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The hypernetted-chain (HNC) approximation is applied to study the critical behavior of a
Lennard-Jones mixture. The parameters of the model potential are appropriate to describe a He-Xe
mixture in the thermodynamic region where “gas-gas phase separation” is known to occur. The
locus of points in the temperature-concentration plane where the kK —0 limit of the concentration-
concentration structure factor S, (k) diverges, i.e., the spinodal line, is determined through an extra-
polation of the HNC results from the region where this integral equation is solvable, toward the
phase stability boundary, where the algorithm becomes highly unstable and no solution can be
found. The extrapolation is based on a power-law behavior of S,.(0) that is verified to hold in the
realm of the available results. The critical temperature and concentration so obtained compare

quite favorably with the experimental data.

I. INTRODUCTION

In recent years various authors' 2 have studied the be-
havior of one-component fluids near the critical point in
the context of integral-equation theories. Special atten-
tion has been received by the critical behavior of the
hypernetted-chain (HNC) equation which has been care-
fully investigated in a recent paper by Poll and Ashcroft.*
These authors showed that for a model fluid system de-
scribed by a pair potential with a highly repulsive core
and an attractive well, there exists a locus of temperature
below which no physical solution to the HNC can be
found, and on which the isothermal compressibility
remains finite. Such a behavior persists up to densities
near the triple point density where x actually diverges,
following a power law and a true spinodal exists.

Similar studies involving the HNC, or other approxi-
mations, have been performed for charged fluids,”!* and
charged fluid mixtures,'""!2 where it is found that the
HNC solution procedure becomes highly unstable in the
approach to the phase stability boundary; in this case the
location of the “spinodal” is obtained through an extra-
polation procedure of the available results.

The integral-equation approach has also been used for
studying the critical behavior of mixtures of simple fluids.
Mixtures of hard-sphere Yukawa fluids have been investi-
gated elsewhere!? in the framework of the mean spherical
approximation, while soft-sphere potential mixtures have
been studied through the Roger-Young equation.'*

In this paper we extend the investigation of the critical
behavior of the HNC equation to Lennard-Jones (LJ)
mixtures. We follow the approach to the phase stability
boundary in these systems through the calculation of the
k =0 limit of the concentration-concentration structure
factor S..(k). The LJ parameters we choose correspond
to those of a He-Xe mixture, and the pressure is fixed
high enough so as to correspond to the thermodynamic
conditions where ‘“‘gas-gas phase separation” is experi-
mentally known to occur.’~!” In the He-Xe mixture the
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atomic sizes and the interaction potential parameters
differ substantially from one species to another so that,
also according to recent computer simulation studies of
LJ mixtures,'® 2! phase separation should occur relative-
ly easily in our model.

The basic theoretical approach is described in Sec. II,
while the results are reported and discussed in Sec. III.
Section IV contains some concluding remarks.

II. THEORY

Concentration fluctuations in fluid mixtures are de-
scribed by the concentration-concentration structure fac-
tor S..(k) which for a binary mixture can be expressed in
terms of the partial structure factors,?>23

S (k)=c(1—c){(1—c)S(k)+cSy(k)
—2[c(1=¢)]"°S,(k)} . (1)
Here c is the concentration of species (1) defined as
¢=N,/(N,+N,)

and N, and N, are the number of particles of the type 1
and 2, respectively.

As is well known, the long-wavelength limit
(k—0) of S..(k),S..(0), is related to the second deriva-
tive of the Gibbs free energy of mixing G,,, with respect
to the concentration

S.(0)=NkyT /(3*Gypy /3¢ 1 p , )

22,23

where N is the total number of particles.

From Eq. (2) it follows that S, (0) diverges for all
points where the concavity of the G,, versus c¢ curve
changes sign, that is, where

(82Gy, /3c?) 7 p=0. 3)

The locus of points in the T-c plane on which, for every
fixed pressure, Eq. (3) is satisfied, is the spinodal line of
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the mixture. The portion of the plane inside the curve
corresponds to the instability region of the mixture. The
spinodal line lies inside the so-called binodal line, or the
phase diagram, which can be obtained from the Gibbs
free energy of mixing through the common tangent pro-
cedure.?* The two curves coincide at the critical consolu-
tion points(s), for which critical temperature(s) and
concentration(s), T, and ¢, can be defined.

The interaction potential for the particles of the binary
mixture is the LJ (12-6) potential

U[j(r)=4€,'j[(aij/r)12'_(0,",'/")6], l,j=1,2 . (4)

In order to calculate S, (0) we make use of the
hypernetted-chain integral equation (HNC) which for our
model can be written as

gij(r)=exp[ —Bv;;(r)+h;(r)+c;(r)], (5)

where g;;(r)=h;;+1 is the radial distribution function,
B=(kzT)"!, and c;j(r) is the Ornstein-Zernike direct
correlation function defined by the relation

2
hy(n=cy(N+3 p, [drh,(lt=r'e;(r), (6
I=1

where p; is the number density of the ith species. In our
case p;=cp and p,=(1— c)p, p, being the total number
density of particles.

For numerical convenience Eq. (6) is rewritten in terms
of ¢;;(r) and 6,;(r)=h;;(r)—c,;(r) to obtain
c;j(r)=exp[ —Pv;(r)+6,;(r)]—0,(r)—1. (7)

Equations (6) and (7) are solved for a given density p, con-
centration ¢, and temperature T through an iterative pro-
cedure which has been described in detail elsewhere.?

From the knowledge of h;;(r) the partial structure fac-
tors are calculated via Fourier transform and from them,
finally, the concentration-concentration structure factor
S..(k). Most of the calculations were carried out on a
grid with a real-space step Ar=0.020y.x. and a total
number of points N=1024; however, checks have been
made of the stability of the results for those cases where
convergence was more difficult to obtain, by using
N=2048 and various Ar. No significant variation was
found with these different grids.

We approach the phase stability boundary along a
thermodynamic path for which the concentration is ini-
tially fixed, and for each chosen temperature the density
of the mixture is varied until the HNC estimate of the
pressure attains a prefixed value. We obtain in this
manner the value of S..(0) corresponding to, say, pres-
sure P*, temperature T*, and concentration ¢ *, denoted
in what follows S(P*,T*,c*). This calculation is then
repeated, at the same prefixed pressure, for a discrete set
of concentration values. If T* is sufficiently high, solu-
tions exist to the HNC equation all over the concentra-
tion range from ¢ =0 to c=1. By reporting the values of
S..(0) as a function of the concentration we obtain a
bell-shaped curve S(P*,T*,c) (see Fig. 1), which is obvi-
ously zero at the pure component limits and, in the
present case, has a maximum at ¢ =0.5.
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FIG. 1. S..(0) plotted as a function of the concentration for
the He-Xe mixture at a pressure of 695 bar and various temper-
atures. In the inset: an expanded representation of the critical
point region.

As the temperature decreases, and the spinodal is ap-
proached, S..(0) increases for every value of ¢, with a rate
which is higher in correspondence approximately of the
maximum of the curve, and the convergence rate be-
comes slower and slower, until no solution can be found.

If we consider a fixed value of the concentration ¢* and
report the value of S..(0) as function of temperature we
obtain a curve S(P*,T,c*) which increases as the tem-
perature decreases. A description of this behavior can be
attempted by using a power law, as detailed in Sec. III.

III. RESULTS

As mentioned above, phase separation in the He-Xe
mixture has been experimentally investigated in the past
(De Swaan Arons and Diepen,'® J. Zanderbergen et al.,'®
Trappeniers and Schouten!’). We consider this mixture
subject to a pressure of 695 bar, for which the experimen-
tal upper critical mixing point is located at 7., =305.2 K
and ¢, =0.51. The He-Xe mixture has been investigated
by Hoheisel®® in the high-pressure regime, and we shall
assume for the parameters €;; and o, appearing in the
potential (4), the same values as those used in his
molecular-dynamics simulation. Before discussing the re-
sults, it is worth observing that these LY parameters were
obtained in Ref. 20 through a series of computer simula-
tion runs, where the densities were fixed on the basis of
the Redlich-Kwong equation of state, and the experimen-
tal compressibility factors were fitted in the high-pressure
range. For the particular pressure chosen we can there-
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FIG. 2. Log-log plot of S..(0) vs the reduced temperature € at
fixed concentration ¢=0.5; labels on the curve are values of T,
(see text for the definitions). The dots correspond to calculated
values; the dashed lines are guides for the eye.

fore regard the potential adopted as very accurate, in the
sense that the ““exact” numerical procedure reproduces
the experimental values for the pressure.

In Fig. 1 S,.(0) is shown as a function of the concentra-
tion at different temperatures. At the higher temperature
considered, T=320 K, the curve has a maximum at
¢y =—0.48. As the temperature is decreased, S..(0) in-
creases at each value of the concentration. The max-
imum shifts slightly toward higher values of the concen-
tration and, at T=308.6 K, we find ¢y, =0.52. Below this
temperature the HNC algorithm fails to reach conver-
gence in a range of concentrations which becomes wider
and wider the more the temperature is lowered.

The HNC failure is attained before a real divergence of
S..(0) is reached, so that, in order to find the temperature
T, (c) at which, for the given concentration, S, (0)
diverges, we need some extrapolation procedure. For this
purpose, similarly to what has been done elsewhere,!' 12
we assume that S_.(0) tends to diverge as

S, (0)e(T—T_ )7, T>TZ .
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FIG. 3. Spinodal curve estimated from the HNC for the He-
Xe mixture at 695 bar. The vertical bars correspond to the es-

timated error in T, induced by the numerical procedure adopt-
ed.
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In order to check if our results conform to such a law we
report in a log-log plot S, (0) versus the reduced tempera-
ture e=(T—T_)/T,. For each value of the concentra-
tion we find it possible to adjust the value of T so to
produce a linear behavior in such a plot. This is shown in
Fig. 2 for the particular case ¢=0.5, and confirms that
S..(0), obtained from the HNC calculations, diverges
with €—0 following a power law. The value of ¥ does
not vary very much with concentration, ranging about
¥ =0.75. The experimental value is y ~1.2.2°

We report the temperature 7, as a function of ¢, in
Fig. 3. This curve defines our spinodal line; it shows a
maximum which corresponds to the critical temperature
of mixing T, and the critical concentration c... We esti-
mate from our figure ¢, =~0.515 and T, =305.6; these
values are remarkably close to the experimental data.

IV. CONCLUDING REMARKS

We have shown how the HNC approximation scheme
can be used in order to describe the critical behavior of
dense simple fluid mixtures. For the particular case in-
vestigated, that is, the He-Xe mixture, the predictions of
the theory compare quite favorably with the experimental
data for both the critical temperature and concentration.
Moreover, the theory shows a power-law behavior in the
approach to the phase separation boundary.

This behavior of the HNC seems similar to the one ex-
hibited by this same theory for the model potential inves-
tigated by Poll and Ashcroft;* in fact, in that case the iso-
thermal compressibility diverged with a power law in the
high-density regime.

Obviously, if the HNC solution could be obtained
closer to the spinodal line, the extrapolation described
above would become more and more accurate. Such an
improvement requires stabilizing the algorithm of solu-
tion in the approach to the critical region. Attempts in
this sense are reported in the recent literature and seem
encouraging.?’

The HNC estimate of the critical exponent is not
correct; however, with reference to this point, it is neces-
sary to remember that the HNC neglects the contribution
of bridge diagrams, which play an important role>* in
determining the power-law behavior of the integral equa-
tion.

Finally, we observe that in recent years there has been
substantial progress in the achievement of new computer
simulation techniques aimed to tackle the problem of
phase coexistence in fluids.'®~22® However, these simu-
lations are quite demanding, requiring a great number of
particles and a substantial sampling of the phase space.
In such a situation the predictions of a microscopic
theoretical approach, even with the limitations discussed
above, could prove useful for a comparison with simula-
tion results.
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