a gas in a circular
tube. In generalized hydrodynamics we approach to flow
properties of rarefied gases with the viewpoint that the
unusual behavior exhibited by rarefied gases is a manifes-
tation, at the hydrodynamic and thus macroscopic level,
of nonlinear transport processes inherent to rarefied gases
and the stick boundary conditions are adequate, provided
that the transport processes are taken into consideration
to a sufficiently nonlinear degree. This viewpoint is in
contrast to the one taken in the conventional ap-
proach ' ' in rarefied gas dynamics that attributes the
unusual behavior of rarefied gases to slip phenomena aris-
ing from the specular and reflective scattering of mole-
cules off the walls which become more manifest in the
low-density regime. We have shown in the previous pa-
pers' ' on applications of generalized hydrodynamics to
rarefied gas dynamics problems that there can occur thin
boundary layers because of nonlinear transport processes
and, as a consequence, the flow profiles may appear to be
exhibiting a slip or jump behavior, especially if experi-
mental resolutions are not of high quality. The general-
ized hydrodynamics calculation presented in this paper is
done with the same viewpoint and spirit as for the previ-
ous calculations mentioned earlier. ' ' ' Moreover, it
shows that the present approach provides a flow-rate for-
mula that can account for the existence of a minimum
observed experimentally.

By solving the BGK (linearized) kinetic equation by a
set of approximations Takao and Cercignani showed
that in the case of plane Poiseuille flow there appears a
minimum in the flow rate versus pressure curve, but there
has not been a theoretical result for Poiseuille flow in a
circular tube that exhibits such a minimum. Takao's
method uses a special kind of moment method which
yields linear differential equations for velocities and stress
tensors to first order in nonuniformity defined by
e-H/p, and solves the differential equations to obtain
the volume flow rate in terms of quadratures. On the
other hand, Cercignani reduces the BGK equation to an
integral equation for the velocity and thus for the volume
flow rate, which he solves by iteration. The approximate
results obtained by both of them are quite complicated
and does not reveal the Knudsen number dependence of
the volume flow rate as simply as (19). More important-
ly, the leading approximations for their volume flow-rate

formulas are found to yield the zero Knudsen number
limit expressions that are significantly different from the
volume flow-rate formula in the Hagen-Poiseuille theory,
namely, QHP presented earlier, although the Hagen-
Poiseuille formula must be recovered as the limiting for-
mula in the limit of vanishing Knudsen number or 5.
The inability of the Takao and Cercignani theories, at
least in their leading approximations as presented in their
papers, ' to yield the Hagen-Poiseuille limit formula
probably indicates the quality of the approximations and
perhaps the methods used in their analysis of the prob-
lem. The present theory is rather simple and free from
such a weakness.

There is, however, a common feature shared by the
Takao, Cercignani, and present theory: that is, the diver-
gent flow rate as p~0. Knudsen's data show that Q is
finite at p =0, but Cercignani's result ' shows a logarith-
mic singularity while Takao's and the present results give
an exponential singularity. Note also that Gaede fitted
his low-pressure data to a logarithmic function of p. The
theoretical variances with experiment (especially
Knudsen's) are not possible to account for at present, but
the p =0 limit of Q appears to require removal of some of
assumptions made for the present calculation, which is
expected to result in more complicated equations not pos-
sible to solve analytically.

The present result not only exhibits a minimum in flow
rate characteristic of the Knudsen problem for the exper-
imental flow geometry, namely, the circular-tube flow
within the framework of hydrodynamics, but also thereby
demonstrates once more the utility of generalized hydro-
dynamic equations obtained by the modified moment
method for the Boltzmann equation and the generalized
Boltzmann equation. ' The latter aspect is potentially
more interesting than the resolution of the Knudsen
problem itself since generalized hydrodynamics extends
the scope of classical (Navier-Stokes-Fourier) hydro-
dynamics into highly nonlinear regimes of processes for
which the density regime of rarefied gases is an important
example. We remark that the generalized hydrodynamic
equations are completely consistent with the thermo-
dynamic laws and within the framework of the theory of
extended irreversible thermodynamics reported previous-

18, 19

ACKNOWLEDGMENTS

This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada.

*Also at the Department of Physics, McGill University.
'A. Kundt and E. Warburg, Poggendorff's Ann. Phys. (Leipzig)

155, 337 (1975); 155, 525 (1875).
2M. Knudsen, The Kinetic Theory of Gases (Methuen, London,

1934).
3M. Knudsen, Ann. Phys. 28, 75 (1909).
4For example, see L. D. Landau and E. M. Lifshitz, Fluid

Mechanics (Pergamon, London, 1959).
sM. N. Kogan, Rarefied Gas Dynamics (Plenum, New York,

1969).
~W. Gaede, Ann. Phys. Ser. 4 41, 289 (1913).
7K. Takao, in Rarefted Gas Dynamics, edited by L. Talbot

(Academic, New York, 1961),p. 465.
SC. Cercignani, in Rarefied Gas Dynamics, edited by J. A. Laur-



6402 BYUNG CHAN EU 40

mann (Academic, New York, 1963), Vol. 2, p. 92.
P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,

511 (1954).
B.C. Eu, Phys. Rev. A 37, 4504 (1988).

' B.C. Eu, Am. J. Phys. (to be published).
' B. C. Eu, J. Chem. Phys. 73, 2958 (1980); 79, 3607(E) (1983);

85, 1592 (1986).
D. K. Bhattacharya and B. C. Eu, Phys. Rev. A 35, 4850
(1987).

'4R. E. Khayat and B. C. Eu, Phys. Rev. A 38, 2492 (1988); 39,
728 (1989);40, 946 (1989).

'sS. Chapman and T. Cx. Cowling, Mathematical Theory of
1Vonuniform Gases, 3rd ed. 1Cambridge, London, 19701.
B. C. Eu, J. Chem. Phys. 79, 2315 (1983); B. C. Eu and Y. G.
Ohr, ibid. 81, 2756 (1984); B. C. Eu ibid. 82, 4683 (1985); D.
K. Bhattacharya and B. C. Eu, Mol. Phys. 59, 1145 (1986).
B.C. Eu, Phys. Rev. A 36, 400 (1987).
B. C. Eu, Ann. Phys. (N.Y.) IIS, 180 (1979); J. Chem. Phys.
74, 6362 (1981);87, 1220 (1987).
B. C. Eu, Ann. Phys. (N.Y.) 140, 341 (1982); Acc. Chem. Res.
19, 153 (1986).


