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Nematic-liquid-crystal light scattering in a symmetry-breaking external field
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A dynamic depolarized light-scattering experiment in the presence of a symmetry-breaking mag-
netic field was conducted on homeotropically aligned dihexylazoxybenezene (DHAOB). This exper-
iment gives direct evidence for the presence of a lowest-order Auctuation mode and its dynamical
behavior in a destabilizing magnetic field.

I. INTRODUCTION II. THEORETICAL BACKGROUND

It is well known that an external field applied perpen-
dicular to the director of a nematic liquid crystal confined
between two orienting surfaces must exceed a certain
threshold to distort the director. ' The explanation of this
effect is often based on the softening of some lowest-order
fluctuation mode. Recently a light-scattering intensity
measurement was performed which studied the fluctua-
tion amplitudes. Earlier the relaxation of macroscopic
deformations was studied. Here we present a dynamic
light-scattering experiment giving direct evidence for the
presence of a lowest-order fluctuation mode and its
dynamical behavior in a destabilizing external magnetic
field.

In Sec. IIA we calculate the zero-field normal-mode
spectrum of a homeotropically aligned sample of finite
size in the direction of no, the undistorted director, under
the assumption that deviations of n from no at the boun-
daries require a finite amount of energy (finite anchoring)
proportional to (n. no) . In Sec. II B we calculate the
normal-mode spectrum for the case where an applied
magnetic field breaks the uniaxial symmetry of the prob-
lem. The effect of finite anchoring energy and a symme-
try breaking field are essential ingredients in the explana-
tion of our light-scattering data.

In Sec. II C we discuss the differential-scattering cross
section for light scattered from nematic normal modes in
finite-thickness homeotropic samples. Interference effects
resulting from the finite-size scattering volume are impor-
tant. Section II D describes the dynamics of the nematic
normal modes which are assumed to relax exponentially.
This explains the digital correlation functions measured
in the experiment. Section III describes the experimental
geometry, gives the results of the dynamic light-
scattering experiments and discusses them relative to
normal-mode director dynamics and surface anchoring
strength.

Section IV summarizes the conclusions drawn from the
experiment and stresses the direct detection of the soften-
ing of the lowest-order normal mode by a magnetic field
applied perpendicular to no.

A. Eft'ect of finite sample size and finite surface anchoring

We consider a nernatic layer confined between the
planes z =+d/2 of a Cartesian coordinate system. Fur-
ther we restrict ourselves to homeotropic alignment and
small director fluctuations. Hence, the director distribu-
tion can be expressed as

n(r)=In„(r), n (r), 1I

with

n„(r) « 1, n.n= 1 .

For the description of the surface anchoring, which is
assumed to be equal on both sides, we use the potential

P7 n n 2d 2~
z = —d/2

where no is a unit vector indicating the "easy axis" taken
parallel to the z axis. The elastic free energy of the bulk
is the familiar Frank free energy

2Fb„)k= f d r[ K&, (V.n) +K2z(n. VXn )

+K33(nXVXn) ] .

The total free energy is the sum

F:Fb ]k+ 8 (4)

Expanding Fb„&z to O(n ) and deviding by Wo
(k ==K /8'o ) gives

= f d r [ k, (t) n +t) n ) 2+k(2B„n tj n,)~—
8'o

+k3[(t),n„) +(t), n )'-j

+ f d r[n (x,y, d /2) +n(~,xy, —d/2)] . (5)

Our goal in this section is to describe the normal-mode
structure for this problem.

By symmetry the modes are uniaxial, permitting us to
choose a local (in q space) coordinate system where
t) ~0 (q =0) and to treat the modes n„and n separate-
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ly. For a single mode of wave vector q= (q„,O, q, )

n (r) =g (q,z)exp(iq„x)+g'(q, z)exp( i—q, x), (6)

where g(q, z) must be determined. The dependence of g
on q„ is suppressed. Substituting Eq. (6) into Eq. (5) and
integrating over x, we have

r

F„/2L = f dz k, q„ lg (q, z) I
+k3

2
dg (q, z)

Jz

+ Ig(q. d/2) I'+ Ig {—q, d /2) I'

5I„=5 f dz k, q„'Ig(q, z)l'+k,
2

dg (q, z)

dz

—A. lg (q, z) i

Fz is given by an expression identical to Eq. {7) except
that n is replaced by n and k& by k2.

The variational problem leading to the correct forms of
g (q,z) and the correct vaues of q, is

0.0

FIG. 1. Mode spectrum in a homeotropic sample with finite
size in the z direction and with finite anchoring strength.
geometrical solution of Eqs. (11}and (12). Curves labeled a are
cotangent [Eq. (12)] and those labeled b are negative tangents
[Eq. (11)].

+Ig(q, d/2)l'+lg( q, d/2)l—' =o, (8)

where A, is an undetermined multiplier introduced to
satisfy the constraint of Eq. (1), i.e., n n = l.

Integrating Eq. (8) by parts gives

5I = f [(ag —k3g")5g'+(ag* —k3g'")5g]dz—6(/2

+ [g (q, d /2) +k3g'(q, d /2)]5g '(q, d /2)+c. c.

q, (n) =(n +1)m/d, n =0, 1,2, . . . , (13)

and all the Iluctuation modes have zeros (nodes) at the
surfaces z =+I/2. If the confining surfaces have no an-
choring action the spectrum remains discrete with

For infinitely strong anchoring the slope of this line is
zero and the mode spectrum is given by the zeros of the
tangent and cotangent functions. Hence

+ [g ( —q, d /2) —k3g'( —q, d /2) ]5g '( —q, d /2)

+c.c.

where

cx:—kiq A,

(9a)

(9b)

q, (n)=nm/d, n =0, 1,2, . . . .

This occurs because now one must have zero-curvature
torque at the surface, i.e., g'(+q, d/2)=0, leading to an-
tinodes at the surfaces.

Solutions of this variational problem can be found by
setting the integrand in the first term to zero,

0,'g —k3g =0 (10)

and taking only solutions with definite parity relative to
the z =0 symmetry plane, i.e., g(q, z)=+g( —q, z). The
wave vector q, must be adjusted such that the surface
terms vanish to ensure the balance of the surface torque
associated with the surface anchoring term against the
bending torque of the director at the surface.

The solutions of Eq. (10) are sin(q, z) and cos(q, z) with
~=k iq +k3q, . Torque balance requires that

k3q, = —tan(q, d/2) (g =sinq, z)

B. InAuence of a symmetry breaking external field

To continue further we must perform the usual ther-
modynarnic calculation for the amplitudes of each mode.
Since we are restricted to small fluctuations it is unneces-
sary to include nonlinear terms.

Starting from the small amplitude version of Eq. (3)
and substituting one Fourier component of n(r) the free
energy is a bilinear form in n„and n (Ref. 2)

2F&= in„(q)i (K»q„+K22q +K»q, )

+ In, (q)l'(K«q, '+K,iq.'+K„q,')
+[n (q)n*(q)+n„'(q)n~{q)](K„K2z)q q~ . —

k3q, =cot(q, d/2) (g =cosq, z) .

Equations (11) and {12)define a discrete set of normal-
mode wave vectors q, (n). This set of allowed q, 's is given
by the intersection of the branches of the cotangent and
negative tangent functions with a straight line of slope
2k3/d (see Fig. 1).

In matrix form

2F~ =
I n„', n *

I
'

C

where

r
n

(16)



6390 EIDNER, LEWIS, VITHANA, AND JOHNSON 40

+K22 qy +K33

8 K
1 1 qy+K22q. , +K33q, ,

C =(K„—K32)q„q . .

n&

2Fd =
I n,', n,* I

'

where

c

K2(q) [n2

After diagonalization we find two independent modes
(the Orsay modes) (Ref. 6) for each wave vector q, i.e.,

K, (q) 0

y = ~/2 ( Mode 1)

( Mode 2)

(Mode i)

&p = ~/2 (Mode 2)

K =K (q, +q )+K33q,

The transformation which achieves this diagonaliza-
tion is a uniform rotation which brings q into the e, -z
plane of an e&, e2, z, coordinate system whose orientation
O, relative to the x, y, z coordinate system is q dependent.
Thus

(H/H, )
2

FIG. 2. Dependence of K {q,H) on the strength and direc-
tion of an applied magnetic field. Assumes Kl )K~.

Pl 2

cosO
—sinO

sinO

cosO n

where 0 is the angle between qi=(q, , q, 0) and the x
axis. In the quadratic form of Eq. (17) the degrees of
freedom are decoupled, permitting one to apply the
equipartition theorem. The mean square of the Auctua-
tion amplitudes is

P is the angle between the e, directions with and without
an applied field. The eigenvalues of the two new modes
are

F =
—,'( K„+K~2) q~j +K3q3, —,'y, H2-
+[ [—,'«» —K33)qi]'+( —,'x.H )'

& ~n (q)~ & =kT/K V, (19) —
—,
' (K ), —K22 )q „y,H cos2$ I

' ~3, (24)

where Vis the integration volume [Eq. (3)].
The contribution of an external magnetic field to the

free energy density depends on the orientation of the field
with respect to the director according to

where +,—corresponds to a = 1,2, respectively.
In order to see more clearly how the eigenvalues de-

pend on the field consider a field perpendicular to q) with

g, & 0. In this case we have

2F = —y, (n.H) (20) Ki K]iq]+K$3q2 2 (25a)

where y, is the anisotropy of the diamagnetic susceptibil-
ity. For a field parallel to n we get

and

K2 =K22qi +K33q, —g, H
1 0

2F = y, H [n*,n*—
) '0

71y
(21) If the field is parallel to qi we have

which does not change the symmetry of the problem.
Thus the angle 0 in Eq. (18) remains the same and only
the eigenvalues are changed equally by y, H (Refs. 2 and
7). Note that this contribution leads to a destabilization
of both modes if g, is negative.

For a field applied perpendicular to n we get

1+cos2$
2F = y, H [n*,n*I '—sin2$

1 —cos2$ n

(22)
where P denotes the angle between the magnetic field and

q~ which we take parallel to the x axis. This expression
together with Eq. (16) can be diagonalized by a rotation
through an angle g. However, the rotation now depends
on F, F„,and the angle P:

y, H sin2$
tan2$= (23)

gaH cos2$ (Kl1 K22 )qi

K] Kiiq j +K33q g II

K2 =K22q q +K33q.2 2

(26a)

(26b)

As expected, Eqs. (25) and (26) tell us that the field de-
stabilizes mode 2 (for y, )0) when it lies along the
mode-2 axis, i.e., perpendicular to the no-q plane,
whereas mode 1 is destabilized when H lies along the
mode-1 axis, i.e., in the no-q plane and perpendicular to
no (Fig. 2). Of course, for y, (0 the field-dependent
modes are stabilized rather than destabilized.

C. Light scattering

Since we restricted our considerations to small fluctua-
tions in a homeotropic sample, the field applied perpen-
dicular to the undistorted director should always be
smaller than the critical field for the bend Freedericksz
transition. The lowest-order fluctuation mode wave vec-
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tor for our sample is near m/d (Fig. 1) due to the strong
anchoring obtained by the surface preparation used.
Since d —55 pm, observation of this mode requires very
small scattering angles in order that the field term be
comparable with the elastic terms in the mode-2
geometry selected [see Eq. (25b) and Fig. 3].

To calculate the scattering vector we used

tinguished from the mechanical wave vector q appearing
in n (q). Specifically for the z direction, after replacing
(5e & by ( ln (q) l & [Eq. (19)],we get

d g +d/2 g & ln. (q, )l'&exp[i(q~~ —q, )z]dz
cx, q

( kxin xout~ & zin zout ) (27) sin(ql —
q, )d /2

where the incident wave is extraordinary with

k„„=(n,/no)[(cu/c) n, k;—„]'
and the scattered wave is ordinary with

k„„,=[(ro/c) n o
—k„,„,]' ',

(28)

(29)

where n, and no are the extraordinary and ordinary in-
dices of refraction. Note that according to the refraction
law the tangential components of the wave vector are
constant on passing an interface between two adjacent
media. Therefore, they can be easily determined and ad-
justed. For an outer medium of refractive index n,

k =(ru/c)n, sina, (30)

where q' ' is the optical scattering wave vector, to be dis-

where a is the external angle of incidence or emergence
depending on whether k;„or k,„, is calculated.

To account for finite sample size we must modify the
limits if integration in the expression for the differential
scattering cross section given by

d2

dad =""'~J
X exp[i (q'i" r —cut)]dr dt,

(31)

where the q, are the q, (n) defined by Eqs. (11) and (12)
and qll is the geometrically adjustable z component of the
scattering vector q' '. We see that the finite sample size
leads to an uncertainty in the selection of q, [single slit
interference function in Eq. (32)]. This allows several
modes to contribute to light scattering in a given direc-
tion. However, the predominant modes are those within
the interval

2 /d &q, ( ) &q~~+2 /d . (33)

This yields a smoothing of the angular distribution of
scattered light which is sufficient to explain why there are
no fringes despite the expected discrete mode spectrum.
It also permits one to adjust q~~, &q, (0) & vr/d and thus
study the behavior of the lowest-order fluctuation mode
without the necessity for an exact coincidence of ql, and

q, (0) =qo (see Table I).
In addition to the slit function in Eq. (32) one must ac-

count for the geometric factor left out of Eqs. (31) and
(32) which selects mode 1 and/or mode 2 and which leads
to a further modification of the intensities. Because of
this and the difficulty of accounting for stray light the
determination of relaxation times by photon autocorrela-
tion is used instead of intensity measurements.

H

[ Laser
a,„(

P) P2 Sa

Corre(ator
afld

Corn puter

FIG. 3. Experimental setup and scattering geometry. P, , polarizer for intensity scaling; P2, polarizer, vertical; 3, analyzer, hor-
izontal; PMT, photomultiplier tube; PH, pin hole 0.8 mm diameter; 1., focusing lens; H, magnetic field; i,f, the incoming and outgo-
ing polarization states; &, the direction of the liquid-crystal director; sample, homeotropically aligned DHAOB; and a;„,„„angles of
incidence and emergence, respectively (note: these are external angles).
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TABLE I. Scattering geometry used for all four cases.

Case

2
qx

(10 m )

0.00
0.67
6.30

11.20

(10 m )

1.26
0.93
0.0004
0.0009

qo =(~/d)
(10 m )

3.26
3.26
3.26
3.26

&in

12.86'
12.86
1.43'
1.43'

&out

12.86'
12.77'
0.97'
0.82'

D. Director dynamics

Neglecting inertial effects the time dependence of the
fluctuation modes can be described by

(34)

which gives rise to a single exponential correlation func-
tion with an inverse correlation time give@ by

'(q)=K (q)/g (q) . (35)

K (q) is in general given by Eq. (24). The effective
viscosity g (q) was first derived in Ref. 6 with the
assumption of an infinitely extended sample volume.
Pieransky, Brochard, and Guyon showed that the pres-
ence of confining walls leads to a hindrance of backflow
which increases the effective viscosity. A detailed treat-
ment of this question will be the subject of a separate pa-
per. Here we consider the viscosity as an adjustable pa-
rameter which is to be determined experimentally.

III. EXPERIMENT, RESULTS, AND DISCUSSION

g(t) = A [1+Bexp( —tlat)],
and for the homodyne case,

(36)

g (t) = C [1+D exp( 2t /r)] . — (37)

The ratio g (0)/g ( ~ ) was used to distinguish between

The experimental setup used here is shown in Fig. 3. A
55 pm homeotropic sample of dihexylazoxybenzene
(DHAOB) was placed between the pole faces of a magnet.
Homeotropic alignment was achieved on glass slides
coated with an organosilane surfactant. ' Vertically po-
larized light incident at an angle a;„excited an extraordi-
nary incident wave in the liquid crystal, which was
filtered (0.2 pm) to remove particulate matter. The scat-
tered light leaving the sample at angle a,„, was observed
through a horizontal polarizer. Since the director was in
the scattering plane and the magnetic field was applied
perpendicular to it we expect to observe the destabiliza-
tion of mode 2 according to Eq. (25b). In order to vary
the scattering vector the four sets of incidence and emer-
gence angles given in Table I were used. These will be re-
ferred to as cases one through four.

In all the experiments the correlation function could be
fitted with reasonable accuracy to a single exponential
function [as Eq. (34) predicts] plus a baseline. For the ex-
treme heterodyne case" one has

homodyne and heterodyne regimes. Despite the use of
crossed polarizers, for cases one and two (Table I), in-
volving nearly forward scattering, the contribution of the
main beam was large enough to cause heterodyning with
B typically 10 . In cases three and four (Table I) we ob-
tained D 0.7 indicating homodyning. In the case of
homodyning the coefficient D is F( A), a geometric fac-
tor' which can be made nearly unity by exposing an area
on the photocathode no larger than a coherence area. A
pin hole of the appropriate size was used to ensure that
F( 3 ) was of the order of 1. The homodyne data verified
this.

Case one, pure forward scattering (a;„=a,„,), probes
q„=0 according to Eq. (30). Note that the optical and
mechanical wave vector components perpendicular to n
are equal due to the continuous nature of q„, therefore we
do not distinguish between q and q' ' below. In con-
trast to Ref. 3 the sample was inclined with respect to the
main beam, leading to q~I&0; however

q~~
is smaller than

the expected lowest mode q, =~/d. The scattered inten-
sity is not zero as it would be for normal incidence. The
scattering vector in case two was chosen such that
q -q~~, both being smaller than vr/d. Cases three and
four were chosen to give values of q„ that are larger than
~/d but small enough to observe the contribution of the
destabilizing field.

It can be seen from Fig. 4 that the dependence of the
inverse correlation times on the square of the magnetic
field strength is in good agreement with Eqs. (25b) and
(35). The appropriate equation to fit the data in Fig. 4 is

=3 —BH—1 2 (38a)

where

A =(Kz2q +K»qo)/g,
B =y, /g

(38b)

and ~ is the relaxation time obtained from the correlation
function. K22 and K33 are the twist and bend elastic
coeKcients and qo=~/d. The measured slope and y,
(Ref. 13) were used to calculate the effective viscosity i)
(Table II).

It is interesting to note the equivalence of ~, 2 versus
H for cases 1 and 2 although the optical wave vectors
were quite different. This result is naturally explained by
the theoretical analysis presented here. In the strong an-
choring limit [q, (0)=qo=~/d] both of these experi-
ments are off mode, i.e., q'I" is not coincident with
q=(q„,q, (n)). Therefore, one could only have scattered
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